
ABSTRACT
Intelligent, adaptive interfaces are a pre-requisite to elevating
computer-based applications to the realm of collaborative
decision support in complex, relatively open-ended domains
such as logistics and planning. This is because the composition
and effective presentation of even the most useful information
must be tailored to constantly changing circumstances. Our
objective is to not only achieve an adaptive human-machine
interface, but to imbue the software with a significant portion of
the responsibility for effectively controlling the adaptation,
freeing the user from unnecessary distraction and making the
human-machine relationship more collaborative in nature. The
foundational concepts of interface adaptation are discussed and
a specific logistics application is described as an example.
Keywords: Ontology, Adaptive Interface, Machine Learning,
Autonomic Logistics, Conceptual Graphs

INTRODUCTION
For a number of years, GE has been a leader in the remote
monitoring and diagnosis of complex systems such as medical
imaging equipment, aircraft engines, electrical power plants,
and locomotives. Increased communication bandwidth and
computational power have now made it viable to integrate
monitoring and diagnostics with other logistic functions such as
sourcing and service planning. This integration offers the
opportunity to improve overall efficiency, tuned to an
organization’s specific objectives, but also demands/requires
that decisions depend upon an increasing volume of complex
information from many sources.
It is sometimes desirable to provide collaborative decision
support while keeping the human as an active participant in
decision-making. In order to do this, human-computer interfaces
must  be  more  flexible,  adapting  to  the  situation  and  the  user.
This paper makes the case for adaptive interfaces, identifies
some of the foundational concepts in their development, and
describes an adaptive maintenance application currently under
development for the Air Force Research Labs and GE
Transportation Systems.

ADAPTIVE INTERFACES: WHAT AND WHY?
An interface is a boundary between two systems. The interface
of concern here is that which exists between a computer-based

program or agent and a human being. The majority of today’s
human-computer interfaces consist of a keyboard and a pointing
device (e.g., mouse) for the human to make his/her intentions
(input) known to the computer and a two-dimensional display
screen on which the computer creates visual patterns
interpretable by the human (output). Virtual reality
environments can provide a significantly different interface
alternative but are not widely available and are not discussed in
this paper. However, the concepts developed are believed to be
applicable to any human-computer interface.
Our focus is on decision support in information-rich
environments such as logistics. Software applications in this
arena have the potential to significantly improve the capability
of the human decision maker by filtering, organizing,
summarizing, and presenting what can be an overwhelming
amount of data from sometimes disparate sources, and by
alerting the user to critical information which might otherwise
be overlooked. Summarizing, for example, can range from
simple statistical analysis of numerical data to complex
reasoning that logically deduces what was previously only
implicit in the data and models instantiated in the computer.
The timeliness, composition, and interactivity of the
information required to support synchronous decision-making
varies in response to the circumstances in which action is to be
taken. An adaptive interface is one that is amenable to
modification in response to these changing conditions. There
are many dimensions in which modification can occur, ranging
from things like font size and color to language and specialized
vocabulary to the level of detail and arrangement of graphical
displays  on  the  screen.  What  users  perceive,  how  easily  they
perceive, and the interpretation they give to their perceptions
depends upon the representation provided in the interface and,
of course, upon the users themselves. Likewise, the ease and
clarity of user input to the computer depends upon the interface
provided for that input.
Information flow in either direction across the interface must
make use of shared representations to encode the information.
Vision pioneer David Marr[10] observed, “A representation is a
formal system for making explicit certain entities or types of
information, together with a specification of how the system
does this.” It follows that any particular representation will
make explicit certain information at the expense of other
information that is pushed into the background and made more
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difficult to retrieve. Understanding what makes information
easier or more difficult to perceive is key to effective use of the
human-computer interface. Adaptability of the interface is what
enables communication across this interface to be made more
effective for a given set of circumstances.

