
Generic Simulator Environment for Realistic Simulation
-

Autonomous Entity Proof and Emotion in Decision Making

Mickaël Camus
camus_m@epitech.net

and
Nabil El Kadhi

el-kad_n@epitech.net
L.E.R.I.A. - Laboratoire Epitech de Recherche en Informatique Appliquée,

{Epitech.}, 24 rue Pasteur 94270 Le Kremlin Bicêtre, France

Abstract

Simulation is usually used as an evaluation and testing
system. Many sectors are concerned such asEUROPEAN

SPACE AGENCY or the EUROPEAN DEFENCE. It is
important to make sure that the project is error-free in
order to continue it. The difficulty is to develop a realistic
environment for the simulation and the execution of a
scenario.
This paper presentsPALOMA , a Generic Simulator
Environment. This project is based essantially on the
Chaos Theoryand Complex Systemsto create and direct
an environment for a simulation. An important point is
the generic aspect.PALOMA will be able to create an
environment for different sectors (Aero-space, Biology,
Mathematic, ...).
PALOMA includes six components : the Simulation En-
gine, the Direction Module, the Environment Generator,
the Natural Behavior Restriction, the Communication API
and the User API. Three languages are used to develop this
simulator. SCHEME for the Direction language,C/C++
for the development of modules andOZ/MOZART for the
heart ofPALOMA .

Keywords: Simulation, Autonomy, Chaos Theory,
Complex System, Generic, Environment, adaptative sys-
tem, emotion, decison making.

1 Introduction

1.1 Context

Simulation is usually used as a first evaluation and
testing system before developing commercial solutions.
Many sectors are concerned, such as the European Space
Agency with the development ofM YRIAD [Tho01], a
micro-satellite constellation, or the European Defence
for the MISURE project [Ing02], MI ssion managment

System forUninhabited aiR vEhicles and new techniques.
It is always important to be sure that the simulation is safe
and free from any errors before deciding whether or not to
continue a project or an investment. Most current industry
use simulators (such as Athena [CG01]) necessitates a
specific description of a typical environment in order to
run a simulation scenario. This description is important for
the simulation since it must be as complete and accurate
as possible in order to guarantee accurate simulation
scenarios. The most difficult question here is how to give
a simple description of an efficient environment and to
conduct a realistic simulation without plunging into a
lot of complicated syntax and constraints. Most of all
the existing simulation tools [CG01] enable generated
simulation scenarioautomaticallyand they rely totally on
user input descriptions. The dilemma is how to conduct
a complete and efficient simulation that is not limited or
corrupted by user descriptions, and how to ensure that the
simulation environment is realistic.
One solution is to consider adynamic environment
throught-out the simulation. In fact, the user will simply
specify initial environment variables and then the simula-
tor will modify the environment as in real life.

1.2 Project

PALOMA is a simulation tool for creating adynamic en-
vironment. It is a distributed generic simulatorcomposed
of three essential elements:

• An Initial Environment Description;

• A Dynamic Simulation;

• A Simulation Scenario Generator.

All these components offer a set of functionalities
ensuring a realistic, coherent and natural simula-
tion. PALOMA will communicate with differentAPI

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 586

(ApplicationProgrammingInterface) in distributed mode
to dispatch computation on the network. In addition to
the distribution computation model allowingPALOMA to
schedule and dispatch computation throughout the net-
work. PALOMA includes a "Direction Language" mainly
used to indicate a starting point for simulation and a "Sim-
ulation Line". A "Simulation Line" is a kind of guideline
or a set of rules to be respected during the simulation pro-
cess.
Simulation process is very complicated, in fact, it can be
divided in three major actions:

1. Analysing the context of the environment.

2. Defining the needed elementary actions.

3. Establishing scheduling and synchronisation.

This constantly-active simulation process is commonly
known asThinking Modeland will be presented in section
2.

1.3 PALOMA Aims

This project has multiple goals, it is a simulation tool
for the industry, but it is also an answer to a scientific prob-
lems: the simulation of an environment in evolution and
the multi-critaria real time decision making. The features
of PALOMA are:

• Simulation of a realistic evolving environment.

• Processing of autonomous entities.

• A proof of this autonomy.

• Control system for an entity group[Cam02].

Simulation allows us to evaluate component capacities and
autonomy. An interesting feature will be to use the same
simulation tool as a control and evaluation system in real
situation. For example, in the case of Uninhabited Air Ve-
hicle (UAV) mission.PALOMA can be used for both train-
ing and control.

2 Thinking Model

The model is based on human behavior. In fact,
the thinking model mimics the human reasoning process.
When you try to simulate an action you will:

• Analyse the context.

