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ABSTRACT

Numerical experiments show that the full potential of the Finite 
Element  Method (FEM) can  be  exploited  by  combination  of 
classical  with meshless FEM.  A  class  structure  for  flexible 
consistent implementation of both methods is presented.

Fully automatized 3D mesh-generation still constitutes a serious 
problem  in  software  development  concerning  FEM.  In  the 
recent  years  various  methods  of  meshless  FEM  have  been 
developed as an alternative to overcome this problem. In this 
work meshless and classical FEM have been implemented.

A  further  objective  of  this  work  is  to  implement  different 
classical  and  meshless  methods  together  with  an  appropriate 
mesh/point-set  generation  method.  An  appropriate  class 
structure for realizing this in a consistent manner with classical 
FEM is developed and implemented in C++.  The performance 
of the discussed methods was tested with problems relevant in 
electrical  and  civil  engineering  i.e.  static  electrical  field 
calculations (Poison equation) and elasticity problems.

1. MESHLESS METHODS ARE NOT COMPLETELY 
„MESHLESS“

Some of the mesh objects necessary in classical FEM are also 
necessary for the implementation of meshless methods:

(1) In both, meshless and classical FEM the solution has to be 
represented on a point-set (nodes). 
(2)  The  functionals  containing  the  shape-functions  and  their 
partial derivatives (e.g. the bilinear form) have to be integrated 
over the entire domain. One way to do this is to use Gaussian 
Integration. For this purpose the domain has to be divided into 
elements.  An alternative would be to  use the so-called nodal 
integration as described in [3].  This is  an integration method 
which  only  uses  the  nodes  for  integration  not  requiring 
additional Gauss-Points.  In this case more recent papers [7,8] 
have pointed out the necessity to use Voronoi cells in order to 
accurately determine weight factors for nodal integration. The 
necessity of Voronoi cells implies the existence of appropriate 
neighborhood information. If this neighborhood information is 
interpreted  as  an  explicit  connection  between  the  respective 
nodes in form of an edge we again end up with a regular mesh – 
in this case the Delauny triangulation.

Independent  from  the  numerical  Method  the  concept  of  an 
„Element”  or  “Cell“  as  a  set  of  nodes  was  maintained 
throughout this work for data management purposes.

2. MESHLESS METHODS IMPLEMENTED

Definitions and Notation
In this paper vectors will be indicated by one and matrices by 
two underlines, e.g. u denotes a vector and A denotes a matrix.
The following index-definitions will be used

I=1...n  -  number of node
j=1...m  - number of polynomial coefficient used

Approach to Solve Partial Differential Equations
In this work electrical  field problems and elasticity problems 
have been treated.  For a better understanding  the  governing 
equations will be presented using the Poison Equation in two 
dimensions  as  an  example.  This  equation  reads  in  its  strong 
form:

fuk =∇∇ )( (1)

where  k and  f  are  given functions of  x,y.  The solution to be 
computed  u  (x,y) denotes  the  electrostatic  potential. 
Correspondingly the displacement would be computed in case 
of an elasticity problem. For all FEM addressed in this paper the 
solution will be based on the weak of Eq. (1):
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The EFG Method (Belytschko) [1] and PIM (Liu) [2] have been 
implemented  together  with  classical  Finite  Elements.  The 
concept  of  approximating  the  solution  by  a  weighted  set  of 
shape-functions is common to these methods. The set of spatial 
coordinates is written ‚x‘ in the following and can be a vector 
with 1-3 components. 
u  (x) denotes  the  solution.  Physically  the  solution  may  be 
potentials in an electrical field problem or displacements in an 
elasticity  problem.  For  the  numerical  solution  approximated 
values of u at discrete points (nodes) are considered. The vector 
u denotes the function-values on these points. The discretized 
approximation of the solution is obtained by:

uxxu Th )()( Φ=          (2)

The component ΦI of the Vector Φ is called the shape-function 
attributed to  node  I.  Usually  these  shape-functions  take non-
zero values in the influence domain of the respective node only. 
In  classical  FEM the shape-function  ΦΙ(x)  is  confined to  the 
element  that  contains  the  node  I.  In  meshless  methods  such 
rules apply in a more general way introducing the concept of 
„domain of influence“ [2].