ONTOLOGY
Ontology hypothesizes the nature of being in a problem
domain—the kinds of information that can flow across an
interface. It is an inseparable part of all human rationality and
communication. The world seems to us to be made up of
things—call these entities. They may be physical, like a rock, or
abstract, like efficiency. Our perceptions of and reasoning about
entities lead us to conclude that some entities are more similar
than others. We group similar entities together and call the
grouping a class or  a type.  A  class  or  type  is  necessarily  an
abstraction--it exists only in our mind as a thought (although we
may communicate the thought to someone else). That which we
perceive as the commonality of similar entities we call
attributes or properties. We often impose a partial ordering
upon our type abstractions to create a taxonomy. For example,
dog is a subtype of mammal, which is a subtype of animal,
which is a subtype of living thing. The actual, individual things
that exist are called instances. “Lassie” is an instance of a dog.
Things in the world can interact—have an affect on each other.
We call these interactions relations or relationships. “The book
is on the table” identifies a spatial and possibly functional
relation between the book and the table. How something
participates in a relation is called a role. For example, Kirk is a
type of human being (based on his intrinsic properties), but he
plays the role of captain in relation to the Enterprise. Roles may
also be organized into taxonomical hierarchies. For example,
watchers and listeners are types of sensers,  which are types of
agents [12].
Sometimes the relations and/or attributes of one or more entities
in  the  world,  such  as  the  book  being  on  the  table,  seem to  be
static over some time period of interest. We call this a state. At
other times relations and/or attributes appear to be in flux.
When things are changing and we are only interested in or can
only perceive the state of affairs before and after the change, we
call the change an event. At other times we perceive a gradual
change, or a progressive change through a sequence of events
and states. We call this kind of change a process. We also use
the term role to describe participation in an event or a process.
For example, consider the statement, “The mechanic replaced
the broken shroud with a new one.” This describes a process
with participants mechanic, broken shroud, and new shroud.
Mechanic is a role, presumably played by a person.
Instances, types, attributes, relations, roles, events, states, and
processes; these are the essential elements of ontology. Thus an
ontology  is  a  declaration  of  what  does  or  may  exist  in  a
particular domain. It is implicit in cognition and
communication, two fundamental capabilities of an intelligent
system. A human language such as English is an ontology.
Words and phrases represent instances, types, attributes,
relations, roles, events, states, and processes. Instances, for
example, may be identified by a proper noun, e.g., “George
Washington,” by a definite article preceding a type name, e.g.,
“the dog,” by a definite article preceding a role name, e.g., “the
president,” or by an indexical such as the pronouns “he” or “it.”
Since natural language is often ambiguous and not computable
with current technology, more constrained and therefore precise
ontology languages are desirable. The role of such languages is
so important that it is difficult to conceive of an artificial

intelligence (AI) that does not structure its knowledge in an
ontological manner so as to facilitate communication and
reasoning. Reasoning by analogy, which will be discussed in
more detail below, is particularly dependent upon ontological
structure as the similarities in the structure itself are the basis of
the reasoning. Note that an ontology may consist of multiple
sub-ontologies, as will be illustrated in the application discussed
below.
Semiotics is the study of how symbols have meaning [2]. Every
artifact used as a semiotic sign or text, as every representation in
a human-computer interface must necessarily be if
communication is to occur, encompasses ontological
information. The only question is whether the ontology is
explicit and open to examination or implicit and assumed. The
advantage of an explicit ontology is that it can be examined,
communicated, used for reasoning, extended, and modified.
One problem with an implicit ontology is that one has no way to
know for sure what was intended or how it might be extended or
modified. It is like a language without a dictionary—words have
meaning and are related to other words, but there is no authority
to clarify the meanings and relationships. Of course it is much
less effort, at least initially, to simply assume an ontology and
use it implicitly.