• Define/establish a scenario.

• Optimize event timing.

• Classify the entity’s interaction with the environ-
ment.

• And finally, specify movement of the entity.

Concretly, a movement starts at a specific time, is realized
within a specific time frame and in a given context and en-
vironment. This movement can be modified and use differ-
ent parameters of this environment. By realising a move-
ment, the environment parameter values are also modified.
Let’s take an example: three uninhabited air vehicles have
a mission in a hostile environment. Each vehicle keeps
a schedule to reach several goals (radio communication,
photo, video, recognition ...). If radar or missiles detect
their presence, the environment is modified and vehicles
will not match their initial mission.

In this situation, planes have to react rapidly by either
dynamically updating and modifying their mission plan or,
to avoid any unpleasant surprise, cancel their mission and
return to their starting point. Realistic environment evalua-
tion and virtual entity behavior validation are hard to obtain
because of the huge number of constraints to consider for
in a realistic environment.
The previous example illustrates the importance of auton-
omy. In fact, in order to offer such abilities, simulation
needs to be as realistic as possible and to include allcor-
rectandpossibleenvironment parameter modifications.

3 Global Software Architecture

PALOMA global architecture is defined in modular and
easy extension modules. In fact, in order to follow aThink-
ing Model, PALOMA includes six parts such as described
in Figure 1:

1. Simulation Engine (SE).

2. Direction Module (DM).

3. Environment Generator (EG).

4. Natural Behavior Restriction (NBR).

5. Communication API (C-API).

6. User API (U-API).

User API Communication API

Direction Module

Environment

Generator Restriction

Behavior

Natural

Send Environment

Write
Direction

Receive
Information

Send
Parameter
and
Description

Receive
Entity
Information
Entity
Receive

Information
Entity
Send

Send Direction Parameter Environment

Send
Alert
Signal

Send Information

Engine

Simulation

Time

Synchronizing

Figure 1: Global Software Architecture

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 5 87

Here is a rapid description of thePALOMA operator
model. Human-machine interface is used to define simu-
lation parameters and direct simulation environments. The
DM: Direction Module will use parameters to limit the
environment during simulation. The EG:Environment
Generator constructs the environment based on parame-
ters and the description of theDM . After this action, the
EG sends the generated environment to the SE:Simula-
tion Engine and to the NBR:Natural Behavior Restric-
tion.
A major problem with simulating an environment evolu-
tion is how to guarantee that it follows arealisticmodifica-
tion scheme. The idea is to make sure that the simulation
scenario is still coherent. It must represent arealistic situ-
ation. To do so,PALOMA includes theNBR module. This
module is in fact a set of specific restriction rules applied to
particular theorical models such asAdaptative Systemand
Complex System. PALOMA evolution is synchronysed with
the module time of the simulation and communicates with
their Communication API andTime API . The user will
be able to modify simulation steps, in real time, in order to
establish certain specific events of the scenario.
To follow the Thinking Model , the context and the sce-
nario are represented by theDM , the EG and theNBR.
The interaction and the movement are represented by the
SE, theCommunication API and theTime.

4 Languages

To develop a simulator able to manage the highest and
lowest level languages, three different programming lan-
guages are used:

• Oz language.

• C language.

• Scheme language.

PALOMA uses anExpressiveenvironment description lan-
guage: we voluntarily decided to use an existing and well
used language to describe initial environments and con-
straints. TheSchemelanguage [Abe96] has been chosen
since it allows complex prototyping. ASchemeinterpreter
is also integrated in our simulator in order to create (or
generate)automaticallya potentially user controled envi-
ronment description through a flexible interface.
The simulator is mainly developped with a high level pro-
gramming system:OZ /M OZART [Roy02]. OZ /M OZART

offers a good level of abstraction for communication, cre-
ation and evolution (dynamic aspect) of the environment.
OZ /M OZART also includes several paradigms to solve
distinct problems such as chaos control and constraints
programming.
To integrate the Scheme interpreter in the simulator, we use
a low level language: the C language. This creates a low
level module in Oz. Severals macros have been written by

the OZ/MOZART developers to implement an object with
C language forOZ/MOZART.

4.1 Scheme Interpreter

The interpreter integrated in the project is theELK for
Extension Language Kit [Bre87]. ELK is developed by
the Bremen University in Germany. It unables us to in-
tegrate Scheme in a program developed in C or C++ lan-
guage.
In the future, we may be able to useGUILE [GNU00], an
interpreter, compiler for Scheme developed by the MIT,
It is a GNU Project. It also allows us the integration of
Scheme in C/C++.

