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ABSTRACT 
 

This paper proposes a potential filed immune network (PFIN) 
for dynamic navigation of mobile robots in an unknown 
environment with moving obstacles and fixed/moving targets. 
The Velocity Obstacle method is utilized to determine 
imminent obstacle collision of a robot moving in the time-
varying environment. The response of the overall immune 
network is derived by the aid of fuzzy system. Simulation 
results are presented to verify the effectiveness of the proposed 
methodology in unknown environments with single and 
multiple moving obstacles. 
 
Keywords: dynamic navigation, potential field immune 
network, Velocity Obstacle method, moving obstacle 
 
 

1. INTRODUCTION 
 
Autonomous mobile robots have a wide range of applications 
in industries, hospitals, offices, and even the military, due to 
their superior mobility. Some of their capabilities include 
automatic driving, intelligent delivery agents, assistance to the 
disabled, exploration and map generation for environmental 
cleanup, etc. In addition, their capabilities also allow them to 
carry out specialized tasks in hazardous or hardly accessible 
environments for human beings such as nuclear plants and 
chemical handling. They are also useful in emergencies for fire 
extinguishing and rescue operations. Combined with 
manipulation abilities, their capabilities and efficiency will 
increase and can be used for dangerous tasks such as security 
guard, exposition processing, as well as undersea, underground 
and even space exploration.  
In order to adapt the robot’s behavior to any complex, and 
dynamic environment without further human intervention, it 
should be able to extract information from the environment, to 
perceive, and act within the environment. An autonomous robot 
must be able to maneuver effectively in its environment, 
achieving its goals while avoiding collisions with static and 
dynamic obstacles. As a result, motion planning of a mobile 
robot plays an important role in robotics and has thus attracted 
the attention of researchers recently. Various methods have 
been proposed for this purpose, such as configuration-time 
space based method [1-2], planning in space and time 
independently [3], Artificial potential fields based approach [4-
8], cooperative collision avoidance and navigation [9-10], 
fuzzy based method [11], velocity obstacles method [12-17], 
and collision cone approach [18-20]. 

