
Automatic Feature Interaction Analysis in PacoSuite

Wim Vanderperren
Davy Suvée

Bart Verheecke
María Agustina Cibrán

Viviane Jonckers
 System and Software Engineering Lab

Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussel, Belgium

{wvdperre,dsuvee,bverheeck,mcibran,vejoncke}@vub.ac.be

ABSTRACT

In this paper, we build upon previous work that aims at
recuperating aspect oriented ideas into component based
software development. In that research, a composition adapter
was proposed in order to capture crosscutting concerns in the
PacoSuite component based methodology. A composition
adapter is visually applied onto a given component composition
and the changes it describes are automatically applied. Stacking
multiple composition adapters onto the same component
composition can however lead to unpredictable and undesired
side-effects. In this paper, we propose a solution for this issue,
widely known as the feature interaction problem. We present a
classification of different interaction levels among composition
adapters and the algorithms required to verify them. The
proposed algorithms are however of exponential nature and
depend on both the composition adapters and the component
composition as a whole. In order to enhance the performance of
our feature interaction analysis, we present a set of theorems
that define the interaction levels solely in terms of the
properties of the composition adapters themselves.

Keywords: Aspect Oriented Software Development –
Component Based Software Development – Visual Component
Composition - Feature Interaction

1. INTRODUCTION
Both component based software development (CBSD) and
more recently, aspect oriented software development (AOSD)
have been proposed to tackle problems experienced during the
software engineering process. CBSD enables to develop a full-
fledged software-system by assembling a set of
premanufactured components. Each component is a black-box
entity, which can be deployed independently and is able to
deliver one or more specific services [11]. The deployment of
this paradigm drastically improves the speed of development
and the quality of the produced software [6]. In previous
research, we developed the PacoSuite development
environment that lifts the abstraction level for visual component
based software development [14,16]. PacoSuite allows
automatic verification of the compatibility between a set of
components. Glue-code that translates the syntactical

incompatibilities between these components is automatically
generated afterwards.
AOSD [1,8] on the other hand, aims at improving the separation
of concerns [10] in current software engineering methodologies.
When a software system is developed, the different concerns of
the application should ideally be described and contained in
separate modules. This separation of concerns makes it possible
to independently analyze, reuse, change and extend the features
provided by a system. Some properties of a software system
however cannot be cleanly modularized into one single module
as their implementation crosscuts several modules of the
system. Typical examples of such crosscutting concerns are
synchronization, access control and logging. To solve this issue,
AOSD proposes to describe these crosscutting concerns as
separate entities, called aspects, which are woven into the base
implementation of the system later on. This way, other parts of
the system are not affected when aspects are added, edited or
removed.
Originally, aspect-oriented research and practice focused on
modularizing crosscutting concerns in an object-oriented
context. However, also component based software development
suffers from the problems that arise with the tyranny of the
dominant decomposition [10] as crosscutting concerns and
tangled code are easily introduced in order to keep the coupling
between components as low as possible. To cope with the issue
of crosscutting concerns in PacoSuite component-based
environment, we proposed the notion of a composition adapter
[15,16]. A composition adapter describes crosscutting concerns,
by specifying a transformation which is able to adapt the
original composition pattern. Composition adapters can be
visually applied onto a component composition and the
described changes are automatically inserted into the
component composition by using finite automata theory.
One of the main problems of performing aspect oriented
software development using composition adapters in PacoSuite,
consists of unpredictable and often undesired side-effects when
multiple composition adapters are applied onto the same
component composition. This problem is not unique to our
approach, but is common to all AOSD approaches and is
referred to as the “feature interaction” problem [12]. In this

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 5 31

paper, we propose an approach to detect the possible conflicting
application of multiple composition adapters onto the same
component composition. The next section, describes the
PacoSuite methodology in more detail. Section 3 introduces the
composition adapter model and section 4 explains our feature
interaction analysis approach. In section 5, we shortly present
the tools we developed to support the PacoSuite methodology.
Finally, we discuss some related work and state our
conclusions.

