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ABSTRACT 

 
This paper introduces a novel method for complex 

number representation. The proposed Redundant 
Complex Binary Number System (RCBNS) is developed 
by combining a Redundant Binary Number and a complex 
number in base (-1+j). Donald [1] and Walter Penny [2,3] 
represented complex numbers using base –j and (-1+j) in 
the classified algorithmic models.  A Redundant Complex 
Binary Number System consists of both real and 
imaginary-radix number systems that form a redundant 
integer digit set.  This system is formed by using complex 
radix of (-1+j) and a digit set of α = 3, where α  assumes 
a value of -3, -2, -1, 0, 1, 2, 3. The arithmetic operations 
of complex numbers with this system treat the real and 
imaginary parts as one unit. The carry-free addition has 
the advantage of Redundancy in number representation in 
the arithmetic operations. Results of the arithmetic 
operations are in the RCBNS form. The two methods for 
conversion from the RCBNS form to the standard binary 
number form have been presented.  In this paper the 
RCBNS reduces the number of steps required to perform 
complex number arithmetic operations, thus enhancing 
the speed.  

 
Keywords: Complex Binary number, Redundant 

Binary Number, Redundant Complex Binary Number 
System, Addition and Subtraction. 

 
1. INTRODUCTION 

 
Algorithms in complex orthogonal transformations, 

correlations, and filtrations are involved in arithmetic 
computations (e.g. geometric analysis in graphics or 
image processing). These applications require efficient 
representations and treatment of complex numbers. In 
today’s computers involving complex numbers, the 
complex operations use the real and imaginary parts 
separately and then accumulate their individual results to 
obtain the final result. For example, the natural way of 
multiplication of two complex numbers requires four real 
multiplications and one real addition and one real 
subtraction. To convert complex number in the RCBNS 
form, the real part and the imaginary part of the given 

number must be treated as one unit. This will increase the 
speed of arithmetic operations due to a decrease in the 
number of steps involved in these operations. 

 
The complex Binary Number System (CBNS) 

method uses a base of (-1+j) instead of a base 2 normally 
used in the Standard Binary Number (SBN). There is a 
unique representation for each complex number in the 
new base of (-1+j). The value of an n-bit binary number in 
the CBNS form with the base (-1+j) can be written in the 
form of a power series as shown below. 
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The coefficients ‘a’ assume a value of 0 or 1. The powers 
of (-1+j) are grouped in a row of 4-bit positions as shown 
in Table 1. Each row labeled as  is generated by 
multiplying the current row by –4. In other words, the 
following expression can be used to generate a row of 4 
bits: (q

iq

)2j 1)1()2(2(0,01,02,03,0,0 jjqqqqJ +−−+== ), 

where )4(*,,1 −=+ JiJi qq . For example, multiplying 
row 0 by -4 generates the 1st row and multiplying the 1st 

row by -4 generates the 2nd row and so on. 
 

 In 1988, T. T. Dao attempted to define specific 
arithmetic operations in radices +/- 4 by improving an 
algorithm to   generate several bits [4].  The focus is on 
the CBNS form where (-1+j) is the minimum   possible   
radix in the   definition   of   CBNS. Table 1 shows the 
weights of in a complex plane and this is closely 
related to the radix -4 Sign Digit (SD) number system. 
Therefore, -4 is an element of the set of the CBNS of 
some power and it is efficient to work with the Redundant 
Binary Sign Digit numbers. The RCBNS is a positional 
number system that has a complex radix and uses a digit 
set {

ij)(-1+

}αα to− that allows for carry free additions. The 
combination of the two algorithms, the redundant binary 
numbers system [4, 5] and the binary number system for 
the complex numbers [1, 2] results in the Redundant 
Complex Binary Number System (RCBNS). 
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Figure 1 shows a block diagram 
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In the next section, the basic p

RCBNS Representation are introduced 
arithmetic operations. 
 

2. REDUNDANT COMPLEX
NUMBER SYSTEM REPRESE

 
The redundancy in the RCBNS rep

radix (-1+j) allows the conversion of any
without any restrictions. Any comp
represented by a row of 4 bits in the rad
the conversion from a binary number to 
form, a range of -3-j3 through 3+j3 has 
representation. A portion of the represent
Table 2. 