In motion planning problems of mobile robots, motion 
behaviors of the mobile robot can be classified into two 
fundamental behaviors: obstacle-avoidance and goal-seeking. 
An important approach is the well-known potential field 
method first introduced by Khatib [21]. The basic idea is to fill 
the robot’s workspace with an artificial potential field and the 
robot moves in a direction along the resultant of a repulsive 
force from the obstacle and an attractive force towards the goal. 
This method is particularly attractive since it is conceptually 
effective and easy to implement. However, most of the 
previous studies use it to deal with mobile robot path planning 
in stationary environments where targets and obstacles were all 
stationary. In an effort to solve the problem of motion planning 
in a dynamic environment, Conn and Kam [4] included time as 
one of the dimensions and thus the moving obstacles can be 
regarded as stationary in the extended world. The major 
problem in this approach is that the trajectories of the moving 
obstacles are assumed known a priori, which are often 
inapplicable in real applications. Then, Vadakkepat et al. [5] 
proposed a new methodology named Evolutionary Artificial 
Potential Field (EAPF) to solve moving-obstacle problem. 
Genetic algorithm was employed to derive optimal potential 
field functions. In addition, an escape-force algorithm was 
introduced to avoid the local minima associated with EAPF. 
Later, Ge and Cui [6] proposed a new potential field method 
for motion planning of a mobile robot in a dynamic 
environment. The new potential functions take into account not 
only the relative positions of the robot with respect to the target 
and obstacles, but also the relative velocities of the robot with 
respect to the target and obstacles. Then, Poty [7] merged the 
approach proposed in [6] and the fractional potential for 
dynamic motion planning of mobile robot. The fractional 
potential was utilized to characterize danger zone and risk 
coefficient of each obstacle. Computer simulations 
demonstrated that mobile robot avoided obstacles and reached 
the target successfully. Recently, Munasinghe et al. [8] 
proposed the velocity dipole field and its integration with the 
conventional potential field to form a new real-time obstacle 
avoidance algorithm. Unlike the radial field lines of 
conventional potential field, the velocity dipole field has 
elliptical field lines that navigate a robot more skillfully. It is 
useful to skillfully guide the robot around obstacles, quite 
similar to the way humans avoid moving obstacles. 
Another approach is the Velocity Obstacle (VO) method first 
proposed by Fiorini and Shiller [12-13]. The Velocity Obstacle 
paradigm is a well-known collision detection method. Moving 
obstacles are mapped into a two-dimensional ''velocity space". 
Then velocity of mobile robot is directly planned using the 
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Velocity Obstacle in this space. The velocity obstacle is a first-
order approximation of the robot’s velocities that would cause 
a collision with an obstacle at some future time, within a given 
time horizon. With this representation, an obstacle maneuver 
can be computed simply by selecting velocities outside of the 
velocity obstacle. A complete trajectory is constructed by the 
sequence of all the avoidance maneuvers performed by the 
mobile robot. The trajectory is generated in real-time by 
selecting a single avoidance velocity at each time interval, 
using some heuristics to choose among all possible velocities in 
the reachable avoidance velocity set. Three strategies namely 
the Towards Goal strategy, the Maximum Velocity strategy, 
and the Structure heuristics were presented in [14]. Later, VO 
has been extended in [15] for obstacles moving on arbitrary 
(but known) trajectories and applied for on-line navigation of 
the robotic wheelchair [15-16]. 
A similar and VO related approach based on the Collision Cone 
is presented in [18] for motion planning. It was illustrated that 
the Collision Cone can effectively determine if collision 
between a robot and an obstacle is imminent. In addition, No 
restrictions were placed on the shapes of the robot or obstacle, 
i.e., they can both be of any arbitrary shape. 
This paper proposes a potential filed immune network (PFIN) 
for dynamic motion planning of mobile robots in an unknown 
environment with moving obstacles and fixed/moving target. In 
addition, the Velocity Obstacle method is employed to 
determine potential collisions of a robot moving in the time-
varying environment. It has been shown that the learning and 
adaptive capabilities of artificial immune systems have a great 
potential in the fields of machine learning, computer science 
and engineering [22-24]. Dasgupta [22] summarized that the 
immune system has the following features: self-organizing, 
memory, recognition, adaptation, and learning. There are a 
growing number of researches investigating the interactions 
between various components of the immune system or the 
overall behaviors of the systems based on an immunological 
point of view. In our previous study [25], it has demonstrated 
that an autonomous robot is able to maneuver effectively in its 
environment, achieving its goals while avoiding collisions with 
static obstacles and escaping from the local minimum.  

 
 

2. BIOLOGICAL IMMUNE SYSTEM 
 
The immune system protects living bodies from the invading of 
foreign substances, called antigens, including viruses, bacteria, 
and other parasites. Lymphocytes float freely in blood and 
lymph nodes, and patrol everywhere for antigens, then 
gradually drift back into the lymphatic system, to begin the 
cycle all over again [26]. There are mainly two types of 
lymphocytes, namely B-cells and T-cells, which play an 
important role in immunities. The former takes part in the 
humoral immunity that secretes antibodies (Abs) by clonal 
proliferation, and the latter takes part in cell mediated 
immunity. One class of T-cells, called Killer T-cell, destroys 
the infected cell whenever they recognize the infection. The 
other class which trigger clonal expansion and 
stimulate/suppress antibody formation is called Helper T-cell. 
The APC (Antigen Presenting Cell) interprets the antigen 
appendage and extracts the features, by processing and 
presenting antigenic peptides on its surface to T-cell and B-cell. 
Fig. 1 depicts the model describing the relationship between 
components in the immune system. 