Outline of Element-free Galerkin (EFG)
EFG-shape-functions  are  constructed  by  interpolating  the 
solution by polynomial functions using moving least  squares. 
EFG uses  a  weight  function attributed to  node I  wI :=wI (x) 
which is non-zero in the environment of node I. If a point x is 
close enough to node I such that wI(x)≠0 then the node will be 
used  to  construct  shape-function-values  at  point  x,  otherwise 
not.

The regression polynomial can be written as a scalar product: 

axpxu T )()( =    (3)

with a=(a1,a2,...,am)T being coefficient vector and p a vector 
containing a set of m basis-functions

( ) ( ) ( )xpxpxp m,...,, 21 .
Example: with ( )2,,1)( xxxpT =  the interpolation polynomial 
becomes:   ( ) 2
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W and  V are square diagonal matrices; their elements depend 
on x. We now regard the lease square fit expressed by the over-
determined equation system:

uVaHV = (5)
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=

)(
...

)(
)(

2

1

n
T

T

T

xp

xp
xp

H , 



















=

nu

u
u

u
...

2

1

note that:

• H   does not depend on x
• At least m+1 elements of the vector Vu must be non-zero 

for Eq.(5) to become a least square fit.
An over-determined equation-system has no solution,  but the 
error squares can be minimized. This is done by multiplying the 
transposed of the coefficient-matrix from the left side.

( ) ( ) uVHVaHVHV TT =     

Using  elementary  matrix  operations  this  expression  can  be 
transformed as follows:

  uVVHaHVVH TTTT =   

or using the definition of W in Eq.(4):

uWHaHWH TT =

which leads to the interpolation relationship
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In the following we use: the vector QI, the Ith column out of Q, 
which can be computed by
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where xI denotes the coordinate-set attributed to the node I. The 
shape-function attributed to node I finally becomes

( ) ( ) ( )xQxpx
I

T
I =Φ

This  shape-function is  not  a polynomial  but  rather  a  rational 
function. Like in the case of classical FEM the shape-functions 
of nodes neighboring to any point in the plane add up to one 
(partition  of  unity).  Due  to  usage  of  appropriate  weight 
functions wI(x) conformity is guaranteed. In contrast to classical 
FEM an  element  where  a  particular  shape-function  becomes 
non-zero is not defined.

For details of the implementation, especially the computation of 
partial derivatives of the shape-functions the reader is referred 
to [1]. Please note that the computational effort for evaluation of 
the shape-functions is considerably high.

Outline of Point Interpolation Method (PIM)

Let  x be  a  point  where  a  set  of  shape-functions  is  to  be 
evaluated. A set of neighbor-nodes is chosen for interpolation. 
A variety of different possible criteria for choice of neighbor 
nodes are given in [2]. The main difference to EFG is the fact 
that the number of neighbor-nodes is equal to the number of 
basis functions. Therefore a weighting of nodes is not possible. 
The regression polynomial of Eq. (3) becomes an interpolation 
polynomial.  Instead  of   Eq.(5)  we  get  the  following 
interpolation relationship:

uaH = (6)
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Since this equation system is not over-determined (as is EFG) 
the construction of shape-functions is straightforward:

1−= HQ
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PIM is based on polynomial interpolation like classical FEM, 
however the choice of neighbor nodes of a point in the plane to 
be used for interpolation is not defined by any element. As a 
consequence  neighbor-nodes  and  the  degree  of  interpolation 
polynomial  can be chosen freely without  any changes in  the 
mesh. The cost of this advantage is the loss of conformity or the 
additional  measures  (i.e.  Penalty  Methods  [2])  to  maintain 
conformity.

In this work PIM were found to be as efficient as classical FEM, 
however EFG were found to be particularly robust against local 
degeneracies.  Usage of low (linear)  or high (quadratic) order 
basis  functions  are  flexibly  possible  on  any  mesh.  However 
computation times of EFG were found to be considerably larger 
than in the case of classical FEM. In this context it should be 
mentioned that EFG can be accelerated considerably by nodal 
integration at the expense of flexibility [3,4]. 

Implementation of classical FEM
Due to the parallels between PIM and classical FEM the latter 
was  implemented  as  a  special  case  of  PIM.  An  alternative 
neighborhood-relationship  was  implemented  such  that  the 
corners/mid-side-nodes  of  the  element  itself  are  used  for 
interpolation only.

