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ABSTRACT 
 
The frequencies with which the sixty-four codons occur in 
human coding DNA are known.  If we assume that the codons 
occur randomly, subject only to these probabilities, then it is 
possible to predict trinucleotide frequencies in each of the five 
other reading frames.  A model is developed for evaluating the 
extent to which a given sequence has trinucleotide frequencies 
compatible with coding DNA.  This model is tested using 
known samples of coding DNA taken at random from GenBank, 
and good agreement is found.  Practical and theoretical 
applications are discussed, including determination of coding 
open reading frames, evaluation of sequence data for frameshift 
mutations and examination of hypothetical genes. 
 
Keywords:  codon bias, theoretical model, open reading frame, 
ORF, frameshift mutations, hypothetical genes 
 

INTRODUCTION 
 

It has been recognized for many years that one of the distinctive 
features of coding DNA is the phenomenon of codon bias. Since 
there are 43 = 64 nucleotide triplets to specify only twenty 
different amino acids, the genetic code is degenerate.  
Interestingly, the synonymous codons that specify a given 
amino acid do not appear equally often. Across species, the 
codon bias varies greatly [1].  Codon usage tables have been 
developed for many species, including humans, by examining 
the protein coding genes available in GenBank [2]. 
 
The basis for the evolution and persistence, as well as the 
possible roles of codon bias have been studied, but are not 
completely understood. One method to determine codon 
frequencies is simply to count the number of times each of the 
64 codons appears in a given piece of in frame coding DNA, 
and compare these values on a codon by codon basis with the 
values expected from the codon frequency tables. However, this 
works well only for long pieces of DNA. Shorter pieces, for 
example the size of a typical exon (say, 100 codons), do not 
contain enough codons to provide an accurate comparison with 
each of the 64 expected codon frequencies. More refined 
methods of examining codon bias began in 1982, when Staden 
and McLachlan first examined codon bias in longer strings of 
DNA by measuring the strength of codon preferences in 
successive sequence "windows". A summary of this and related 
work on the use of codon bias to identify coding DNA appears 
in Fickett [3], and it will be compared in the discussion section 
with the work presented here. 
 
 

 
 
 
 
In this paper, the idea of codon bias is further developed and 
expanded to analyze DNA sequences in ways that provide new 
and  different information. There are six frames in which DNA 
can be read. We use the knowledge of codon frequencies in the 
correct reading frame in coding DNA to predict trinucleotide 
frequencies in each of the other five (non-coding) frames. We 
develop a mathematical model which predicts the probability 
with which a hypothetical piece of coding DNA can be expected 
to occur in its coding frame and in each of the other five frames. 
This model is tested against sequences obtained randomly from 
GenBank, and the observed values conform remarkably well to 
those predicted by the model. The simultaneous pattern of 
trinucleotide usage in the six possible reading frames of a 
sequence produces a "signature" characteristic of coding DNA 
in a particular species. Comparisons of data from a given DNA 
sequence with the expected signature provide more information 
about its codon bias profile than previous methods. An earlier 
version of this work appeared in [3].  A number of practical and 
theoretical applications of this model are presented and 
discussed here.   
 

METHODS AND RESULTS 
 

1. Codon bias and reading frames used in the model 
 
For a given piece of DNA there are six possible reading frames, 
i.e., six ways in which the DNA can be grouped into 
trinucleotides (the true coding frame, if any, and five other non-
coding frames). For the purposes of this study, when a sequence 
is known to be coding in a particular frame, the true coding 
frame will be referred to as reading frame 1, and the other five, 
non-coding frames as reading frames 2, 3, -1, -2, and -3, 
according to the scheme described in Figure 1(a). In this model, 
each of these six reading frames is analyzed for a given piece of 
DNA.  When a sequence of DNA is presented, for example in a 
database like GenBank, it typically includes a number of bases 
upstream of any coding regions it may contain. The reading 
frame of a coding region is determined by locating the start of 
the coding region (for example, the ATG of the first exon) 
relative to the beginning of the actual sequence provided. It will 
depend on the number of upstream bases that have been 
included. For the purposes of notation in this study, this 
"nominal frame" of the given sequence will be called either 
frame I, II, III, -I, -II, or -III, according to the scheme described 
in Figure 1 (b).  
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Figure 1    Frame conventions 
 
(a) 
 
 
 
 
 
 
 
 
 
 
 
For a given piece of DNA in any nominal frame, there are six 
possible reading frames, i.e., six ways in which the DNA can be 
grouped into trinucleotides.  The convention used here is that 
reading frame 1 is the true coding frame, and reading frames 2, 
3, -1, -2, and -3 represent the other five non-coding frames.   A 
sample sequence is shown, with arrows and numbers indicating  
the position and direction of each reading frame.  The 
trinucleotides in the true reading frame should thus follow the 
expected frequencies for coding DNA.  Top strand = forward 
strand, bottom strand = reverse complement. 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
Convention used to describe the six nominal frames in DNA.  
The nominal frame is determined by locating the start of the 
coding region (here, ATG) relative to the beginning of the 
actual sequence provided.  A sample sequence is shown, with 
arrows and numbers indicating the position and direction of 
each nominal frame.  The example shown would be coding in 
nominal frame III, since the ATG begins at position III.  Top 
strand = forward strand, bottom strand = reverse complement. 
 