 
Fig. 1 Illustration of the biological immune system 

 
When an infectious foreign pathogen attacks the human body, 
the macrophage has surface receptors to detect and destroy the 
invader.  Then the macrophage becomes an Antigen Presenting 
Cell (APC). The APC interprets the antigen appendage and 
extracts the features, by processing and presenting antigenic 
peptides on its surface to T-cell and B-cell. These antigenic 
peptides are kinds of molecules called MHC (Major 
Histocompatibility Complex) to distinguish a “self” from other 
“non-self” (antigen). These lymphocytes will be capable to 
sensitize this antigen and be activated. Then the Helper T-cell 
releases the interleukines which are the stimulation or 
suppression signals acting on the cells. In the other hand, B-cell 
becomes stimulated when an antibody receptor binds to an 
antigen. Moreover, B-cells are also affected by Helper T-cells 
during the immune responses. The Helper T-cell plays a 
remarkable key role for deciding the immune system toward 
the cell mediated immunity or the humoral immunity, and 
connects the non-specific immune response to make a more 
efficiency specific immune response. 
Affinity maturation occurs when the maturation rate of a B-cell 
clone increases in response to a match between the clone’s 
antibody and an antigen. Subsequently, those mutant cells are 
bound more tightly and stimulated to divide more rapidly. 
Affinity maturation dynamically balances exploration versus 
exploitation in adaptive immunity. It has been demonstrated 
that the immune system has the capability to recognize foreign 
pathogens, learn and memorize, process information, and 
discriminate between self and non-self. In addition, the 
immunity can be maintained even faced with a dynamically 
changing environment. The biological immune system can 
recognize different pathogen patterns and generate selective 
immune responses. Recognition is achieved by inter-cellular 
binding, which is determined by molecule shape and 
electrostatic charge. Hence, B-cell becomes stimulated when an 
antibody receptor binds to an antigen. Antibodies have the 
capability of binding pathogens that they have never learned to 
recognize. This kind of anticipatory capability is due to a broad 
coverage of pathogen space realized by the antibody receptors 
produced by the immune system [27]. 
An artificial immune system can be defined as abstract 
computational system for solving complex computational or 
engineering problems. The concepts of the artificial immune 
system are inspired by ideas, processes, and components, 
which extracted from the immune system. It has also been 
shown that the learning capability of artificial immune systems 
has a great potential in the field of machine learning, computer 
science and engineering. Jerne [28] has proposed the idiotypic 
network hypothesis (immune network hypothesis) based on 
mutual stimulus and suppression between antibodies shown in 
Fig. 2. This hypothesis is modeled as a differential equation 
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simulating the concentration of a set of lymphocytes. The 
concept of immune network states that the network 
dynamically maintains the memory using a feedback 
mechanism within the network. Jerne concluded that the 
immune system is similar to the nervous system when viewed 
as a functional network. Based on Jerne’s immune network 
hypothesis, several theories and mathematical models for 
immune system have been developed. 

 
Fig. 2 Idiotypic network hypothesis 

 
Hightower et al. [29] suggested that all possible antigens could 
be declared as a group of set points in an antigen space and 
antigen molecules with similar shapes occupy neighboring 
points in that space. It indicates that an antibody molecule can 
recognize some set of antigens and consequently covers some 
portion of antigen space as Fig. 3 illustrated. The collective 
immune response of the immune network is represented as 

∑
=

AbN

i
iAbf

1

)(  

where f(Abi) indicates the immune response function between 
antigen and the ith antibody. Note that any antigen in the 
overlapping converge could be recognized by several different 
antibodies simultaneously. Afterward, Timmis et al. [30] 
introduced similar concept named Artificial Recognition Ball 
(ARB). Each ARB represents a certain number of B-cells or 
resources, and total number of resources of system is limited. 
In addition, each ARB describes a multi-dimensional data item 
that could be matched to an antigen or to another ARB in the 
network by Euclidean distance. Those ARBs located in the 
other’s influence regions would either be merged to limit the 
population growth or pulled away to explore new area. ARBs 
are essentially a compression mechanism that takes the B-cells 
to a higher granularity level. 

coverage area
antigen

antibody

antigen space

overlapping 
coverage area

 
Fig.3 The antigen space 

 
 