2. PACOSUITE
The PacoSuite research has been going on for a couple of years
at our lab and resulted in the PhD of Bart Wydaeghe [18]. In
this paper we do not go into the details of the PacoSuite
component based approach, nor do we discuss how this
approach relates to other approaches. Instead, the approach is
shortly sketched as it is employed as a basis for the remainder
of this paper.
The PacoSuite component based research mainly focuses on
lifting the abstraction level for component based software
development. The goal is to achieve the plug and play concept
of component based software development. PacoSuite allows to
do automatically check the validity of a component
composition. Furthermore, PacoSuite allows to automatically
generate glue-code from a visually wired application to
translate syntactical incompatibilities between the deployed
components. In order to provide these functionalities,
components are documented with usage scenarios that specify
how to employ them. A usage scenario is expressed by using a
special kind of Message Sequence Chart (MSC) [8]. The main
difference with a regular MSC is that the signals are taken from
a limited set of predefined semantic primitives. In addition,
each of these signals contains an implementation mapping on
the concrete methods that implement the signal.

Figure 1: Usage scenario of the Juggler component.

Currently, the PacoSuite methodology is realized for the Java
Beans component model. Figure 1 illustrates a usage scenario
of the well-known Juggler bean from Sun's BeanBox. One
participant of a usage scenario represents the component itself
and the other participants represent the environment the
component expects. In this case, only one environment
participant is specified, namely the Toggler participant. The
usage scenario documents that the Juggler component expects
consecutive start and stop signals. The START primitive is
implemented by the startJuggling method and the STOP

primitive is implemented by the stopJuggling method of the
Juggler component.
Explicit and reusable composition patterns are introduced as
higher-level connectors. A composition pattern is an abstract
specification of the interaction between a number of roles and is
also expressed by making use of an MSC. The signals between
the roles originate from the same limited set of semantic
primitives as employed for documenting components. This
allows comparing the signals in a usage scenario of a
component with these in a composition pattern. Figure 3
illustrates a generic toggling composition pattern. This
composition pattern specifies that the Control participant
consecutively sends either a START or a STOP to the Subject
participant. A possible application of this composition pattern is
a simple visual interface that allows toggling the Juggler
component from a single JButton component (see Figure 2). To
build this application, the Juggler component is mapped on the
Subject role and the JButton component is mapped on the
Control role.

Figure 2: Usage Scenario of the JButton Component.

Notice that even this simple ToggleControl collaboration can
not be wired by most visual composition environments because
the collaboration itself requires state. The JButton always fires
the same actionPerformed event and depending on the state of
the interaction startJuggling or stopJuggling should be called
onto the Juggler component.

Figure 3: ToggleControl Composition Pattern.

The documentation of both the components and the
composition patterns allows checking the protocol compatibility
of a component with a role in a composition pattern. For
example, the Juggler component is clearly protocol
incompatible with the Control role of the ToggleControl
composition pattern because that role sends messages while the
Juggler is only able to receive messages. We developed an
algorithm based on finite state automata to automatically
validate the compatibility of a component with a role in a
composition pattern. When all component roles are filled, and
their compatibility is verified, glue-code is generated that

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 532

realizes the composition. Furthermore, the glue-code translates
possible syntactical incompatibilities between the collaborating
components. In the ToggleControl example for instance, the
Juggler components expects startJuggling and stopJuggling
messages while the JButton only fires actionPerformed events.
The translation between both is performed by employing glue-
code. PacoSuite also includes an algorithm to automatically
generate glue-code from a given component composition. As
such, the visual plug-and-play component composition idea is
realized. For an in depth explanation of the PacoSuite approach,
we refer to [18,19,20].

3. COMPOSITION ADAPTERS
The running example used in this paper consists of dynamically
validating timing contracts. This means that the application
validates predefined timing contracts at run-time, such as: “the
time between event A and event B has to be shorter than 100
ms”. In order to achieve this, timestamps have to be taken of
application events A and B. In PacoSuite, two different
solutions are possible to achieve this dynamic checking of
timing contracts. Either all involved components or all involved
composition patterns are adapted in order to incorporate this
timing contract checking logic. Both solutions however spread
and duplicate the concern among several components, which
seriously hampers future evolution of both this concern and
other concerns required within the application.
In order to modularize crosscutting concerns in PacoSuite, the
composition adapter model is proposed [15,16]. A composition
adapter is able to specify transformations of a composition
pattern, which describe crosscutting concerns in a modular and
reusable way. The changes described by a composition adapter
are independent of a specific API, as similar to usage scenarios
and composition patterns, a composition adapter employs the
same set of PacoSuite semantic primitives.
A composition adapter contains two parts, a context part and an
adapter part. A composition adapter specifies that every
occurrence of the context part in the target composition pattern
needs to be replaced by the adapter part. In other words, the
context part describes what needs to be altered and the adapter
part describes the transformations themselves.