Combination elements
As will  be shown in section 5 the full  potential  of  meshless 
FEM  can  only  be  exploited  by  combination  of  multiple 
methods. As an alternative to a coupling of different domains 
over internal boundaries, the introduction of transition elements 
allows  for  flexible  coupling  of  different  methods  within  one 
domain. In a domain where mixed approaches have to be used, 
every meshpoint is attributed a shape-function type. If different 
type-indices are found within one element, shape-functions of 
all types in question have to be evaluated within the element. 
Consequently inside the element the shape-functions

),(, yxjiΦ

have to be computed where i denotes the local node-number and 
j the shape-function type index. For superposition of the shape-
function  components  weight-functions  are  used  which 
constitute a partition of unity:
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All  of  the  above  described  shape-function  types  can  be 
combined using this concept thus allowing flexible combination 
of all different methods including classical FEM. In contrast to 
coupling over domain boundaries the weight-function strategy 
realizes  a  smooth  transition  between  regions  where  different 
shape-functions are used.

3. CLASS STRUCTURE

Before the class structure is described very brievly the several 
computational steps for FEM / Meshless FEM  are summarized 
in a flow chart (Fig.1).

Generate Geometrie

Generate elements with their distinged 
nodes

Generate nodal distribution and background 
integration cells, assoiate nodes to cells.

Setup neighborlists

Build shape functions based on 
element and their assosiated nodes

Build shape functions based on cells with 
assosiated nodes of influence for a local 
area

Setup connectivities to map dofs to 
element nodes

Setup connectivities to map dofs to  
nodes

Assemble global matrices (stiffness 
matrix, load vector etc.)

Incorporate constraints (boundary 
conditions)

Solve system of equation for state 
variables

Calculate field strength/ 
stresses/strains

Calculate Errors

FEM Meshless

Incorporate constraints (boundary 
conditions) add penalty and/or 

lagrange multipliers

Fig.1.: flow chart for FEM and meshless FEM computational  
calculations

The class structure proposed in this paper is shown in Fig. 2 as 
UML-class  diagram.  The  diagram  includes  only  the  most 
important classes that reflect the classical „three phases“-model 
-Pre-Processing, Processing, Post-Processing - for compuational 
FEM  calculations.  Utility  classes  i.e.  for  handling  the 
FEM/meshless data are not shown.
All  three  phases  are  included  in  the  CProcessor  class.  This 
wrapps the hole computational process.
The classes for the Pre-Processing phase are CMesh2D which 
generates  rectangular  elements/cells  (class  CElement)  and 
CGeoTree  which  generates  arbitrary  meshes.  For  meshless 
FEM  special  methods  in  class  CMesh2D  or  CGeoTree  are 
necessary to setup neighborlists and the connectivities between 
the nodes and the corresponding degrees of freedom.
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The Processing phase is modelled by the classes CAssembler, 
CIntegrator, CShapeFunc, CLinSystem. 
The  CAssembler  class   performs  the  assembly  of  the  global 
stiffness  matrix  and  the  constraints.  The  integration  of  the 
element/nodal  stiffness  is  done by the  CIntegrator  class.  The 
integrator class was developed to perform Gaussian integration 
of the weak form. The integrator in turn uses the CShapeFunc 
class to calculate the shape functions, the function values and 
derivates  at  the  nodes  and/or  the  integration  points.  The 
assembler also builds the „global load vector“ with help of the 
CIntegrator.

CMesh2D

CIntegrator

CProcessor

CGeoData2D

CLinSystem

CGeoTree

CAssembler

CShapeFunc

CShapeFuncPIM

CShapeFuncEFG

Pre-Processing

Processing

Post-Processing

CConvergenceCheck

Fig.2.:  UML-Class-Diagram  of  FEM  and  meshless  FEM 
Design

After the global matrices are built the CLinSystem class is used 
to solve the linear system of equations. The so obtained nodal 
state  variables  are  then  used  to  calculate  the  field 
strength/strains/stress  for  each  integration  point.  If  the  EFG 
shape functions are used then a special step is necessary to build 
the final nodal values of the state variables.
The last phase is performed within the CProcessor class by the 
method CheckSolution.  This will  be moved later to a special 
Post-Processor class.

In classical Finite Elements the element (class CElement) has a 
defined  mathematical  meaning.  In  meshless  Finite  Elements 
(class  CElement)  it  makes  sense  to  maintain  the  abstract 
concept  of  an  element/cell  as  a  set  of  points  for  data-
management reasons.

The  class-structure  was  derived  straightforward  from  the 
mathematical representation of the methods. The formulation of 
the weak form is the same for all methods implemented in this 
work. 