3. THE VELOCITY OBSTACLE 
 
This section describes the velocity obstacle (VO) for single and 
multiple obstacles. For simplicity, the mobile robot and moving 
obstacles are assumed to be approximated by cylinders and 
move on a flat floor. Fig. 4(a) shows two circular objects A and 
B with velocities vA and vB at time t0, respectively. Let circle A 
represent the robot and circle B represent the obstacle. To 
compute the VO, obstacle B must be mapped into the 
configuration space of A, by reducing A to a point Â and 
enlarging B by the radius of A to B̂ as Fig. 4(b) demonstrates. 
The Collision Cone, CCA,B, is thus defined as the set of 
colliding relative velocities between Â and B̂ . 

{ }0ˆ| ,, /≠∩= BCC BAA,BBA λv  
where vA,B = vA − vB is the relatively velocity of Â with respect 
to B̂ , and λA,B is the line of vA,B 

 
Fig. 4 The Velocity Obstacle approac 

 
This collision cone is the light gray sector with apex in Â, 
bounded by the two tangents λf and λr from Â to B̂  as shown in 
Fig. 4(b). Clearly, any relative velocity vA,B outside CCA,B is 
guaranteed to be collision-free, provided that the obstacle B̂  
maintains its current shape and speed. The collision cone is 
specific to a particular robot/obstacle pair. To consider 
situation of multiple obstacles, it is better to establish an 
equivalent condition on the absolute velocities vA. This could 
be done simply by adding the velocity vB to each velocity in 
CCA,B, or equivalently, translating the collision cone CCA,B by 
vB, as shown in Figure 4(b). The velocity obstacle VO (in dark 
gray sector) is thus defined as: 

A,BBACCVO v⊕= ,  

where ⊕ is the Minkowski vector sum operator. The VO 
partitions the absolute velocities vA into avoiding and colliding 
velocities. Selecting vA outside of VO would avoid collision 
with B. Velocities vA on the boundaries of VO would result in 
A grazing B. 
In the case of multiple obstacles, they are prioritized according 
to their danger level so that the most imminent collision 
obstacle is avoided first in this paper. A “collision distance 
index” is defined as follows to compute the danger level for 
each obstacle 

obs
sj

obsr
Nj

Tv

d
j ,,2,1     ,

,
⋅⋅⋅=

×
=δ  

where dr,obsj represents the distance between robot and the jth 
obstacle, vj is the speed of the jth obstacle, Ts is the sampling 
time used in simulations. 
 
 

4. POTENTIAL FIELD IMMUNE NETWORK 
 
A potential field based immune network (PFIN) inspired by the 
biological immune system for robot navigation (goal-reaching 
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and obstacle-avoidance) in dynamic environment is described 
in this section. For simplicity, one can make the following 
choices without loss of any generality. 
• The mobile robot is an omni-directional vehicle. This means 
any direction of velocity can be produced at any time. In 
addition, maximum velocity and acceleration are assumed to be 
limited considering dynamics of robot and obstacle. 
• The mobile robot and moving obstacles under consideration 
are approximated by cylinder with radius rr, and ro. This is not 
a severe limitation since general polygons can be represented 
by a collection of circles [18, 31, 32]. Chazelle [31] showed 
that the union of all these circles can still be meaningfully used 
to predict collision between the irregularly shaped objects. 
Moreover, the resulting inexact collision cone can still be used 
effectively for motion planning. 
• The mobile robot and moving obstacles move in a flat floor. 
Moving obstacles may changes their velocities (amplitude and 
direction) at any time. 
• The obstacles move along arbitrary trajectories, and that their 
instantaneous state (position and velocity) is either known or 
measurable. Prassler et al. have proposed such a sensor system 
which has a laser range finder and sonar [15]. 
Fig. 5 illustrates the architecture of the proposed potential field 
based immune network for mobile robot navigation in dynamic 
environment. The proposed mechanism, imitating the 
cooperation between B-T cells, can help the robot adapt to the 
environment efficiently. In the immunology, the T-cell plays a 
remarkable key role for distinguishing a “self” from other 
“non-self” antigens. Resembling the biological immune system, 
its function is to prioritize the obstacles employing the VO 
method so that the obstacle with most imminent collision can 
be identified. In other words, T-cell in PFIN distinguishes an 
“imminent” from other “far-away” obstacles. 