4.2 Oz/Mozart

The Mozart Programming System is a development
platform for intelligent and distributed applications. In
fact, Mozart is the name of the compilator and Oz is the
name of the language. This system is developed by a con-
sortium including “l’Université Catholique de Louvain”,
“Swedish Institute of Computer Science” and “Universität
des Saarlandes”.
Oz is a multi-paradigm language. It is object oriented,
functional oriented and scripting oriented. Oz is cross-
compiled and it is compatible with different platforms such
as Linux, FreeBSD, MacOSX and Windows.

5 Initial Environment Description
and Direction

This part integrates the User API and the Directive
Module of theGlobal Software Architecture. It allows to
describe and direct the evolution of the environment. This
environment has to correspondto the initial environment of
the other simulator.
Differents parameters must be initialized to ensure the en-
vironmental evolution. To do so, a set of specific macros
are implemented as described in section 5.1.

5.1 Descriptive and Directive Method

Different methods have been implemanted to generate
the environment :

• Initalization of theELK parameters.

• Recovery of public variables.

• Some functions for population present in the envi-
ronment, for example, radar or missiles for uninhab-
ited air vehicles.

• Interaction and report function for species present in
the environment.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 588

• Input parameters of theLogistic Map[Fla99] to pre-
dict the evolution of the population.

• Stability and instability functions for the population.

• Input parameters for theShadowing Lemma[Fla99]
to rectify computation of the machine to mirror real-
ity.

• Input parameters for the "Henon Map" [Fla99] to
regulate "attractors". For example: for an aircraft’s
simulation, missiles attracted by aircraft.

6 Dynamic Simulation

This part is very important for a simulation because
it allows users to discover new sub-problems by modify-
ing environment parameters. Most simulators do not offer
this facility, because they are not developped with a high
level language. This part integrates different elements of
theGlobal Software Architecture: the User API, the Direc-
tive Module, and the Simulation Engine.
Dynamic environment modification is implemented by us-
ing multi-thread programmation style, as see in Figure 2.
In fact, U-API andSE will be dispatched in two different
threads. Please note that a specific communication module
is also implemented in order to allow their synchronisation.

Thread

Thread

Thread

User API

Simulation
Engine

Execution of a Scenario

Parameters of
Environment

Write Receive

Write Receive

Figure 2: Thread’s Architecture

7 Simulation Scenario Generator

This part integrates theSE, the EG and theNBR of
the "Global Software Architecture". Inriched with filtering
criteria, the correctness and the realistic aspect of the sim-
ulation will be guaranteed. This part is based onCHAOS

andCOMPLEXE SYSTEM Theory.

7.1 Characteristics

For a realistic simulation,PALOMA relies onCHAOS

THEORY. Gary William Flake [Fla99] proved that we can
control and manage Chaos. A Chaotic system is:

• Deterministic,

• Sensitive,

• Ergodic,

• Embedded.

A set of functions is used to gather information about the
future of the population and movement evolution[Fla99]:

• "Logisctic Map".

• "Stability and Instablitity".

• "Shadowing Lemma".

• "Henon Attractor".

Collected information allows simulation control. In fact,
all the parameter values will be analyzed and may be mod-
ified (automatically by the simulator) to avoid a simulation
crash. A simulation crashes if it is evaluate in a unrealistic
way.

7.2 Programming Technics

One major goal of our work is having a realistic sim-
ulation environment with a special focus on reuse, generic
and autonomy components [RH04]. To do so, we use four
paradigms :

1. Object Programming.

2. Funtional Programming.

3. Logic Programming.

4. Constraint Programming.

Object Programming is used essentially for the software
architecture. The development of the different parts of the
project need a lot of modularity. This aspect is crucial to
facilitate further extensions.
Functional Programming is used to have a user interface
language and facilitate the processing of the data in the
simulation.
Logic Programming and Constraint Programming are used
in the NBR Module to limit the evolution of the environ-
ments in a realistic scenario.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 5 89

8 Control System: Emotion for De-
cision Making

One of the most important fonctionalities ofPALOMA

is to offer decision making exchange and export between
entities. This export and exchange is required, because of
the lack of power and processing time within embeded
systems in general.PALOMA future developpment aims
to reach autonomous entities as illustrated by figure 3.
Autonomy is based on emotions [Car04] and relies on an
agent society with a set of specific features[Min88].