The  main  difference  between  FEM  and  meshless  FEM  is 
represented by the shape-function builder. Each method uses its 
special   derived  shape  function  class  which   inherits  from 
CShapeFunc.  This  general  interface  for  the  shape-function 
builder  was  defined  in  form  of  a  purely  virtual  class.  Any 
particular shape-function builder is derived from this class and 
is called by the integrator (and other modules) independent on 
the method realized. An internal status management avoids the 
class to be called in the wrong way. A test-class for the shape-
function  checks  correctness  of  function  evaluation  and  its 
partial  derivatives,  partition  of  unity  and  consistency.  Thus 
errors  are  eliminated  to  the  widest  possible  extent  before 
including the shape-function-builder into the FEM software.

The  combined-shape-function  (see  chapter  2,  section  on 
combination  elements)  was  realized  completely  within  the 
concept of the shape-function-builder class as outlined in this 
section. Internally the combined shape-function builder sets up 
an  array  of  instances  of  the  individual  type-classes  needed. 
Thus any new shape-function builder added to our software can 
immediately be included into the combination elements.

4. MESH/NODE-SET GENERATION

A quadtree strategy has been realized to generate the node-set 
for arbitrary geometries. In this work a 2D node-generation was 
implemented.  Within  the  scope  of  this  paper  the  node-set 
generation was implemented in  2D to  investigate the general 
applicability  of  meshless  methods (EFG) to  problems arising 
from engineering science. To extend the developed program for 
3D is trivial because of the class structure proposed above.

Since a Voronoi triangulation based on arbitrary node-sets is 
trivial,  any  mesh  generated  by  the  described  method  can  be 
readily  used  for  classical  FEM  with  triangular  elements. 
However no special treatment of the mesh to avoid degenerate 
elements  was  implemented  because  it  was  the  scope  of  this 
paper to overcome this problem by local usage of EFG. 

The  Mesh  (consisting  of  nodes  and  elements,  CMesh2D) 
together  with  all  mutual  connectivity  lists  constitutes  an 
additional  class,  which is  accessed  by shape-function  builder 
and assembler. All neighbor-search operations in the mesh are 
of complexity O(n) provided that the different neighbor-lists are 
set  up in the appropriate sequence. The quadtree (CGeoTree) 
constitutes  an  additional  class  and  is  discarded  after  mesh-
generation. 
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5. TEST RESULTS

Our tests of the implemented methods can be summarized as 
follows:  EFG shows good robustness  against  irregular  node-
positioning (in contrast to - for example - classical FEM which 
suffers from poorly shaped triangles in a delauny-mesh). The 
shortcomings of EFG are its high computational cost for shape-
function computation.  Point  Interpolation  Methods (PIM)  are 
just  as  efficient  as  classical  Finite  Elements,  however  in  our 
experiments they were found to be sensitive against poor node-
positioning. 

The mesh was varied between a completely regular mesh and a 
strongly  degenerate  one.  The degree of  degeneracy  could be 
varied  using  a  parameter  between  0  (regular)  and  1.2 
(degenerated) as shown in Fig.3.  For test purposes a Dirichlet 
Problem was solved with a known solution:

xeyxu y sin),( ⋅= −

In order to test the sensitivity of the respective method against 
the  quality  of  the  node-set  used,  different  patterns  were 
generated.  The structure  of  these  patterns  is  characterized as 
follows:

Abreviation Description
eq. equidistant, rectangular
neq. nonequidistant rectangular
Rnd random-disturbed node-set
Quad quadratically distorted node-set
Tab.  1:  characterization  of  node-sets  used  for  evaluation  of  
meshless methods

Fig.3.:  regular  and  degenerate  mesh  for  sensitivity  test  of  
classical  FEM  versus  EFG.  The  degenerate-Parameter  is  
defined to be 0 for the regular and 1.2 for the degenerate mesh. 

EFG was tested against classical FEM in order to investigate the 
sensitivity  against  degenerate  node-sets.   The  errors  on  the 
nodes  were  evaluated;  their  arithmetic  mean  and  maximum 
norm were computed. The results for the mean error norm are 
shown in Fig.4. It can be seen that EFG method exhibits stable 
behavior for degenerate meshes.  
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Fig.  4:  mean error of  the  test-problem versus  mesh size  for  
classical  FEM  (cFEM)  and  EFG.  EFG-2  refers  to  shape-
functions obtained with a  2nd degree basis function
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Fig. 5: mean error of the test-problem versus mesh-degeneracy  
for classical FEM (cFEM) and EFG.