By examining sequences from GenBank, Nakamura et al. have 
produced codon frequency tables (available at 
http://www.kazusa.or.jp/codon/) for various species including 
humans. These frequencies refer to occurrences in reading 
frame 1. It is interesting to consider what the trinucleotide 
frequencies would be if such a sequence were read in one of the 
other five non-coding reading frames. Under the assumption 
that codons occur in random order, subject only to these 
frequencies, the frequencies of trinucleotides in the other five 
non-coding reading frames can be calculated as follows.  For 
instance, for ACG to occur in frame 2, it must be constructed 
out of parts of two different frame 1 codons (*AC + G**). The 
four frame 1 codons of the form *AC have probabilities as 
follows: AAC = 0.0198, CAC = 0.0149, GAC = 0.0261, and 
TAC =0.0158. So the total probability that a frame 1 codon will 
end in AC is the sum of these probabilities, which is 0.0766. 
Similarly, the probability that a frame 1 codon will begin with 
G is the sum of the probabilities of the sixteen codons that begin 
with G, which is 0.3156. Thus the probability that ACG will 
occur in frame 2 is 0.0766 x 0.3156 = 0.0242. The other 
probabilities for trinucleotide frequencies in both frames 2 and 3 

can be calculated analogously. For frames -1, -2, and -3, read on 
the reverse complement strand, the trinucleotide frequencies are 
calculated as follows. The probability that ACG will occur in 
frame -1 is equal to the probability that its reverse complement, 
CGT, will occur in frame 1. The probability that ACG will 
occur in frame -2 is equal to the probability that its reverse 
complement will occur in frame 3, and the probability that ACG 
will occur in frame -3 is equal to the probability that its reverse 
complement will occur in frame 2. The frequencies for all other 
trinucleotides can be found in this way (see Table 2). 
 
2. Mathematical Model 
 
We would like to determine, for a given sequence of length n 
codons, the probability that this sequence would arise if 
sequences of length n were generated at random subject to the 
known codon frequencies. Using the trinucleotide frequencies in 
all six reading frames, it is possible to predict not only the 
probability that the given sequence would arise at random in its 
coding frame, but also the probabilities that this same sequence 
would arise by chance in the other five non-coding frames. Let 
pi

(k) represent the probability of occurrence of the ith 
trinucleotide (out of the 64 possible codons) in frame k (i.e., one 
of the six possible reading frames) as calculated above. 
Consider a particular known segment of coding DNA made up 
of a string of n codons. Let ni represent the number of times that 
the ith codon appears in the specified string in frame 1. Thus we 
can answer the question posed at the beginning of this section: 
the probability that the specified string would have occurred at 
random in frame k is the product of the probabilities of 
occurrence of each codon in the string, that is, 
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The second question we consider is the analogous problem, but 
this time for a typical but unspecified segment of coding DNA. 
Consider a segment of DNA coding in nominal frame I, made 
up of n codons. If the string of codons is long, (i.e., if n is large) 
it is reasonable to assume that the string will contain codons in 
the proportions given by the codon frequency database. Thus, 
the expected number of copies of the ith codon is npi

(1), where 
pi

(k) is defined as above. The probability that the unspecified 
string would occur at random in frame k (i.e., as a random string 
with the trinucleotide frequencies expected for frame k) is  
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Equation (2) was evaluated for each k, for a random string of 
n=100 codons (100 codons was chosen because it represents a 
typical exon length in human genes). The results are presented 
as the shaded bars in Figure 2.  In the development of equation 
(2), the unspecified string of DNA was known to be coding in 
nominal frame I. It will also be useful to consider strings when 
it is not known in which nominal frame they are coding. If the 
calculation is performed for a string which in fact is coding in 
nominal frame III, then the probabilities obtained would be the 
same as those in Figure 2, but permuted so that the largest one 
was in the third position. From this we would infer that the true 
reading frame (reading frame 1, according to our convention) 
was nominal frame III. In this way, the probabilities calculated 
for sequences coding in the six nominal frames would produce 
six different graphs. The results show that a given string will 
have a higher probability of arising by chance in its correct 
reading frame, as opposed to the other five frames. Moreover, 
the probabilities that a given string will occur by chance in each 
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of the six frames provide a kind of numerical and graphical 
signature which indicates whether a particular string is likely to 
be coding DNA, and if so, in which frame. 
 