 
Fig. 5 The architecture of the potential field immune networK 

 
In PFIN, the antigen’s epitope is a situation detected by sensors 
and provides the information about the relationship between the 
robot’s current states and the obstacles, along with the target 
(i.e. dr,g, θr,g, dr,obsj, θr,obsj, vobsj) as Fig. 5 depicted. This scene-
based spatial relationship is consistently discriminative 
between different parts of an environment. The interpreter is 
regarded as a phagocyte and translates sensor data into 
perception. The antigen presentation proceeds from the 
information extraction to the perception translation. An antigen 
may have several different epitopes, which means that an 
antigen can be recognized by a number of different antibodies. 
However, an antibody can bind only one antigen’s epitope. 
In this study, the antigen represents the local environment 
surrounding the robot each time interval and its epitopes are a 
fusion data set for each obstacle as Fig. 6 shows { } obsobsrobsrgrgrj NjddAg

jj
,,2,1          , , , ,,,, ⋅⋅⋅=≡ θθ  

where θr,g and θr,obsj represent the orientations between robot 
and target, the jth obstacle, respectively. dr,g and dr,obsj are the 

distance between robot and target, the jth obstacle, respectively. 
Nobs is the number of moving obstacles. This scene-based 
spatial relationship is consistently discriminative between 
different parts of an environment. The interpreter is regarded as 
a phagocyte and translates sensor data into perception. The 
antigen presentation proceeds from the information extraction 
to the perception translation. An antigen may have several 
different epitopes, which means that an antigen can be 
recognized by a number of different antibodies. However, an 
antibody can bind only one antigen’s epitope. 

 
Fig. 6 Configuration of mobile robot, obstacles, and target 

 
In the proposed immune network, the antibody’s receptor is 
defined as the situation between robot and the imminent 
collision obstacle: Ab1= dr,g ; Ab2= θr,g ; Ab3= dr,obs ; Ab4= θr,obs, 
where dr,obs and θr,obs represent the distance and orientation 
between the robot and obstacles. 
The response of the overall immune network is derived by 
determining the set of affinities associated with the receptors 
and the structural similarity between antigen and antibody 
defined by quantification of the distance in antigen space. In 
this study, the collective immune response function of the 
immune network is represented as the following function, 

⎪⎩

⎪
⎨
⎧

+=

+=

)()(

)()(

42

31

AbfAbf

AbfAbfv

r

r

ω
 

where vr and ωr are the robot’s velocity and angular velocity 
outputs, respectively. This is a kind of artificial potential field 
approach since it considers a virtual attractive force between 
the robot and the target (i.e. f(Ab1) and f(Ab2)) as well as virtual 
repulsive forces between the robot and the obstacles (i.e. f(Ab3) 
and f(Ab4)). The resultant force on the robot is then used to 
decide the velocities (i.e. vr and ωr) of its movements. 
Functions f(Abi) are expressed as following, 