Dest Source

SIGNAL

CONTEXT

Dest Source

ADAPTER

Timer

SIGNAL

ConstraintChecker

NOTIFY
SIGNAL

Figure 4: Dynamic timing checker composition adapter.

Figure 4 illustrates a composition adapter for dynamically
checking timing contracts. This composition adapter specifies
in its context part that it is applicable to every signal sent
between certain Source and Dest role. The adapter part specifies
that this signal should be re-routed through a Timer role and
that a ConstraintChecker role should be notified accordingly.
The Timer role is responsible for taking a timestamp and

notifying the ConstraintChecker role. The ConstraintChecker
role is responsible to verify whether every signal it is notified
of, does not violate one of the imposed timing contracts. The
component that is mapped on the ConstraintChecker role could
do the timing contract verification process offline and/or run on
a different CPU in order to minimize the disruption of the
software system.
When applying a composition adapter onto a composition
pattern, the roles in a composition adapter context part need to
be mapped onto the roles of the composition pattern in order to
pattern match the context part. Roles occurring only in the
adapter part operate as newly introduced roles for the target
composition pattern. For example, in order to apply the
composition adapter depicted in Figure 4 onto the composition
pattern of Figure 3, the Source role has to be mapped onto the
Control role and the Dest role onto the Subject role. The result
of applying the dynamic timing checker composition adapter
onto the ToggleControl composition pattern is depicted in
Figure 5. Take in mind that the the PacoSuite primitives are
organized into a primitive hierarchy. The SIGNAL primitive is
the top-most primitive in the hierarchy and matches with all the
lower primitives. As a result, the SIGNAL primitive matches
with both the START and STOP primitives. Therefore, the
composition adapter is applicable at both these protocol
fragments and as a result these are transformed as specified by
the adapter part. As such, the START and STOP primitives are
not sent directly to the Subject/Dest role anymore, but rerouted
through the Timer role. The component mapped onto the Timer
role is able to take a timestamp of the corresponding event and
notifies the ConstraintChecker role.
Notice that mapping the Source role onto the Subject role and
the Dest role onto the Control role results in an invalid
application of the composition adapter because the context part
does not occur in the composition pattern. In that case, we
declare that this application of the composition adapter does not
match with the composition pattern.

Figure 5: Result of applying the composition adapter of

Figure 4 onto the composition pattern of Figure 3.

By employing the composition adapter, the time stamping
concern can be inserted in a composition pattern while it is
effectively modularized. Removing the time stamping concern
from the composition pattern is as simple as deleting the
composition adapter. The composition adapter of Figure 4 is
also reusable as it specifies an abstract protocol in both its
context and adapter parts. As such, the composition adapter is
applicable on all composition patterns that contain a protocol
fragment that matches with the context part of the composition
adapter.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 5 33

Matching and inserting a composition adapter into a
composition pattern seems obvious from the example explained
above. In this example, merely syntactically scanning the
affected composition pattern would do the job. In case the
context part specifies a full protocol however, a more involved
algorithm is required. We developed such an algorithm based
on finite automata theory in order to automatically match and
apply the transformations specified by a composition adapter
onto a given composition pattern. In this paper, the algorithm is
only shortly sketched. A more elaborate explanation of the
algorithm can be found in [11].
The algorithm does not work directly on MSC’s but on
Deterministic Finite Automata (DFA). The transformation of an
MSC to a DFA is a standard process and described in literature
[6]. The first step is a verification phase. Here, all paths in the
affected composition pattern that correspond to the context part
of the composition adapter are looked up. In fact, this amounts
to finding all induced subgraphs [5] of the composition pattern
DFA which are isomorphic to the context part DFA. If there is
at least one matching path, the application of this composition
adapter is valid. Otherwise, the application of this composition
adapter is declared invalid. In the second step, the adapter part
of the composition adapter is inserted in the composition pattern
at the paths that match with the context part. The last step
consists of removing all matching paths.
Although a composition adapter is able to cleanly encapsulate
crosscutting concerns, it is quite limited in its expressiveness.
As a composition pattern only captures protocol, it is only able
to describe protocol transformations. As a result, it is
impossible to describe aspects which are able to influence the
internal behaviour of the components themselves. Recently, we
have introduced an extended version of a composition adapter,
namely an invasive composition adapter, which is be able to
influence the interior behavior of the components’ themselves.
An invasive composition adapter contains an implementation in
the JAsCo [9] aspect oriented language in order to describe
these invasive adaptations. The invasive composition adapter
model is however out of the scope of this paper. For more
information, we refer to [12].