Figure 2 Predictions and test of the mathematical model   
 
 
 
 
 
 
 
 
 
 
 
 
The graph of predictions from the model (shaded bars) 
represents the expected probabilities  in each of the six reading 
frames,  of occurrence of a random string of DNA of 100 
trinucleotides, conforming to the expected codon bias for frame 
1.  Note that the scale is logarithmic, indicating that the 
probability of the sequence occurring in frame 1 is 
approximately 107 times as large as the probability of this 
sequence occurring in the next most likely frame, which is 
frame -1.   
 
The lighter bars represent the results based on seven human  
sequences, each coding in nominal frame I, which were 
randomly chosen from GenBank and broken down into 100 
codon strings.  Each string was evaluated to assess the 
probability that it would appear at random in each of the six 
reading frames.  Of the total of fifty-four 100 codon strings 
tested, all clearly showed the highest probability of occurring in 
reading frame 1.  Also, the pattern of probabilities observed 
across the six frames for each sequence clearly agreed with the 
results predicted by the model for a sequence coding in nominal 
frame I.  The graph shows the geometric average, in each frame, 
of the probabilities of the fifty-four 100 codon strings tested.  
The accession numbers of the test sequences used were:  
L20046,M72393, L40157, D50063, M81695, L39068, and 
D00022.    
 
3. Testing the model 
 
The model was tested using a sample of human coding 
sequences randomly obtained from GenBank as follows. Using 
a random number generator to produce accession number 
prefixes, we searched for entries matching a particular prefix, 
which were also homo sapiens, complete coding sequences 
(cds), nuclear DNA (not mitochondrial), cDNA or RNA (no 
introns), and with an initiator ATG as the first codon (to clearly 
establish the reading frame). For any entry that fit these criteria, 
we broke the cds into consecutive strings of length 50 and 100 
codons in nominal frame I, and calculated the probability that 
each would appear at random in each of the six frames, using 
equation (1) 
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where ni is the number of times that the ith codon appears in the 
string (determined by counting the number of each of the 64 
codons in the string). We did this until we had tested over one 
hundred 50-codon strings and over fifty 100-codon strings. For 
the one hundred and twelve 50-codon strings tested, all but 
seven had the highest probability of occurring in reading frame 
1, and every one of the fifty-four 100-codon strings tested had 
highest probability of occurring in reading frame 1. Figure 2 

shows the geometric average over the fifty-four 100-codon 
strings tested of the probabilities for each reading frame, 
compared with the results predicted by the model. Even with 
this relatively small sample, the agreement is apparent, 
confirming that the basic assumptions of our approach are not 
unreasonable. 
 
4. Applying the Model to Sequence Analysis 
 
       4.1 Signatures for coding DNA in each frame  This 
model can now be used to analyze any given sequence, to assess 
the probability that it is coding, and in which frame. The given 
sequence is read in each choice of nominal frame, and the 
probability of the resulting string occurring in each of the six 
reading frames is evaluated and compared to the probabilities 
predicted by the model for a sequence coding in that nominal 
frame. If this calculated signature shows similarity with the 
signature predicted by the model, then the sequence is likely to 
be coding in the chosen nominal frame. If the calculated 
signature does not show similarity with any of the signatures 
predicted by the model, then the sequence is likely not coding, 
as it does not conform to the codon bias expectations. 
 
       4.2 Weights of the signatures from each frame  For a 
given string of DNA, the calculated signature is not likely to 
match exactly with any one of the six signatures predicted by 
the model. It would thus be useful to determine quantitatively 
the level of similarity of the calculated signature to each of the 
six predicted signatures, corresponding to the six possible 
nominal frames. To do this, we will write the calculated 
signature as a weighted sum of the predicted signatures. 
 
