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ABSTRACT 

 
In this paper we seek a Gaussian mixture model (GMM) 
of an n-variate probability density function. Usually the 
parameters of GMMs are determined by a maximum 
likelihood (ML) criterion. A practical deficiency of ML 
fitting of GMMs is poor performance when dealing with 
high-dimensional data since a large sample size is needed 
to match the accuracy that is possible in low dimensions. 
We propose a method to fit the GMM to multivariate data 
which is based on the two-dimensional projection pursuit 
(PP) method. By means of simulations we compare the 
proposed method with a one-dimensional PP method for 
GMM. We conclude that a combination of one- and two-
dimensional PP methods could be useful in some 
applications. 
 
Keywords: Multivariate density estimation, Gaussian 
mixture models, Projection pursuit. 

 
1. INTRODUCTION 

 
Density estimation [3], [5], [6], [7] is an important issue 
for data analysis, because in most cases the density 
function is unknown and must be estimated. In this work 
we investigate the estimation of a Gaussian mixture 
model (GMM) of a multivariate probability density 
function. The GMM is a very important element of the 
statistical toolbox, in particular for pattern recognition. 
This model has proved quite useful in modelling complex 
distributions. Using a small number of normal 
components, one is able to model distributions that are far 
from normal. 
 
The determination of the adjustable parameters of the 
GMM is usually carried out by an expectation 
maximization (EM) algorithm [7]. The EM procedure is 
very easy to implement, but there is difficulty with its 
poor performance when dealing with high-dimension 
data. 
 
We propose a method to fit the GMM to multivariate 
data, which is based on the two-dimensional projection 
pursuit (PP) method [2]. It extends our method proposed 
in [1] previously. 
 

We consider the problem of modelling a multivariate 
probability density function p(x) (x∈Rn) on the basis of a 
data set 
 X={x1, x2,…,xN}. 
Here, xi∈  Rn, i=1,2,..N are data points drawn from that 
density. We need a normalization of the data, called 
sphering [2]. The sphered X has a zero sample mean 
vector and identity sample covariance matrix. In the 
following explanation all operations are performed on the 
sphered data.  
 
In this work we seek a GMM [5], [6], [7] of p(x), which 
is a linear combination of M Gaussian densities. 
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Here, ωj are the mixing coefficients, which are non-
negative and sum to one and )( jmx −Σ j

φ denotes the 

N(mj, Σj) density in the vector x. 

 
2. DENSITY ESTIMATION BY TWO DIMENSIONAL 

PROJECTION PURSUIT 
 
Following Friedman [2] we estimate the density p(x) by 
multiplication of K bivariate augmenting functions fk(.). 
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where )(xφ  is the n-variate standard normal density 
function N(0, I) in the vector x,  ak and bk are 
orthonormal unit vectors specifying a projection plane in 
Rn and fk is 
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In (3) φ(y1) and φ(y2) denotes N(0,1) densities in the 
variables y1 and y2, and ),(ˆ 21 yypk  is a bivariate 
density approximation  into the plane spanning ak, bk. We 
compute the direction vectors ak and bk using a two 
dimensional PP method [2, Secton 2]. The number K of 
the augmenting functions is set by a standard test of 
nonnormality [2, Section 7] and the bivariate density 

),(ˆ 21 yypk  was approximated by a Legendre 
polynomial expansion [2, Section 4].  
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3. GMM EXPANSION OF THE DENSITY ESTIMATION 
 
Following the idea of our previous work [1] we 
approximate ),(ˆ 21 yypk  by a mixture of bivariate 
Gaussians  
 

 ),(),( 2211
1

21 kjkj

M

j
kjk yyyyp

k

kj
µµϕω −−= ∑

=
Σ . (4) 

Using the vector notation Tyy ][ 21=y and 

T
kjkjkj ][

21
µµ=µ  we have (4) in the form 
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Substituting (5) into (3) we obtain )( ykf  in the form of 
GMM 
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Then substituting (6) into (2) we have 
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Finally we employ the identity 
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with 
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 TAASS 11)( −−∗ = , (15) 

 AMµ =∗ . (16) 
In (11)-(16) A=[ak bk] is an n×2 projection matrix, 

)( mx −Σφ is a n-variate normal density N(m, Σ) in 

vector x and )( MxAT −sφ  is the bivariate N(M, S) in 
vector ATx. The identity (11) shows that the 
multiplication of any n-variate normal density 

)( mx −Σφ  by any bivariate normal density 

)( MxA T −sφ gives an n-variate normal density function 

)~(~ mx −Σφ  scaled by a constant α. The proof of 

identity (11) is in Appendix. 
 
 After an interactive application of identity (11) to (10) 
the PP approximation (2) becomes the form of a GMM 
with ∏ == K

k kMM 1
~ Gaussian components 
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Here jω~ , jΣ~  and jm~  denote the parameter values 
calculated by expressions (11)-(16). 