Environment

Context

n

n

n
n

n

Autonomous Adaptativ Entity

Excite

Figure 3: Adaptative autonomous entity

Please notice this decision making process is far from
being a simple one. In fact, it is a multi-critaria real time
decision making. This feature is important for the Army
in the case of an urban war for example. The town is de-
stroyed by missiles and tank, the environment is in con-
stant evolution, and very important, it is hostile for a hu-
man. The time frame of a decision is critical to rescue
human life. For a formation ofUAV, it is difficult to evolve
in this environment and follow objectives of the mission.
A ground stationPALOMA could synchronize the multipe
data generated by the different actions to calculate an emo-
tion and send it at the formation. With this method, the
systeme doesn’t need human factor, the decision is make
in real time, so, the hostile frame time is diminued such
show in figure 4.

9 Proof system

One of the most interesting aspect in such platform and
simultation tools is trusting the platform capabilities and
transitions.PALOMA include proof process in component
description and definition. We are working on defining a
concrete semantic for each decisional step and agent be-
havior adaptation. The upper estimation of the concrete

UAV

Environment

Hostile

Environment

Time

Frame

Hostile

Paloma

Human Hostile Time Frame

Legend:

Figure 4: Hostile Time Frame

semantic -commonly knowen as abstract semantic-[CC77]
will be used to infer agent and simulation properties by
constraint propagation as done in [EK01] for cryptographic
protocol verification. For the moment, we just include such
process in the global component definition, we are working
on detailing semantics for both the classical agent platform
operations such as clonning, dispatching agents, and the
PALOMA specific fonctionnalities such as environement
ananlysis or dynamic parameters adaptation. The initial
step is almost acheived by describing’what to verify’. Au-
tonomy, correcteness and behavior stability or convergence
will be described in a set of finite and computable proper-
ties. Each action, of any component ofPALOMA , will be
described by a transition rule and it’s impact on the propa-
gated constraints. Additional details are available from the
authors and will be published soon.

10 Monitoring

An immediate extension is to integrate aMonitoring
System. TheMS allows users to follow the simulation and
to see the extrapolations of the scenario. If this extrapola-
tion is not realistic, the user could re-initialize parameters
dynamically.

11 Conclusion

PALOMA is a generic environment simulator with three
essential elements: the initial environment description, the
dynamic simulation and the simulation scenario generator.
PALOMA is generic. In fact, it is possible forPALOMA to
communicate with other simulations (Aerospace, Biology,
Mathematical). Such integration is possible if other simu-
lators usePALOMA as an initial environment (C-API).
PALOMA is based onChaos TheoryandComplex Systems
to follow natural aspects and mirror reality.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 590

An important goal of this project is to prove that a soft-
ware entity is autonomous and do a multicritary real time
decision making. With these tools, we could prove the au-
tonomy of an entity in different sciences.
The module that permits the initial environment descrip-
tion is developed, but some modifications have to be de-
veloped on the type of data. There is a prototype for the
SEandEG but not for theNBR at this time. In the future,
the goal is the development of theNBR, and later, to work
on the autonomy proof.

References

[Abe96] Abelson. Structure And Interpretation of Com-
puter Programming 2nd Edition. 1996.

[Bre87] Universitat Bremen. the extension language kit,
1987.

[Cam02] Mickaël Camus. MISURE - mission man-
agment system for uninhabited air vehicles
and new techniques :PLANIFICATION ANY-
TIME. Technical report, {Epitech.} - Ecole pour
l’Informatique et les nouvelles TECHnologies,
sept 2002. Mémoire de fin d’étude.

[Car04] Alain Cardon.Modéliser et concevoir une ma-
chine pensante. 2004.

[CC77] Patrick Cousot and Radhia Cousot. Abstract In-
terpretation : a Unified Lattice Model for Static
Analysis of Programs by Construction of Ap-
proximation of Fixpoints. In4th ACM Sympo-
sium on Principles of Programming Languages,
1 1977.

[CG01] Jean-Francois Tilman Christophe Guettier,
Bruno Patin. Validation of autonomous
concepts using the athena environment, 2001.

[EK01] N. EL Kadhi. Automatic verification of confi-
dentiality properties of cryptographic programs.
Networking Information System, 6, 2001.

[Fla99] Gary William Flake. The Computationnal
Beauty of Nature. 1999.

[GNU00] GNU. Guile, 2000.

[Ing02] Jean-Claire Poncet Axlog Ingénierie. Présenta-
tion du projet misure, 2002.

[Min88] Marvin Minsky. Society of Mind. 1988.

[RH04] Peter Van Roy and Seif Haridi.Concepts, Tech-
niques, and Models of Computer Programming.
2004.

[Roy02] Peter Van Roy. Oz/mozart environment, 2002.

[Tho01] Michel H. Thoby. Myriade : Cnes micro-
satellite progam. 2001.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 5 91