For notational convenience, in this section only, we will label 
reading frames -1, -2, -3 as 4, 5, and 6. We will also label the 
nominal frames as 1, 2, 3, 4, 5, 6. We begin by expressing the 
calculated signature as a vector v, whose entries are the 
logarithms of the probabilities of occurrence of the string in the 
six reading frames. If pi is the probability that the given string 
occurs in reading frame i, then  
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Now consider the six predicted signatures for a string of 
length  n,  the length of the given string.  Let pij be the 
predicted probability that a typical coding sequence of length n 
in nominal frame j will occur in reading frame i. Each of the 
predicted signatures can be expressed as a vector vj (j=1,2,...6), 
whose entries are the logarithms of the probabilities pij . The 
calculated signature vector v may now be expressed as a linear 
combination (weighted sum) of the predicted signature vectors: 
v = c1 v1 + c2 v2 + c3 v3 + c4 v4 + c5 v5 + c6 v6 , where the 
numerical coefficients cj can be interpreted as the weights 
contributed to the calculated signature by the predicted 
signatures. This amounts to the matrix equation v = A c, where 
v = [ log pi ] is the vector containing the logarithms of the 
calculated probabilities for a given string, A = [log pij ] is the 
matrix containing the logarithms of the predicted probabilities 
from the model, and c = [cj] is the vector containing the weights 
contributed by the predicted signatures to the observed 
signature.  It can easily be established that the matrix A is 
invertible; denote the inverse matrix by A-1 . Thus, the matrix 
equation v = A c can be written as A-1 v = A-1 A c, so c = A-1 v.   
The values for cj (j=1,2,...6) can easily be calculated and 
graphed, and the resulting plots are referred to as vector 
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coefficient graphs (examples appear in Figures 4). These vector 
coefficient graphs make it possible to visualize quickly the 
degree of similarity between the calculated signature and any of 
the predicted signatures. They also allow a rapid visualization of 
interesting patterns in the data. 
  
       4.3 Matching Scores  The weights calculated in the 
previous section can now be used to determine if there is a good 
match between the calculated signature and any of the predicted 
signatures. Note that if one of the cjs equals 1 and the others are 
all 0, then the probabilities exactly match those predicted by the 
model for a sequence in frame j; this is of course unlikely. If 
one of the cjs is considerably larger than the others, it suggests 
that the sequence is close to what would be expected for a 
coding sequence in the corresponding frame. If none stands out, 
then the sequence is probably not part of a coding sequence. 
 
We can determine a "matching score", by expressing the largest 
coefficient (c j(L) = largest cj) as a proportion of the total length 
of vector c. The matching score is 
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When the string under examination is expected to be coding in a 
particular frame, it is important to consider how well its vector 
coefficient graph fits the prediction from the model for that 
expected frame. If ce is the coefficient corresponding to the 
expected frame, the matching score expresses ce (instead of cj(L)) 
as a proportion of the total length of vector c. This score 
indicates how well the signature for the particular string (e.g., 
an ORF) matches the signature preedicted for a string in its 
expected frame. The matching score for a specified expected  
frame e is  
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Determining how well a given string fits the predictions of the 
model can be decided based on the value of the matching score. 
A perfect fit corresponds to a matching score of 1. For our 
purposes, we will consider a matching score s < 0.50 to be a 
negative fit, 0.50 ≤ s < 0.75 to be inconclusive, and 0.75 ≤ s ≤ 
1.00 to be a positive fit.  Note that it is possible to have negative 
scores. 
 
 
5. Applications 
 
The model presented here can now be further developed for use 
in practical and theoretical sequence analysis. In this section, 
three examples of sequence analyses that can be performed with 
the model are presented, and further potential applications being 
investigated are outlined in the discussion. 
 
       5.1 Evaluating open reading frames  Any section of 
cDNA or mRNA can be searched to locate all possible open 
reading frames (ORFs), that is, regions displaying in frame start 
and stop codons.  The ORF finder is a useful tool which is 
available through the National Center for Biotechnology 
Information (NCBI).  It will evaluate a given sequence to 
determine ORFs in all possible frames.  A typical search 
identifies many ORFs for a given sequence; however, usually 
only one is the "true" ORF, which is actually translated into a 
protein.  Without experimental data, it can often be difficult to 
identify the true ORF.   
 

The mathematical model presented here can be used to identify 
ORFs that seem, on the basis of codon bias, more likely 
candidates to be actual coding DNA.  Each ORF is evaluated to 
determine the extent to which it does (or does not) conform to 
the predictions of the model, i.e., the extent to which it does (or 
does not) conform to expected patterns of codon bias.  For 
example, suppose an ORF has been found in nominal frame I.  
If it codes for a protein, then the probabilities for each of the six 
reading frames should correspond to the signature expected for 
a piece of coding DNA in nominal frame I, as given in the 
model prediction.  If these six probabilities do not correspond to 
the expected signature, then this ORF is probably spurious.   
 