 
4. COMPARATIVE STUDIES 

 
In this section we compare the performances of our new 
method (Sections 3) and our previous PP method [1]. We 
study a wide spectrum of situations in terms of the size N 
of the training samples drawn from 4-dimensional 
densities  

 ],),(),([)( 3
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Here gIj, gJj, gKj for j=1, 2, 3 are bivariate normal 
densities, α1=α2=9/20  and α3=1/10 , x=[x1 x2 x3 x4]T. The 
parameters of jg I , jg J , jgK are listed in Table1 taken 

from [8]. 
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Table 1: Parameters of the bivariate normal densities [8] 

I-density parameters gI1(x,y)  
N(-1.2,1.2;0.36,0.36,0.3)* 

gI2(x,y) 
N(1.2-,1.2;0.36,0.36,-0.6) 

gI3(x,y) 
N(0.,0;  0.0625 ,  0.0625 ,.0.2) 

K-density parameters gK1(x,y) 
N(-1.2,0;0.36,0.36,0.7) 

gK2(x,y) 
N(1.2-,0;0.36,0.36,.0.7) 

gK3(x,y) 
N(0.,0; 0.36, 0.36,-0.7) 

J-density parameters gJ1(x,y) 
N(-1,0;0.36,0.49,0.6) 

gJ2(x,y) 
N(-1,  1.1547 ;0.36,0.49,0) 

gJ3(x,y) 
N(1,-  1.1547 ;0.36,0.49,0) 

* Here, for easy of presentation, N(µ1, µ2; 
2
2

2
1 ,σσ , ρ) denotes the bivariate normal density, where two marginal means 

and variances are µi and 2
iσ  for i=1, 2 and the correlation coefficient is ρ. 
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Figure 1. Contour plots of the bivariate densities. (a) ,3
1 ),(),( ∑= =j jj yxgyxp II α  (b) ,3

1 ),(),( ∑= =j jj yxgyxp JJ α  

(c) ∑= =
3

1 ),(),( j jj yxgyxp KK α . There are 250 data points superimposed on the contours to show the locations of the training 

points drawn from these densities. 

 
These densities have been carefully chosen because they 
combine the benchmarks widely used for comparison 
density estimation methods [8]. 
 
We study the influence of the sample size on the result 
for N=200, 400, 600, 800, 1000, 1500, 3000. An 
experiment for a given combination of particular settings, 
density function and sample size consisted of the 
following run. We drew a training sample of size N from 
an appropriate distribution. Then we normalized (sphered 
[2]) the data. Using this data we fitted GMMs by the 
method proposed in Section 3 and our previous method 
[1].  
 

For our new method (Section 3) the number K of 
augmenting functions of the PP approximation (2) were 
set to K=1, 2 and the number Mk of the components of the 
bivariate GMMs (4) was Mk= 2, 3, 4, 5. For our previous 
method the setting of the parameter variation is explained 
in [1, Section 4]. 
 
We compared the performance of the density estimation 
by a criterion called percentage of variance explained 
(PVE) [3]. Among the variations of the parameter values 
we selected those corresponding to the largest (best) 
PVE. In Figs. 2, 3 we show the training sample size 
versus the "best" PVE. The solid line (─) shows the 
results for our current method and the dashed line (--) the 
result of method [1]. 

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 1 - NUMBER 4 103



 

  

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

90

100

Training sample size

P
V

E
our method
method [1]

 
Figure 2. Estimation of pIJ(x1, x2, x3, x4) (18). 
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Figure 3. Estimation of pIK(x1, x2, x3, x4) (19). 

 
 

Observing Fig. 2 we conclude that the proposed two-
dimensional PP method yields better results (exhibits 
higher PVE values) than our previous one-dimensional 
PP method [1] for estimation pIJ(x) (18) for all samples 
sizes.  The latter is consistent with the observation in [4, 
Section 7] that in some cases the two dimensional PP 
could find data structure that the one dimensional PP may 
miss. 
 

The result for pIK(x) (19) in Fig. 3 shows the better 
performance of the method [1]. This is due to the fact that 
the orthogonal constraint ( 0=k

T
k ba ) in (2) restricts the 

searching of ak and bk. Consequently a compromise 
between one- and two-dimensional PP seems to be useful 
for applications. Combination of the PP methods is the 
object of our current research. 
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5. CONCLUSION 
 
We have proposed a method for fitting GMMs based on 
the two dimensional projection pursuit (PP) strategy 
proposed by Friedman [2]. In Section 3 we showed that 
the PP density estimation implies a GMM model for a 
specific setting of augmenting functions. The derived 
formulae (11)-(16) allow us to set the parameters of the 
GMM implied by the PP estimation. In Section 4 we give 
the results of a comparative study of our method and the 
method [1]. We concluded that a combination of the one- 
and two-dimensional PP methods could be useful for the 
applications. 

 
6. APPENDIX:  PROOF OF THE IDENTITY (11) 

 
According to the expressions of N(m, Σ) and N(M, S) we 
have for left-hand part of the equality (11) 
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with 
 )()( mxΣmx -1 −−= Tγ  

 )()( M-xASM-xA T-1T T+ . (21) 
First we note that for ATA=I we have 
 )()( mxΣmx -1 −−= Tγ  

 )()( AM-xAASAM-x T-1T+ . (22) 
Then we seek for n×n matrices B and C, and scalar γ* that 
imply (21) in the form 
 *)~(~)~( γγ −−−= mxΣmx -1T  (23) 
for  
 MCAmBm +=~ , (24) 

 ( ) 111~ −−− += ΣAASΣ T . (25) 
Combining (22) and (23), (24), (25) we have 

[ ] [ ]mΣΣΣΣmµSΣSµ 11111* ~)()()()( −−−∗−∗−∗∗ −+= TTγ  

 ),]()(~[]~)[()( 1111 ∗−∗−−−∗∗ ++ µSΣΣmmΣΣSµ TT  (26) 
where 
 TAASS 11)( −−∗ = , (27) 

 AMµ =∗  (28) 
and  
 1~ −= ΣΣB ,     TAASΣC 1~ −= . (29) 
Then substitution γ (23) into the right-hand part of (20) 
and using γ*(26) we obtain the identity (11) for α (14). 
Finally, substitution B and C (29) into (24) we have m~  
(13). 
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