THE ROOTS OF ADAPTABILITY
Ontologies organize our perceptions and thoughts. This
structure is  the basis of reason,  and reason is  at  the root of all
intelligent adaptation. Identification of similarities between the
current situation and previously encountered situations allows
selection of the modifications (adaptations) that are most likely
to achieve some desired result. Without the guidance of this
pattern matching (reasoning), adaptations would simply be
random, and would not be likely to bring about improved
performance. In human-machine interfaces, the alteration can be
initiated by the human or by the machine. To date, the most
effective systems have generally been those that are easily
adapted at the discretion of and through actions by the human
users [14]. This is probably the case because humans are much
better at pattern matching and opportunistic reasoning than are
our present machines, and therefore much better able to decide
how and when to adapt.
Let us consider some common types of reasoning. Reasoning by
analogy is based on the expectation that if two structures
(things, processes, situations, etc.) are similar in some respects,
they are likely to be similar in others. Deductive reasoning uses
structures so constrained that the truth of the premises
guarantees the truth of the conclusion. For example, one form of
deductive syllogism uses the partial ordering of a taxonomy to
infer properties of instances from their types. Given the two
premises: “All men are mortal” and “Socrates is a man,” the
conclusion necessarily follows: “Therefore, Socrates is mortal.”
Deductive systems with fixed rule sets are the least flexible way
of controlling interface adaptability.
To know for sure that “all men are mortal” we would have had
to examine Socrates, so strictly speaking deduction tells us
nothing new. However, inductive reasoning and statistical
methods can be used to find useful patterns in less than
exhaustive data sets. Abductive reasoning generates hypotheses
(models) based on data samples, which can then be applied
deductively on the assumption of validity [12]. Reasoning with
uncertainty associates a likelihood of the truth of a conclusion
based on a recognized uncertainty of premise truth and/or a less
than perfect correlation between premises and conclusions.
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Traditionally, model-based reasoning has been identified as a
distinct branch of artificial intelligence. A model is a set of
entities and relationships in one domain that are intended to be
representative of a set of entities and relationships in another
domain [15, 16]. The goodness of a model can be measured in
terms of the degree of homomorphism between the entities and
relationships (structure) of the model and those of the modeled
domain that are important to the objectives of the model [6].
Sowa [12] has observed that a model consists of two parts: 1) an
ontology, and 2) a logic, which consists of rules of inference for
deducing things of interest from the ontology and the instances
of the present situation. This view of a model is shown in Figure
1.  We  observe  that  all  of  the  types  of  reasoning  discussed
depend in the most fundamental way upon the entities and
relationships that compose the ontological structure of the
domain.

Human beings remain much more flexible and adaptive than
any artifact constructed to date. One might wonder about the
underlying cognitive function of the human being—what makes
us so adaptable? While there are competing theories, Johnson-
Laird’s mental model theory has achieved considerable success
in explaining human cognitive performance, both in terms of
reasoning capacity and in terms of the kinds of errors committed
[7, 8, 9]. According to mental model theory, each entity
perceived or imagined is represented by a token in the model,
the properties of entities are represented by properties of their
tokens, and relations among tokens represent the relations
among entities. The overall structure of the model represents a
state of affairs [1, 9]. Mental model theory is compatible with
model-based reasoning in that every artifactual model begins its
existence as a mental model, and mental models and models
captured in artifacts are both constructed of the same
ontological elements. Indeed, all reasoning seems to boil down
to models.
Thus we assert that models are at the root of adaptability. This
truth was captured in the work of Kenneth Craik [3] who wrote,
“If the organism carries a small-scale model of external reality
and of its own possible actions within its head, it is able to carry
out various alternatives, conclude which is the best of them,
react to future situations before they arise, utilize the knowledge
of past events in dealing with the present and the future, and in
every way react in a fuller, safer, and more competent manner
to the emergencies which face it.” In the context of human-
computer  interfaces,  we  might  paraphrase  Craik’s  words  by
stating, “If the human and the machine share models of the
problem to be solved and of their own possible actions and the

probable consequences, they will be able to evaluate and
collaborate about various alternatives, conclude which is the
best, react to future situations before they arise, remember and
utilize knowledge of past events in dealing with the present and
the  future,  and  in  every  way  accomplish  their  work  in  a  more
competent manner, each performing the tasks for which it is the
more adept while coordinating and integrating their efforts.”

A LEARNING INTERFACE
It is argued above that effective adaptability comes through
reasoning and that humans have been superior performers in
controlling adaptation. This is especially the case in more open-
ended problem domains such as logistics where it is not possible
to pre-code models of every possible situation into the
computer. Such problem domains necessitate higher-level
reasoning by analogy. For a machine to be able to perform the
analogous reasoning behind intelligent adaptation, it must have
a store—a memory if you will—of prior situations. This is
Craik’s “utiliz[ation of] the knowledge of past events in dealing
with the present and the future” (see previous section).
Furthermore, this memory must be well organized, enabling a
comparison of a current situation with prior situations and
identification of those that are most similar in ways that are
relevant to the current objectives.  The sophistication of the
memory structuring and of the pattern matching will determine
the degree to which the machine is able to learn in a way useful
to the adaptive process. This structuring depends on, and indeed
may be a contributor to, the ontology of the problem domain.