The same test was repeated by varying a degeneracy-parameter. 
The definition of the degeneracy-parameter is shown in Fig.3, 
the results are shown in Fig.5. It can be seen that the advantage 
of EFG becomes particularly significant (reduction of error by a 
factor  of  2  compared  with  classical  FEM)  in  the  case  of  a 
strongly degenerate node-set.

The test of PIM was done in a similar way. Fig. 6 summarizes 
the  test-results.  Results  obtained  with  classical  FEM  on 
different  node-sets  as  characterized  according  to  Tab.1  are 
shown  for  comparison.   Nonconforming  PIM were  found  to 
exhibit poor solution quality. Only on rectangular meshes the 
accuracy could be obtained as to be expected for the high order 
shape-functions used. Our experiments have shown that in this 
case PIM becomes conforming for symmetry reasons, even if 
no  measures  are  taken  to  enforce  conformity.  For  meshes 
lacking these symmetry properties a penalty function strategy 
has  been proposed by Liu [2]  (CPIM).  Consequently,  results 
obtained using CPIM also are superior to those obtained with 
classical FEM. However, the penalty strategy requires the usage 
of  an  additional  parameter,  the  proper  choice  of  which  also 
turned out to be difficult. PIM therefore where not used within 
our applications outlined in section 6.
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Fig. 6: Test of different variants of PIM depending on the mesh  
in comparison with cFEM

Based on the test-results we can summarize that  EFG has been 
shown  to  be  particularly  resistant  against  the  effects  of  odd 
geometries  and  extreme  local  mesh-refinement  such  as  the 
appearance of single degenerate elements. However, EFG that 
has  been  tested  to  be  the  most  robust  is  less  efficient  than 
classical  Finite  Elements.  Therefore  a  combination  of  both 
methods with local use of EFG is proposed as a result of this 
work. 

6. APPLICATION IN ELECTRONICS CAD

Extraction  of  maximum current  densities  from  the  layout  is 
becoming increasingly important for reliability issues. For this 
purpose electric field calculations are necessary. In contrast to 
field  calculations  used  for  capacitance  and  conductance 
computation,  careful  geometry  modeling  and  extreme  fine-
grained local mesh refinement is crucial to achieve acceptable 
results. If simply the layout geometries with their idealized 
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Fig. 7.  Dependency of computed peak field-strength on radius 
of curvature of a critical corner for a given structure.

corners are used, the computed maximum current density mere
ly reflects the mesh size at the corner. In order to obtain reliable 
data
• corner  rounding  must  be  modeled  based  on  technology 

data, and
• local mesh refinement must provide accurate description of 

the potential gradient in proximity to the corner.
These requirements in combination with the need for efficient 
simulation software lead to extreme local variations in the ele
ment size of the mesh used for the simulations.

A detailed discussion of accuracy problems in combination with 
extreme local mesh refinement can be found in [9]. Results of 
these investigations have shown that a minimum of 10 mesh
points per is unit are necessary to achieve reasonable accuracy. 
Fig. 7 shows that computed field strength can vary by a factor 
of more than two, depending on the radius of curvature of the 
structure in question. If extreme local mesh-refinement (up to 
four orders of magnitude) is required it cannot be completely 
avoided that locally degenerated elements arise if classical FEM 
would be used. EFG was applied locally to overcome this prob
lem.

The CAD Program PARIS [9] was equipped with a solver for 
extraction of maximum current densities of interconnects.  Due 
to efficiency considerations classical FEM was used in the main 
part of the domain. EFG were employed in the critical regions 
only. The combined elements as outlined in section 3 were used 
to implement both element-types simultaneously.  Fig 8 shows 
the  entire  domain  for  an  application  example  (power  line) 
together with local refinement (zoom in Fig. 9).

Fig.8: Geometry of a ground-line together with triangular mesh 
used for numerical field calculation

Fig.9: magnified region of a critical 45° corner with local  
mesh-refinement
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7. CONCLUSION

Meshless methods have been implemented in combination with 
classical FEM. By empirical tests they have been shown to be 
particularly resistant against the effects of odd geometries and 
the  effects  of  extreme  local  mesh-refinement  such  as  the 
appearance of single degenerate elements. However EFG that 
have been tested to be the most robust are less efficient than 
classical  Finite  Elements.  Therefore  a  combination  of  both 
methods with local use of EFG is proposed as a result of this 
work.  An object oriented flexible class structure to meet this 
requirement is proposed.
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