4. COMPOSITION ADAPTER
INTERACTION

4.1 Composition Adapter Interaction Analysis
Using PacoSuite, a component composer is able to apply
multiple composition adapters onto a single composition
pattern. In that particular case, the composition adapters are
deployed in the sequence the component composer specifies.
However, a composition adapter that is applied as last one could
destroy the effect of former applied composition adapters. This
“feature interaction” problem is not unique to our approach but
is common to many aspect oriented approaches. Several
workshops at ECOOP and other conferences have focused on
this issue [14] and some solutions are already emerging
[2,3,4,8].
In order to cope with the feature interaction problem in the case
of composition adapters, we propose to categorize different
levels of interference. A severe case of interference consists of
a composition adapter that causes another composition adapter
to become invalid. In other words, after the application of the
first composition adapter, the context part of the second

composition adapter does no longer occur. In the following
sections, three levels of interaction are presented. To be able to
describe these cases correctly, we define the following:

 F and G are composition adapters.
 X is a composition pattern.
 FC is the context part of F translated to a DFA.
 FA is the adapter part of F translated to a DFA.

 A≅B ⇔ A and B are isomorphic.

 isValid(F,X): ∃Z: Z is an induced subgraph of X and
Z≅FC

 F(X) is the application of composition adapter F onto
the composition pattern X. Returns the resulting
composition pattern. This operation is only defined if
isValid(F,X).

 χ(F,G) = {X| isValid(F,X) ∧ isValid(G,X)}

Definition 1: F and G are composable ⇔ ∀ X ∈ χ(F,G) :
isValid(F,G(X)) ∧ isValid(G,F(X)).

Definition 2: F and G are orthogonal ⇔ F and G are
composable ∧ ∀ X ∈ χ(F,G): F(G(X)) = G(F(X))

Definition 3: F and G are interfering ⇔ F and G are
composable ∧ ∃ X ∈ χ(F,G): F(G(X)) ≠ G(F(X))

Definition 4: F and G are in conflict ⇔ ∃ X ∈ χ (F,G) :

isValid(F,G(X)) ∧ ¬ isValid(G,F(X))

Definition 5: F and G are mutually exclusive ⇔

∃ X ∈ χ (F,G): ¬isValid(F,G(X)) ∧ ¬ isValid(G,F(X))

Orthogonal means that two composition adapters can be safely
applied together and no unintended side-effects are able to
occur. When applying two composition adapters that are either
in conflict or interfering with each other, precedence has to be
taken into account. Mutually exclusive composition adapters
can never coexist and always result in an invalid composition of
both adapters.

4.2 Composition Adapter Classification
The definitions introduced in the previous section are not
practical to check whether possible malicious interactions
among composition adapters take place because they are
described in terms of all possible composition patterns. These
definitions could however be reformulated in such a way that
they are described solely in terms of a specific composition
patterns. As a result, it would be possible to for example verify
that composition adapter F and G are orthogonal for a specific
composition pattern X. However, the algorithm to apply a
composition adapter is of exponential nature. As a consequence,
the interaction analysis becomes very resource intensive and
could easily lead to state explosions. To overcome this
limitation, we propose a classification of composition adapters,
based on only the type of a composition adapter itself, which

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 534

can be determined beforehand. In the next section a couple of
theorems are proposed that allow determining different
interaction levels between composition adapters.
The categorization of composition adapters is dependent on the
level of changes the composition adapter describes. The level of
change is able to range from a composition adapter that adapts
nothing to a composition adapter that completely deletes the
context part. In the following paragraphs, these different cases
are presented and formally defined using automata theory. To
be able to describe the different cases correctly, the following
notation is introduced:

 ContainCount(DFA1,DFA2) = #{Z| Z is an induced
subgraph of DFA2 ∧ Z ≅ DFA1}

Definition 6: F is externally fixed ⇔ FC ≅ FA

Informally, a composition adapter is called externally fixed, if
and only if the context part equals the adapter part. In other
words, the composition adapter does not change anything at all,
at least not externally. An externally fixed composition adapter
is not very useful in case of a regular composition adapter as it
does not imply any changes. However, an externally fixed
composition adapter is able to occur in case an invasive
composition adapter is implemented in the JAsCo aspect
oriented language. The invasive composition adapter of Figure
6 for instance does not change the context part at all. As a
result, it is externally fixed. Figure 6 illustrates an invasive
composition adapter which implements a discount business rule
for old products in an e-commerce environment. The external
protocol of the affected components is not altered. The invasive
composition adapter however changes the interior behavior of
the product database in order to be able to persistently store and
use old product information. Similar to the composition adapter
of Figure 4, this invasive composition adapter is externally
fixed.

ProductDB Requester

REQUEST

CONTEXT

ProductDB Requester

ADAPTER

CaptureProduct

ANSWER
ApplyDiscount

REQUEST

ANSWER

Figure 6: OldProductCount Invasive Composition Adapter

Definition 7: F is conservative ⇔ ContainCount(FC, FA) = 1

Informally, a composition adapter is conservative if and only if
the adapter part only adds extra behavior that doesn’t match the
context part. In other words, the context part occurs only once

in the adapter part. Figure 7 illustrates an example of a
conservative composition adapter. The SecureLogin
composition adapter contains the context part exactly once in its
adapter part and adds some extra behavior, namely an optional
NOTIFY signal.

BlockUsers

db Requester

REQUEST

CONTEXT

db Requester

ADAPTER

ANSWER

REQUEST

ANSWER

Network

SEND

Network

SEND

Observer

NOTIFY OPT

userBlocked

CaptureUser

Figure 7: SecureLogin invasive composition adapter.

Definition 8: F is context preserving ⇔
 ContainCount(FC, FA) > 0

Informally, a composition adapter is called context preserving if
and only if the context part still occurs in the adapter part. For
example, if the composition adapter of Figure 7 would repeat
the REQUEST-ANSWER protocol three times, it would still be
context preserving, but not conservative anymore.

Definition 9: F is destructive ⇔ ContainCount(FC, FA) = 0

Informally, a composition adapter is destructive if and only if
the context part does not occur in the adapter part. As a
consequence, the context part is partially removed.
It is quite easy to prove that the definitions 6 to 8 are ordered
from most specific to least specific. In other words, if a
composition adapter is externally fixed, it is also context
preserving.

4.3. CA Interaction Analysis Revisited
Using the classification of composition adapters introduced in
the previous section, it is possible to deduct some theorems that
define the different interaction levels in terms of solely the
composition adapters themselves.

Theorem 1a: isExternallyFixed(F) ∧

isExternallyFixed (G) ⇒ F and G are orthogonal.

If a composition adapter is externally fixed, it does not change
anything. As a consequence, an externally fixed composition
adapter can be considered as the identity function with respect
to the composition adapter application operator.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 5 35

Theorem 1b: FC ≠ GC ∧ containCount(FC ,GA) = 0 ∧
containCount(GC ,FA) = 0 ⇒ F and G are orthogonal.

If two composition adapters have different context parts and
they do not include the context part of one other in the
adaptation they describe, they are never going to interfere with
each other and as a result they are orthogonal.

Theorem 2: FC ≠ GC ∧ containCount(FC ,GA) > 0 ∧
containCount(GC ,FA) = 0 ⇒ F and G are interfering.

If a composition adapter adds behavior that matches the context
part of another composition adapter and not vice versa, they are
interfering.

Theorem 3: FC = GC ∧ (isDestructive (F) ∧

 ¬isDestructive (G)) ⇒ F and G are in conflict.

If the context parts of two composition adapters are equal and
exactly one of them is destructive, then applying the non-
destructive composition adapter first amounts to a valid
combination. However, applying the destructive composition
adapter first, causes the application of the other composition
adapter to become invalid.

Theorem 4: FC = GC ∧ isDestructive(F) ∧

 isDestructive(G) ⇒ F and G are mutually exclusive.