Machine learning is a difficult problem, and our goals in this
respect are modest. At this stage of our research we seek only to
recognize how specific situations map on to our ontology so as
to create usefully structured memories. These memories can
then become the basis of reasoning as described in the
application section below. However, we hypothesize that the
same structuring concepts and methodologies will be found
useful for higher-level learning, i.e., for extending the ontology,
in future research.

REACHBACK: APPLICATION WITH AN ADAPTIVE,
LEARNING INTERFACE

The application we describe implements a maintenance concept
called “reachback.” The term has its origins in military
operations. Neal [11] defines reachback as “the electronic
ability to exploit organic and non-organic resources, capabilities
and expertise, which by design are not located in theater.”
Making better decisions through access to and assimilation of
remote, asynchronous sources of information is a defining
feature of a reachback capability. By applying reachback
concepts to the maintenance of deployed equipment, we seek to
improve the balance between the competing constraints of low
maintenance cost and high equipment availability. This work is
supported by Air Force Research Labs and by GE
Transportation Systems.  The initial prototype of the reachback
system discussed here uses data from GE Transportation
Systems.

GE Transportation currently monitors over 4000 locomotives
worldwide. As faults and other anomalous conditions develop
onboard the locomotive, they are collected and downloaded to a
central monitoring center for analysis. An engineer examines
this data and the output of multiple AI-based diagnostic tools to
determine if the equipment is experiencing a problem. If a
problem is believed to exist, a recommendation is made to have

Figure 1: Two Parts of a Model with Inputs, Outputs, and
Feedback
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a field engineer
perform
troubleshooting and
maintenance on the
locomotive.
Although remote
monitoring represents
a significant increase
in visibility into the
equipment’s
condition, the right
maintenance decision
is not always obvious.
The sensors on the
equipment usually
indicate “anomalies”
rather than hard
failures.
Environmental and operating conditions have to be taken into
account when distinguishing actual failures from false alarms.
The importance of the mission affects whether it is practical to
take the time to perform maintenance, as does the availability of
personnel and parts.
Intelligent maintenance support represents a natural domain for
adaptive interfaces. A reachback system must convey a large
amount of sometimes-uncertain information to the decision
maker, and do so in a manner that is conducive to making the
best decision in the available time. While the opportunity for
improved decisioning derives from this larger quantity of
information, it also potentially poses the problem of
overwhelming the human user with too much information to
efficiently access and assimilate.  The information most useful
for decision support changes in response to the context in which
decisions are being made.  Experts in a particular subject matter,
for example, are likely to have learned how to navigate and
filter large amounts of raw and tool-generated data reported by a
monitoring and diagnostic system.  Novices, on the other hand,
lack this experience and are more likely to need simpler data
presentations and more supporting documentation and
instructional materials.  Information needs may also change
according to the confidence users have in the accuracy of the
data  presented,  which  may  in  part  be  driven  by  their  level  of
expertise and the confidence the system itself has in the data.
Similarly, what is likely to be an appropriate level of
information for a service visit in a shop may not be an
appropriate  level  of  information  for  service  in  the  field,  where
time, tools, and experienced personnel may be more limited.
Because reachback supports knowledge-based work across a
varied user population in multiple domains where new scenarios
develop over time, flexible, extensible models of the human-
machine interaction are needed.  Several factors are important to
consider in modeling this interaction.

• The nature of the information to be conveyed
• The expertise of the end user
• The  preferences  of  the  user,  which  may  be  based  on

sensory or cognitive capacities
• The time available to resolve a maintenance issue
• Confidence in the accuracy of the information delivered by

the system
The user’s expertise and confidence in decision support
information are dynamic, variable and, to some degree, directly
unobservable by the system.  Adaptation to these contextual
constraints has been identified as a key challenge in modeling