This is demonstrated with an example of a cDNA sequence 
obtained from GenBank, and tested with the NCBI ORF Finder 
and our model.  The example is given in Figure 3, using the 
sequence under GenBank accession number BG056643.  This 
sequence was derived from an EST and codes for at least part of 
an unknown protein.  When this sequence is analyzed using the 
ORF Finder, seven different ORFs are found.  It is impossible to 
predict from only the size and positions of these ORFs which 
one is actually a region that is translated into a protein.  When 
each of these ORFs is tested using the model, only the ORF in 
nominal frame -III from bp 332 - 589 fits the expected signature 
for coding DNA.  The results for the three largest ORFs are 
shown in Figure 3 (b) and (c).  The vector coefficient graphs 
show that the calculated signatures for ORF 24 - 383 and ORF 
22 - 378 do not match the predictions for any for the six 
nominal frames.  Thus, these ORFs are likely not coding DNA 
segments.  However, the graph of the calculated signature for 
ORF 332 to 589 (nominal frame -III) matches the predicted 
signature for nominal frame -III quite well.  Thus, this ORF, 
shown shaded in Figure 3 (a), is predicted to be a region 
translated into a protein.  More recent information added to 
GenBank has indicated that this EST is predicted to be similar 
to the insulin-like growth factor binding protein 2 precursor 
(GenBank accession number XM_002636) in this ATG-stop 
region and further upstream in nominal frame -III.  Comparison 
of these gene sequences shows that this would mean that this 
EST is indeed coding in nominal frame    -III, as predicted by 
the model. 
 
Figure 3  Using the model to test ORFs 
 
(a) 
 

 
(a) The seven ORFs predicted with the NCBI ORF finder 
for GenBank entry BG056643, representing the EST of an 
unknown protein.  Frames are labelled as in Figure 1.  (Note 
that the NCBI ORF finder uses a different scheme for labelling 
frames).   

nominal      from    to       length 
 frame                                (bp) 
 
+III             24        383       360 
 -  I             22        378       356 
 -III           332        589       258 
+III           411        645       236 
+ II           389        595       207 
 -III               2        208       207 
 - II             45        149       105 

      I 
     II 
    III 
nominal 
frame     -I 
    -II 
   -III 
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(b) 
 

 
 
 
(c) 
 

 
 
 
(b) Graph representing the probabilities of occurrence of 
the three largest ORFs, in each of their reading frames, 
calculated using the model.   

 
(c) The vector coefficient graphs of the observed 
probabilities.  The six bars in each graph correspond to reading 
frames 1, 2, 3, -1, -2, -3 (cf., Figure 2).  Only the ORF from bp 
332-589 (shaded black in part (a) fits the predicted pattern for a 
piece of coding DNA in its correct frame.  Note the large bar in 
reading frame -3 in the vector coefficient graph for this ORF.  
(The graph has been normalized for the length of each 
sequence.)    
 
       5.2 Sequence confirmation  This analysis is useful for 
examining the frame of a given cDNA sequence. An example is 
shown in Figure 4(a), which examines the complete coding 
sequence of the cystic fibrosis (CFTR) gene (GenBank 
accession number NM_000492) . The gene is broken into 
substrings of length 20 trinucleotides, each of which is analyzed 
using the model. The resulting vector coefficients, cj, for all the 
substrings, are plotted as vertical segments on six separate axes. 
When the coefficients for all the substrings are plotted 
consecutively, coding DNA will exhibit extended regions with 
large values of the coefficients in the coding frame.   
 
It is clear that the coding sequence consistently exists in 
nominal frame I, as expected. One mutant allele of this gene, 

which leads to the development of cystic fibrosis in 
homozygotes, has an insertion of two base pairs at position 
2560 [5].  When this sequence is analyzed using the model and 
vector coefficient graphs, the resultant frame shift can clearly be 
seen (Figure 3 (b); the coding sequence switches from frame I 
to frame III. This example shows how this algorithm can be 
used to examine sequences of novel genes, to confirm if they 
are coding in the same frame throughout, and if not, to identify 
the approximate positions at which frame shifts have occurred. 
 
 
Figure 4 Using the model for sequence confirmation   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Analysis of the complete coding  
 
 
 
(a)  Analysis of the complete coding  sequence for the human 
cystic fibrosis (CFTR) gene (coding from bp 133-4575).  The 
height of each vertical bar represents the vector coefficient in a 
particular frame for a 60 bp substring of the gene.  It is clear 
that the coding sequence exists consistently in frame +I, as 
expected.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b)  Analysis of the complete coding sequence for the mutated 
allele of the human CFTR gene using the model.  The two 
nucleotides inserted in this sequence at bp 2560 produce a frame 
shift mutation, to frame +III, which is clearly seen.       
 