4 ,3 ,2 ,1     ,)( 4
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×
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ij
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where mi is the affinity of antigen (the most imminent collision 
obstacle) and the ith antibody, mij is the affinity between the ith 
and jth antibody. Corresponding constant parameters are K1= 
20, K2= 30, K3= 15, K4= 20, respectively. The affinity of the 
antigen and the ith antibody mi is fuzzified using the fuzzy set 
definitions as Fig. 7 illustrates. The mapping from the fuzzy 
subspace to the TSK model is represented as fuzzy if-then rules, 
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IF dr,g  is zero THEN    vr = 0cm/s 
IF dr,g  is near THEN    vr = 10cm/s 
IF dr,g  is medium THEN        vr = 15cm/s 
IF dr,g  is far THEN    vr = 20cm/s 
IF θr,g  is -far  THEN    ωr = -30º/s 
IF θr,g  is -medium THEN    ωr = -25º/s 
IF θr,g  is -near THEN      ωr = -20º/s 
IF θr,g  is -close THEN    ωr = -10º/s 
IF θr,g  is +close THEN    ωr = 10º/s 
IF θr,g  is +near THEN       ωr = 20º/s 
IF θr,g  is +medium THEN         ωr = 25º/s 
IF θr,g  is +far THEN    ωr = 30 º/s 
IF dr,obs  is zero THEN    vr= -15cm/s 
IF dr,obs  is near THEN    vr= -10cm/s 
IF dr,obs  is medium THEN    vr = -5cm/s 
IF dr,obs  is far THEN         vr = 0cm/s 
IF θr,obs  is -far THEN    ωr = 10º/s 
IF θr,obs  is -medium THEN    ωr = 20º/s 
IF θr,obs  is -near THEN    ωr = 30º/s 
IF θr,obs  is +near  THEN       ωr = -30º/s 
IF θr,obs  is +medium THEN    ωr = -20º/s 
IF θr,obs  is +far THEN        ωr = -10º/s 

 

 
Fig. 7 Membership functions of antibodies 

 
Consequently, the centroid defuzzification method is employed 
to calculate the weighted average of a fuzzy set. 
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where μk represent the matching degree of the kth rule and yk 
represent its corresponding output value. 
Finally, the stimulation and suppressive interaction between the 

ith and jth antibodies mij are listed in Table 1. It should be 
noted that these value are optimized utilizing genetic 
algorithms. Hundreds of different circumstances with randomly 
generated moving obstacles were employed to optimize the 
affinity values mij of PFIN. Fig. 8 demonstrates one of the 
cases in which several tens of obstacles circumrotate at 
randomly generated positions with different radius. Fig. 8(a) 
shows that robot reaches target successfully while Fig. 8(b) 
demonstrates that robot is failed to reach target in the 
optimization procedure. 
 

Table 1 Optimized affinity values between antibodies 
mij j=1 j=2 j=3 j=4 
i=1 1 -0.13 -0.24 -0.04 
i=2 -0.02 1 -0.11 -0.42 
i=3 -0.37 -0.84 1 0.92 
i=4 -0.21 -0.92 -0.31 1 

 

 
Fig. 8 Randomly generated moving obstacles for optimizing mij 
 
 

5.  SIMULATIONS AND DISCUSSION 
 

Numerous simulations have been performed to evaluate the 
performance and effectiveness of a mobile robot among 
multiple moving obstacles using the proposed PFIN. In the 
simulation, the size of the test field is 5m ×5m, and the radius 
of robot and obstacles are rr = 0.1 m and ro = 0.1 m. In addition, 
the constraints on mobile robot and moving obstacles are vr max 
= 20 cm/s, vo max = 20 and ωr max = 30º/s. The sampling time for 
each step is Ts = 0.03sec. To carry out these computations, a 
computer program was developed with C++ programming tools 
with a graphical user interface. Fig. 9 illustrates the example of 
a simulation window for motion planning of mobile robot 
among two moving obstacles, including windows of the setting 
parameters, and trajectories for robot and obstacles. 

 
Fig. 9 Simulation window for mobile robot motion planning in 

dynamic environment 
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The simulation examples demonstrated in Figs. 10–14 are 
given with graphical representations in which the trajectories of 
the moving object and the robot are described. Moreover, 
figures show the velocity-time history and azimuth-time history 
of the robot, respectively. In each figure, circles indicate the 
position of the robot and obstacles at each time instant when 
the robot executed an action. A high concentration of circles 
indicates a lower velocity (of the obstacle and of the robot) 
whilst a low concentration is a reflection of a greater velocity. 
In addition, the state responses (speed and orientation) of robot 
and obstacles are depicted in the figures. Obviously, the robot 
smoothly avoids the moving obstacles and reaches goal as 
expected for all cases. 
Fig. 10 reveals that an obstacle coming from left side along a 
straight line cross the robot path. Within the interval of points 
A and B (at twelfth and seventh sampling instant respectively), 
the obstacle slows down its speed in front of the robot’s way to 
goal. Clearly, the robot is unable to pass the obstacle before it. 
Therefore, the robot turn left and decelerates its speed quickly 
to avoid it. At the seventh sampling instant, the robot turns 
right slightly and then passed over behind the obstacle since the 
obstacle is no longer a threat. Finally, the robot turns right 
quickly and accelerates to reach the goal safely. 