the interactive process between humans and computers in a
reachback system.
We  hypothesize  that  the  system  is  made  considerably  more
flexible and extensible by relating concepts supporting these
factors to an upper-level ontology. The upper-level ontology
provides the contextual structure in which new or evolved
concepts in the problem domain are placed. Such placement
allows many of the attributes and associations of the new or
modified concept to be inherited, greatly simplifying system
evolution and extension.
Figure 2 shows the architecture of an initial reachback
prototype. A “reachback agent” (RA) actively participates in
determining what and how to display information in the user
interface. This agent depends, in turn, on an “adaptive
communication agent” (ACA) and on the data available through
the reachback system. The ACA has access to both domain-
specific and upper-level, domain-independent ontology
represented  as  a  topic  map  in  XTM  (XML  topic  map,  see
Garshol [5]). Some reasoning capability is provided through a
prolog-like query language called tolog [4].
Figure 3 shows a screen shot of one of the reachback prototype
interfaces. Fault sequences, referenced below, are displayed in
the area marked with “*”. Each of the other areas represents a
particular type of reachback information. Several of the areas
can contain information represented either as a graph, as a table,
or  as  summary  text.  The  type  of  sign  used  is  chosen  as  an
illustrative example of adaptability controlled by a model of
human-computer interaction. Of course at a higher level, the
information displayed and the layout of the information on the
screen can also be made adaptive by modeling the work in
which the user is engaged.  Figure 4 shows the three sign types
modeled as subtypes of the upper-level, domain-independent
concept schema [12].
Human-computer interaction is a type of communication. We
define communication as a process in which a participant agent
or collection of agents encodes information in a sign or semiotic
text and transfers these to a second participant agent or
collection of agents for decoding and comprehension. Drawing
on Sowa’s [12] top-level ontology lattice, both communication
and the actions of sign creation, sign transmission, and sign
decoding are types of processes, as shown in Figure 5.
Expressed  as  an  XTM  topic  map, communication is  an
association with three participants: an initiator, a recipient, and
a sign.  An  instance  is  shown in  Figure  6.  This  XTM segment
indicates that this association is an instance of communication,

  Figure 2: Architecture of Reachback Ontology-Based Prototype
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has a member “georgesmith” playing the role of recipient (a
subclass of goal) has another member “aca” playing the role of
initiator (a subclass of agent), and a third member “graphic-
93174” playing the role of sign. In other words, our ACA agent
is the initiator of a communication with George Smith (a user)
in which a particular sign was created (by the ACA).
“Reifying” the sign, meaning that it is made a topic in the topic
map in its own right, captures additional information about the
specific sign as shown in Figure 7. The sign is an instance of a
“tabular sign” and of a “fault sequence.” The fault sequence
structure contains a list of faults reported by a locomotive.
Faults are reported anomalies with a temporal ordering.  A user
may choose to view sequences of faults of varying size and
beginning time. Depending upon the location and extent of this
fault window, different conclusions may be drawn. In particular,
the size of the window affects the observability of repeat fault
codes and codes which have already been analyzed. The tabular

fault sequence of Figure 7 has 10 rows of data. Another
association, called “relates-to” (not shown), connects the sign of
Figures 6 and 7 to a particular locomotive.
The conceptual structures described above and represented in
Figures 4 through 7 provide a framework in which a particular
user  can  view  a  particular  kind  of  information  (e.g.,  fault
sequences) in a particular form (e.g.,  as a tabular sign with 10
rows of fault codes). Simple inferencing can be used to provide
reasonable default communication behaviors under a particular
set of circumstances. For example, suppose user Erica Williams
is examining fault sequences on locomotive SN963 for the first
time, meaning that there is no historical data to indicate how she
might like to see the data. The kinds of logic that might be
applied include:

Figure 3: Reachback User Interface Screen Shot Showing Areas of Display

Figure 4: Visual Sign Taxonomy

Figure 5: Communication Taxonomy
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1. Erica has recently examined fault sequences for locomotive
SN385, which is the same type of locomotive. From this
interaction the system learned that she prefers graphical
signs. Therefore, use a graphical sign type for SN963.

2. Erica has never looked at a fault sequence before. However,
she is acting in the role of a monitoring and diagnostic
center engineer, and most people in this role prefer to see
fault sequences as tabular signs with 8 rows of data, starting
with the most recent fault. Therefore, use this display type
for Erica.

Similarly, if this type of information had not been displayed
before, but the ontology tells us that “fault sequence” is a
subtype of “event history,” we could deduce that the default

communication vehicle should be the same as that most
commonly preferred for other event histories. In each case we
can learn over time what Erica really prefers.