From the codon frequency database, the frequencies of the stop 
codons TAA, TAG, and TGA in the coding frame (frame 1) are 
seen to be 0.0007, 0.0005, and 0.0013, respectively.  This 
means that on average, a string of coding DNA will be 
1/(0.0007 + 0.0005 + 0.0013) = 1/(0.0025) = 400 codons long 
(i.e., the expected number of codons read before encountering a 
stop codon is 400).  In frame 2, the corresponding frequencies 
are calculated to be 0.0073, 0.0086, and 0.0278, so for DNA 
coding in frame 1, but frame shifted to frame 2, the expected 

-0.5

0

0.5

1

1.5

w
ei

gh
t

nominal frames
 III                              -I                               -III

          Vector Coefficients for ORFs  
         24-383                   22-378                332-589

1.00E-220

1.00E-218

1.00E-216

1.00E-214

1.00E-212

pr
ob

ab
ili

ty

nominal frames
III                                      -I                                       -III

Probabilities for ORFs  
24-383                         22-378                    332-589

(a)

(b) 

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 4 - NUMBER 1 69ISSN: 1690-4524



length of a string before encountering a stop codon is 1/(0.0073 
+ 0.0086 + 0.0278) = 1/(0.0437) ~23 codons.  In frame 3, the 
frequencies are 0.0203, 0.0115, and 0.0255, so the expected 
length is 1(573) ~17 codons.  Similarly, the expected lengths to 
the first stop codon for frames -1, -2, and -3 are approximately 
38, 32, and 19.   
 
It is commonly observed that when a gene displays an insertion 
or deletion mutation which alters its reading frame, the resulting 
protein product is severely truncated and thus non-functional.  
The above description provides a mathematical explanation of 
this phenomenon.  For example, in the CFTR insertion mutation 
in Figure 4 (b), a stop codon appears in nominal frame I as early 
as the 12th codon after the insertion mutation, and there are 54 
new stop codons before the end of the gene.    
 
       5.3 Examining hypothetical genes  The model can also be 
used as a tool to further predict the validity and accuracy of 
hypothetical genes. While most gene prediction programs used 
to predict hypothetical genes provide a good indication of the 
exons in a given gene, the exact boundaries of each exon are 
often not accurately defined. Joining together these exon 
sequences could thus lead to frame shift mutations in the 
predicted gene [6].  In the cases of predicted genes, it is 
important to determine an accurate sequence and an accurate 
ORF, so that a prediction of the protein product can be made, 
and its structure and function can also be hypothesized. In 
addition, gene prediction programs often provide many results 
which are false positives; they are not coding sequences at all.  
A simple method of analyzing results to test for false positives 
would be very useful.  Our model can help to address this 
problem. A study of 9 hypothetical genes from a region of 
chromosome 1q22 is shown in Table 1. The results show that 
five of the sequences clearly fit the model with a high matching 
score in the appropriate frame, suggesting that they are likely to 
be coding sequences. Three sequences fit the model poorly and 
are thus predicted not to be accurate coding sequences. The 
remainder are inconclusive (i.e., fit the model with 0.50 - 0.75 
matching score). These may be parts of genes, sequences with 
frame shift or other mutations, or they may be non-coding 
DNA. This model can be employed to narrow down a list of 
potential candidate genes, to provide an idea of what to focus on 
first in laboratory experiments. Since this analysis was 
completed, several of these GenBank entries have been revised 
or removed (indicating that the predictions were incorrect or 
false positives). Remarks about these revisions are provided in 
the comments section of the table, and generally support the 
predictions of the model.  We have developed a Windows 
software program which is a user-friendly way of applying our 
mathematical model to predicted genes to test for these false 
positives.  A downloadable version of this program, called 
FrameView, is available at 
www.math.toronto.edu/repka/software.   
 

DISCUSSION 
 
Regions of coding DNA should exhibit codon frequencies 
which conform to the known codon usage tables. The algorithm 
developed here goes a step beyond simply calculating codon 
frequencies in a region. The knowledge of codon frequencies in 
human coding DNA was used to predict trinucleotide 
frequencies in each of the five noncoding reading frames. A 
mathematical model was then developed which predicts the 
probability with which a hypothetical piece of coding DNA can 
be expected to occur in its coding frame and in each of the other 
five reading frames. Then, for any given string of DNA, the 
probability that this string would arise at random in each of the 
six reading frames of coding DNA is calculated, and these 
probabilities are compared with the values predicted by the 

model for regions of coding DNA. The results provide a 
trinucleotide bias profile of the sequence in all frames. 
 