If the context parts of two composition adapters are equal and
both of them are destructive, then both composition adapters
always make each other invalid. As a consequence, they can
never be applied together.

5. TOOL SUPPORT

The work described in this paper has been implemented in a
prototype tool called PacoSuite. PacoSuite is entirely written in
JAVA and consists of two applications, PacoDoc and
PacoWire. PacoDoc is a graphical editor that allows drawing,
loading and saving component documentations, composition
patterns and composition adapters. The PacoWire tool is our
actual component composition tool and implements the
algorithms we developed in our work [13,15]. It uses a pallet of
components, composition patterns and composition adapters.
The tool allows dragging a component on a role of a
composition pattern. This action is refused when the component
does not match the selected role and optionally mismatch
feedback is given to the user. A composition adapter can be
visually applied onto a composition pattern. The algorithms
mentioned in this paper are used to automatically insert the
composition adapter into the composition. When all the
component roles are filled, the composition is checked as a
whole and glue-code is generated automatically. Figure 8 and
Figure 9 illustrate some screenshots of the PacoSuite tool suite.
Currently, preliminary support for detecting possible feature
interaction problems is provided. A complete implementation of
the algorithms described in this paper is subject to future work.

Figure 8: Screenshot of PacoDoc tool that shows the

documentation of a Scrabble component in the PacoDoc
tool.

Figure 9: Screenshot that illustrates the visual component

composition environment PacoWire. The rectangles
represent components, the ovals stand for composition
patterns and the hexagonal shapes symbolize invasive

composition adapters.

6. RELATED WORK
The AOSD research is under constant evolution and the feature
interaction problems encountered are not unique to our
approach. Quite some research has been devoted into finding a
solution for this problem. They can be divided into three
groups: manual conflict prevention, semi-automatic conflict
detection and automatic conflict detection.
Some feature interaction problems can be manually prevented
by describing how a set of aspects should be composed.
Brichau et al. [2] modularize aspects as logic metaprograms.
For combining aspects, an aspect-combination module is
employed. This logic module is parameterized with one or
more aspects and contains rules that describe how the
functionality of these aspects should be combined. A similar
approach is employed in the JAsCo-language [9]. JAsCo
provides a mechanism of precedence and user-implemented
combination strategies, which specify how a set of aspects
should work together. In [3], a number of features interaction
problems are described and a set of solutions are proposed.
These solutions however also aim at manually describing how
aspects should cooperate. As a result no automatic feature
interaction conflict resolution is possible.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 536

In [8], a semi-automatic conflict detection approach is
proposed. Here, the interaction between aspects is described as
a set of invariants and post-conditions, which can be checked
both at compile-time and run-time. Although this system
promotes automatic conflict detection, it is still the
responsibility of the software developer to describe which
aspects are able to cooperate and which aspects not.
A last approach consists of automatically checking whether the
deployment of a set of aspects is a valid combination or not. In
[4], a formal model is presented which is used to describe the
join points and the behavior of aspects. As aspects are
described formally, it is possible to detect if a combination of
aspect will induce conflicting behavior or not. However, this
approach should be mapped on a real implementation language
to make it practically useful. The approach described in this
paper can be also be categorized in this last set as we achieve
automatic conflict detection without any user input.

7. CONCLUSIONS
Using composition adapters, we are able to cleanly modularize
crosscutting concerns in the PacoSuite component based
methodology. Stacking multiple composition adapters onto the
same composition can however lead to unpredictable and
undesired side-effects. In this paper, we propose a classification
of different levels of side-effects, ranging from totally none to
making the resulting composition invalid. Using this
classification, it is possible to automatically check whether a
certain composition might possibly conflict. The algorithms are
however of exponential nature and depend on both the
composition adapters and the composition as a whole.
Therefore, such a validation becomes unacceptable
performancewise. To cope with this problem, we propose a
couple of theorems that define the interaction levels based on
only properties of the composition adapters. Because the
interaction analysis detection depends solely on the
composition adapters themselves, it can be calculated
beforehand. As a consequence, checking possible malicious
interactions becomes easily acceptable performancewise, as it
only requires querying a database of cached results.
A critical remark is that the theorems presented in this paper are
not complete in the sense that they are only able to proof
interaction levels in certain cases. A complete set of theorems is
subject for further research.