 
Fig. 10 Trajectories of mobile robot and obstacle 

 
Fig. 11 shows a simulation result by which the robot can avoid 
the two moving obstacles one after another then reach the goal. 
These obstacles come from different sides with arbitrary 
trajectory and varying speed cross the robot path. Similar to the 
previous simulation, the robot decelerates its speed at points A 
and B to avoid the first and second obstacles separately. Then it 
accelerates and moves towards the goal without collision. 

 
Fig. 11 Trajectories of mobile robot and two obstacles 

 
Consider the case when the robot, the obstacle and the target 
move in the same direction along the same line and the obstacle 

is in between, as shown in Fig. 12. To solve this kind of local 
minimum problem described in [6], the simplest method is to 
keep the robot moves and wait for the obstacles or the target to 
change their motion. However, if the situation is still 
unchanged and the robot still trapped after a certain period’s 
waiting, Ge and Cui [6] suggested applying the conventional 
local minimum recovery approaches designed for the stationary 
environment cases. Fig. 12 demonstrates that the proposed 
PFIN is capable of solving this problem without extra approach. 
Mobile robot tries to pass the obstacle and escape from the trap 
situation by adjusting its speed and direction at point B and C. 
Finally, it exceeds the obstacle and reaches the goal safely after 
point D. 

 
Fig. 12 Trajectories of mobile robot and obstacle 

 
Fig. 13 demonstrates the motion planning of a mobile robot 
tracking a moving goal while avoiding two moving obstacles. 
Obviously, mobile robot is able to reach goal and avoid moving 
obstacles no matter what the goal is fixed or moving employing 
the proposed PFIN. Note that the two obstacles have the same 
trajectories in both cases. 

 
Fig. 13 Trajectories for fixed and moving goal 

 
Fig. 14 demonstrates another example of motion planning for 
the case of suddenly moving/stopped obstacle. Figs. 14(a) – 
14(d) illustrate a simulation result by which the robot 
successfully avoid two moving and two static obstacles. As 
usual, the robot exceeds the first moving obstacle at position A’ 
and waits for the second moving obstacle at position C’. Fig. 
14(e) demonstrates that the robot reaches target safely even 
though the second static obstacle abruptly moves when the 
robot approaches it. Fig. 14(f) shows the similar result except 
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that the second moving obstacle unexpectedly stops when it 
near the robot. Clearly, the proposed potential filed immune 
network can avoide moving anf stationary obstacles effectively 
and efficiently. 

 
Fig. 14(a) 

 
Fig. 14(b) 

C1

C2

C

 
Fig. 14(c) 

 
Fig. 14(d) 

stationary obstacle
suddenly moving

 
Fig. 14(e) 

moving obstacle
suddenly stop

 
Fig. 14(f) 

Fig. 14 Trajectories of robot and obstacles for suddenly 
moving/stopped obstacle 

 
6.  CONCLUSIONS 

 
In this paper, a novel potential field immune network has been 
proposed for mobile robot motion planning in a dynamic 
environment in which the target and obstacles may be moving 
at the same time. The moving obstacles approaching the robot 
are not subjected to any restriction in its movements. They can 
vary their velocities and directions at any moment. 
Velocity obstacle method was adopted to determine the 
imminent obstacle whereas the immune network was utilized to 
avoid obstacle and reach goal. Simulation results validate the 
performance and effectiveness of the proposed methods. 
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