In earlier work [7], the idea of determining trinucleotide 
frequencies in non-coding reading frames was introduced. 
However, since only a limited number of gene sequences were 
available, the codon frequencies were much less reliable. The 
calculations often depended on the assumption that genes 
involved in similar processes should show similar codon 
frequencies; this might distort the data. By examining an 
unknown sequence in small (~ 20 trinucleotide) consecutive 
"windows" in each of the three positive reading frames, they 
determined, using Bayes' theorem (rather than the more 
sophisticated model used here), how well each of the 
consecutive windows corresponded to the expected trinucleotide 
bias. Their approach was used mainly to search for genes 
among the vast stretches of non-coding DNA in humans, and 
was not developed further. 
 
Codon frequency tables for coding DNA have now been much 
more accurately determined, and are available for many species. 
This has allowed us to extend the previous work in several 
ways, including determining accurate trinucleotide frequency 
tables for non-coding reading  frames, and developing a model 
for analyzing trinucleotides in all six reading frames (i.e., 
including the three frames read on the reverse complement 
strand) to produce a signature. Because more information is 
acquired from a given section of DNA by considering all six 
reading frames simultaneously, it is possible to obtain 
meaningful results on shorter strings using this method. While 
the correct reading frame is expected to yield the highest 
probability for a piece of coding DNA, the signature of the 
probabilities from all six reading frames is also significant. It 
can be used simply to identify coding DNA, but it also makes 
possible novel practical and theoretical analyses and 
comparisons (see below). This model is easily adapted for use 
in any species. The vector analysis used here also makes the 
data easier to read, providing an immediate indication of 
agreement with expected results, and also allows rapid 
visualization of interesting patterns in the data. 
 
Most other algorithms that examine codon bias are not stand 
alone programs, but are part of larger, more complicated 
software packages (e.g., gene finding programs), and are based 
on Hidden Markov Models (HMMs), which typically examine 
dicodon (i.e., pairs of codons) frequencies in DNA. There are 
several important differences in our approach. HMMs typically 
examine the probability in each frame independently, unlike our 
model, where all six frames are considered simultaneously to 
determine an overall pattern. Two studies have been performed 
which use HMMs in all six frames [8.9], but these studies focus 
on finding specific motifs identifying the start sites for 
overlapping prokaryotic genes, and do not incorporate the use of 
codon bias. Compared to HMM methods, our model is 
computationally much simpler and requires less computer 
resources. Since HMMs use dicodon frequencies, there are 64 x 
64 different dicodon combinations possible. The use of simpler 
codon frequency tables also makes our model easy to adapt to 
species other than humans.  Our model can thus be used to 
supplement existing tools. An example of this is the 
computational identification and analysis of hypothetical genes, 
and elimination of false positives. 
   
We are currently investigating the application of this model to 
several other important theoretical and practical issues in 
biology. Comparisons of codon bias profiles from different 
species and across organelles (nuclei, mitochondria, 
chloroplasts) are being used to address evolutionary questions. 
These codon bias profiles may be able to provide information 
about the estimated levels of gene expression, and aid in the 
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identification of various classes or families of genes. Our model 
of codon bias also inherently considers the related but distinct 
issue of amino acid bias, that is, the relationship of amino acids 
usage across different types of genes, organelles, and species, 
and the model is being further explored to analyze proteins in 
this way. 
 

 
Table 1  Using the codon bias model to examine hypothetical 
genes in the chromosome 1q22 region 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2   Codon frequencies in coding DNA. 
 
a) Codon frequencies in frame 1 (-1).    Parentheses refer to frame -1.  The rows indicate the first two nucleotides in frame 1 while 
the columns give the last.  For frame -1,  the columns give the first nucleotide and the rows the last two.  These are the values reported 
(Nakamura et al., 2000) as of July 15, 2001.   
 
                  **a (t**)   **c (g**)   **g (c**)   **t (a**)  
aa* (*tt)  0.0240   0.0198   0.0326   0.0170   
ac* (*gt)   0.0149   0.0193   0.0063   0.0129   
ag* (*ct)   0.0115   0.0193   0.0113   0.0120   
at* (*at)   0.0072   0.0216   0.0223   0.0158   
ca* (*tg)   0.0120   0.0149   0.0345   0.0105   
cc* (*gg)   0.0167   0.0200   0.0070   0.0173   
cg* (*cg)   0.0063   0.0108   0.0116   0.0046  
ct* (*ag)   0.0070   0.0193   0.0397   0.0128   
ga* (*tc)   0.0291   0.0261   0.0402   0.0224   
gc* (*gc)   0.0159   0.0283   0.0075   0.0185   
gg* (*cc)   0.0164   0.0227   0.0164   0.0108   
gt* (*ac)   0.0070   0.0146   0.0288   0.0109   
ta* (*ta)   0.0007   0.0158   0.0005   0.0121   
tc* (*ga)   0.0119   0.0175   0.0045   0.0148   
tg* (*ca)   0.0013   0.0123   0.0129   0.0100   
tt* (*aa)   0.0073   0.0205   0.0125   0.0170   
 