OTHER ONTOLOGY APPLICATIONS IN LOGISTICS
The previous section describes part of the reachback
communication model. Models of the work domain also
substantially enable adaptability of the interface and
effectiveness of the decision support activity. A small example
of the ontology for anomaly detection is described. Conceptual
graphs are chosen as a representation because of their ease of
comprehension due to their compatibility with natural language
and their visual characteristics. Conceptual graphs have a one-
to-one mapping to first order predicate logic [13].
A conceptual graph is a bipartite graph; it consists of alternating
rectangular concept nodes and oval-shaped relation nodes
connected by directed arcs. A concept node must contain a type
label, optionally followed by a colon and a referent label. The
referent label, if present, identifies a specific instance of the
type. Without referents, a conceptual graph is a generic
statement of what can be. With referents, it is a precise
statement of what is.
We begin by defining an observation as the measurement of a
characteristic of an entity. Figure 8 shows a specific instance of

an observation: “The bearing has a temperature measured to be
250 F.” The bounding box identifies a context that has the type
“Observation.” The ordered pair “<250, F>” identifies a
quantity and its units. Note the clear distinction between the
temperature of the bearing and a measurement of that
temperature, paving the way for data fusion, bad sensor
detection, etc. Note that the existential quantifier is implied
when no other quantifier is specified—the graph means, “There
exists an Observation …”
Having introduced the concept of an observation, we are ready
to  define  a  symptom as  a  situation  in  which  an  observation  is

 Figure 8: Conceptual Graph of a Specific Observation

<association>
  <instanceOf>
    <topicRef xlink:href="#communication">
    </topicRef>
  </instanceOf>
  <member>
    <roleSpec>
      <topicRef xlink:href="#recipient">
      </topicRef>
    </roleSpec>
    <topicRef xlink:href="#georgesmith">
    </topicRef>
  </member>
  <member>
    <roleSpec>
      <topicRef xlink:href="#initiator">
      </topicRef>
    </roleSpec>
    <topicRef xlink:href="#aca">
    </topicRef>
  </member>
  <member>
    <roleSpec>
      <topicRef xlink:href="#sign">
      </topicRef>
    </roleSpec>
    <topicRef xlink:href="#graphic-93174">
    </topicRef>
  </member>
</association>

Figure 6: A Communication Association in XTM Syntax

<topic id=" graphic-93174">
  <instanceOf>
    <topicRef xlink:href="#tabular-sign">
    </topicRef>
  </instanceOf>
  <instanceOf>
    <topicRef xlink:href="#fault-sequence">
    </topicRef>
  </instanceOf>
  <baseName id="id307">
    <baseNameString>Loco 1 Fault List Display
for George Smith</baseNameString>
  </baseName>
  <occurrence id="id308">
    <instanceOf>
      <topicRef xlink:href="#table-rows">
      </topicRef>
    </instanceOf>
    <resourceData>10</resourceData>
  </occurrence>
</topic>

Figure 7: Reification of the ACA-Created Sign of Figure 4

 Figure 9: A Conceptual Graph of the Indication of a Symptom
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abnormal. For quantitative measurements, this means that the
measurement  is  out  of  spec.  Figure  9  shows  a  more  complex
conceptual graph corresponding to the English sentence, “The
bearing temperature measured to be 250 F is a symptom.” The
dashed lines connecting nodes indicate co-referents. For
example, the bearing in the context “Situation” is the same
bearing that has a temperature measurement indicating a
“Symptom.” The symptom, in turn, is the situation in the nested
context. The innermost context is a proposition that the measure
is less than the upper spec limit and greater than the lower spec
limit. The “not” negates this proposition in the context of the
situation that is the symptom.

CONCLUSIONS
In this paper we have discussed the value of adaptive human-
machine interfaces in logistics environments and identified the
kinds of ontologies, models, and reasoning necessary for a more
collaborative interaction. Several aspects of an application for
locomotive maintenance have been used for illustration. While
much work remains to implement the kind of adaptive interface
that we envision, we are encouraged that the concepts presented
here constitute a promising direction for continued research.
This  work  was  supported  in  part  by  the  U.S.  Air  Force.  We
express appreciation to Jim McManus of the Air Force Research
Laboratory for domain knowledge and guidance.
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