8. ACKNOWLEDGEMENTS

We owe our gratitude to Ragnhild Van Der Straeten for helping
us out with the formal specifications. Since October 2000, Wim
Vanderperren is supported by a doctoral scholarship from the
Fund for Scientific Research (FWO or in Flemish: “Fonds voor
Wetenschappelijk Onderzoek”). Davy Suvée is funded by a
doctoral scholarship from the Institute for the Innovation of
Science and Technology in Flanders (IWT).

REFERENCES
[1] AOSD Website: http://www.aosd.net.
[2] Brichau, J., Mens, K. and De Volder, K. Building

Composable Aspect-specific Languages with Logic
Metaprogramming. In Proceedings of GPCE 2002.
Pittsburgh, USA, October 2002.

[3] Bussard, L., Carver, L., Ernst, E., Jung, M., Robillard, M.
and Speck, A. Safe Aspect Composition. In Workshop
Reader of ECOOP2000. Cannes, France, June 2000.

[4] Douence, R., Fradet, P. and Sudholt, M. Detection and
resolution of aspect interactions. Rapport de recherché
Nr 4435, April 2002.

[5] Grimaldi, R.P. Discrete and Combinational
Mathematics. Addison-Wesley, Third Edition. 1994.

[6] Heineman, G. T. and Councill, W. T. Component-Based
Software Engineering. Addison-Wesley. 2001.

[7] Hopcroft, J. E., Motwani, R., and Ullman, J. D.
Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Second Edition. 2001.

[8] ITU-TS, Geneva, Swiss. ITU-TS Recommendation
Z.120: Message Sequence Chart (MSC). September
1993.

[9] Kiczales, G., Lamping, J., Lopes, C.V., Maeda, C.,
Mendhekar, A. and Murphy, A. Aspect-Oriented
Programming. In proceedings of the 19th International
Conference on Software Engineering (ICSE), Boston,
USA. ACM Press. May 1997.

[10] Klaeren, H., Pulvermuller, E., Rashid, A. and Speck, A.
Aspect Composition applying the Design by Contract
Principle. In Proceedings of the GCSE 2000, Second
International Symposium on Generative and Component-
Based Software Engineering. Erfurt, Germany, 2000.

[11] H. Ossher and P. Tarr. Using multidimensional
separation of concerns to (re)shape evolving software.
Communications of the ACM, 44(10):43-50, 2001.

[12] Parnas, D. L. On the Criteria to be Used in
Decomposing Systems into Modules. In Communications
of the ACM. Vol. 15. No. 12. Pages 1053-1058. December
1972.

[13] Pulvermüller, E., Speck, A., Coplien, J.O., D'Hondt, M.
and De Meuter, W. Proceedings of Workshop on
“feature interaction in composed systems” at ECOOP
2001. Available at: http://www.info.uni-
karlsruhe.de/~pulvermu/workshops/ecoop2001.

[14] Suvée, D., Vanderperren, W. and Jonckers, V. JAsCo: an
Aspect-Oriented approach tailored for CBSD. In
Proceedings of AOSD International Conference. Boston,
USA, March 2003.

[15] Szyperski, C. Component software: Beyond Object-
oriented programming. Addison-Wesley, 1998.

[16] Vanderperren, W. Localizing crosscutting concerns in
visual component-based development. In Proceedings of
Software Engineering Research and Practice (SERP)
International Conference. Las Vegas, USA, June 2002.

[17] Vanderperren, W., Suvée, D. and Jonckers, V. Combining
AOSD and CBSD in PacoSuite through Invasive
Composition Adapters and JAsCo. Submitted to Node
2003 international conference. Erfurt, Germany,
September 2003.

[18] Vanderperren, W. and Wydaeghe, B. Towards a New
Component Composition Process. In Proceedings of the
International Conference on the Engineering of Computer-
Based Systems (ECBS). Washington, USA, April 2001.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 5 37

[19] B. Wydaeghe. PACOSUITE: Component Composition
Based on Composition Patterns and Usage Scenarios.
November 2001. PhD. Dissertation, Vrije Universiteit
Brussel. http://ssel.vub.ac.be/pacosuite.

[20] Wydaeghe, B. and Vandeperren, W. Visual Component
Composition Using Composition Patterns. In
Proceedings of the Tools 2001 International Conference.
Santa Barbara, USA, July 2001.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 538