 

table 
entry 
# 

name of 
hypothetical 
gene 

GenBank 
accession # 

coding 
sequence 
(bp) 

nominal 
frame 

matching 
score for 
nominal 
frame 

fits model? comments 

1 FLJ23040 XM_043575 125-310 II 0.65 inconclusive found to be part of  entry #2 and removed 
from GenBank 

2 FLJ23040 NM_025174 3-1037 III 0.67 inconclusive supported by mRNA alignment 
3 LOC92299 XM_044075 1125-1460 III 0.38 no  
4 FLJ12671 XM_044082 184-1245 I 0.93 yes 
5 FLJ12671 XM_044081 90-443 III 0.92 yes 

both found to be part of sequence 
XM_044083 and replaced by this in 
GenBank; supported by alignment with 
mRNA and ESTs 

6 MGC13038 XM_044107 568-756 I 0.55 inconclusive removed from GenBank 
7 LOC200180 XM_010522 1165-1584 I 0.59 inconclusive supported by alignments with mRNA 
8 LOC92306 XM_044124 10-348 I 0.39 no  
9 LOC92307 XM_044125 1762-2265 I 0.06 no removed from GenBank 
10 FLJ20203 NM_032292 1-2508 I 0.87 yes  
11 FLJ20203 XM_043572 564-896 III 0.66 inconclusive had sequencing errors/frame shift 

mutations; re-sequenced and found to be 
same as entry #10; removed from 
GenBank 

12 LOC86036 XM_043567 100-1371 I 0.90 yes first thought to be a distinct locus, but 
found to be part of entry #10; removed 
from GenBank 

13 LOC86036 XM_017059 91-1311 I 0.92 yes first thought to be at same locus as entry 
#12, but used different start, stop, with 
frame shift mutations; now found to be 
unique gene FLJ10875 
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b) Calculated trinucleotide frequencies in frame 2 (-3):  
 
 **a (t**) **c (g**) **g (c**) **t (a**) 
aa* (*tt) 0.0176 0.0161 0.0208 0.0113 
ac* (*gt) 0.0205 0.0188 0.0242 0.0131 
ag* (*ct) 0.0289 0.0264 0.0340 0.0185 
at* (*at) 0.0166 0.0152 0.0196 0.0106 
ca* (*tg) 0.0159 0.0146 0.0187 0.0102 
cc* (*gg) 0.0228 0.0208 0.0269 0.0146 
cg* (*cg) 0.0068 0.0062 0.0080 0.0043 
ct* (*ag) 0.0170 0.0156 0.0200 0.0109 
ga* (*tc) 0.0095 0.0087 0.0112 0.0061 
gc* (*gc) 0.0174 0.0160 0.0205 0.0112 
gg* (*cc) 0.0140 0.0128 0.0165 0.0090 
gt* (*ac) 0.0100 0.0092 0.0118 0.0064 
ta* (*ta) 0.0076 0.0070 0.0090 0.0049 
tc* (*ga) 0.0204 0.0186 0.0240 0.0130 
tg* (*ca) 0.0277 0.0253 0.0326 0.0177 
tt* (*aa) 0.0151 0.0138 0.0178 0.0097 
 
 
c) Calculated trinucleotide frequencies  in frame 3 (-2):  
 
 **a (t**) **c (g**) **g (c**) **t (a**) 
aa* (*tt) 0.0177 0.0101 0.0102 0.0126  
ac* (*gt) 0.0136 0.0115 0.0063 0.0149  
ag* (*ct) 0.0223 0.0133 0.0125 0.0116 
at* (*at) 0.0055 0.0092 0.0069 0.0108 
ca* (*tg) 0.0283 0.0162 0.0164 0.0203  
cc* (*gg) 0.0218 0.0185 0.0101 0.0239  
cg* (*cg) 0.0358 0.0213 0.0201 0.0186  
ct* (*ag) 0.0088 0.0148 0.0111 0.0174 
ga* (*tc) 0.0270 0.0154 0.0156 0.0193 
gc* (*gc) 0.0208 0.0176 0.0096 0.0228  
gg* (*cc) 0.0341 0.0203 0.0192 0.0177  
gt* (*ac) 0.0084 0.0141 0.0105 0.0166  
ta* (*ta) 0.0205 0.0117 0.0118 0.0147  
tc* (*ga) 0.0157 0.0134 0.0073 0.0173  
tg* (*ca) 0.0258 0.0154 0.0145 0.0134  
tt* (*aa) 0.0064 0.0107 0.0080 0.0125 
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