 
3. COMPLEX NUMBER CONV

THE TERM OF RCBNS 
 

Conversions of the complex numbe
form is achieved by converting the comp
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 Table 1. Real and imaginary values with radix (-1+j) 

the binary form for the  real and imaginary parts and then 
by using the following steps: 

 of RCBSN is 
 a digit set,  αD

digit set of  
 is restricted to 
 4. Redundancy 
c operations. The 

in the ),..., 01 xx
e shown by the 

 
Step 1: Check the sign of both the real and imaginary 

parts. If each is positive or negative, then for the positive 
numbers place a 0 in front of each of 2-bit digit (e.g. for   
9 =10 01, then 010 and 001), and similarly for the 
negative numbers place 1 in front of each of 2-bit digit 
(e.g. for –9 = -10 01, then 110 and 101).  

 
Step 2: Get 3 bits of each part and combine them 

together with the LSB 3-bit of the imaginary part 
catenated to the 3 bits of real part and then put them in the 
order of .  iq

)2(},...,α  

for the complex 
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en obtaining the 
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er. 
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Figure 1. Block diagram for the proposed algorithm 
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Table 2. Bit representations for a row in 4 bits 

3)1( j+−  
2)1( j+−  

1
 )1( j+− 0)1( j+−   

No 
2 + j2 - j2 -1 + j 1 

-3 –j3 -1 1 1 0 
-2 –j3 0 1 -1 -3 
-1-j3 0 1 -1 -2 
0-j3 0 1 -1 -1 
1-j3 0 1 -1 0 
2-j3 0 1 -1 1 
3-j3 0 1 -1 2 

-3 +j3 0 -1 1 -2 
-2 +j3 0 -1 1 -1 
-1+j3 0 -1 1 0 
0+j3 0 -1 1 1 
1+j3 0 -1 1 2 
2+j3 1 -1 -1 -1 
3+j3 1 -1 -1 0 

-3 –j2 0 1 0 -3 
-2 –j2 0 1 0 -2 
-1-j2 0 1 0 -1 
0-j2 0 1 0 0 
1-j2 0 1 0 1 
2-j2 0 1 0 2 
3-j2 0 1 0 3 

Step 3: Find the equivalent values for each group of 
R and J from Table 3. 
               011 010 001 101 101 101  1 -1-1-1 0q
                q 001 000 000 000  001 001  0 0  1  1 1
 

Step 4: Multiply the positive sign to even rows and   
the negative sign to the odd rows.   
          q    1-1-1-1,         0 0 -1-1      0 1q
 

Finally combine them again in the following order. 
 Use the term [(  

for each q  in the 4-bit row. 
012345 ,,,,,....., qqqqqq

i

]*)4 i
i q−

 
3.1 Reduction of Conversion tables 
 

The four tables generated for the four possible 
combinations of the sign of real and imaginary parts of 
complex numbers can be reduced to only two tables. The   
-/- table can be obtained by changing the sign of the 4-bit 
rows of +/+ table, and vice versa. The same is valid for 
+/- table to -/+ table and vice versa.  

 
 

Step 3: Combine the right three bits of the imaginary 
part to the right three bits of the real part. Repeat the same 
for the next three bits to form   (see example 1). iq

 
There are four tables for the combinations of the sign 

of the real part and the sign of the imaginary part (+/+, +/-
, -/+, -/-). Table 3 shows only the positive sign for both 
the imaginary and real parts. 

 
Step 4: Label a group of 4 bits in the first row as . 

To generate the successive rows, multiply the current row 
by –4 and so on. This results in the change of sign and 
magnitude from one row to the next. Therefore, even 
rows have positive and odd rows have negative signs as 
shown below. (...... ). 

0q

012345 ,,,,, qqqqqq +−+−+−
 
The example below illustrates the conversion of a 

complex binary number to the RCBNS form. The 
conversion of the complex number, (2+j7) to the RCBNS 
form is as follow. 

Table 3. Table of conversion from Binary form to 
RCBNS form in +/+ case 

(R + J) base  10
RCBNS (-1+j),3 

2+j2 -j2 -1+j 1 J R 
S 0-3 S 0-3 S 0-3 S 0-3 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0
0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 1 0 1
0 0 1 0 1 1 0 0 1 0 0 0 1 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1
0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0
0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1
0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1
0 1 1 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0
0 1 1 0 1 0 0 0 1 1 0 1 1 0 1 1 0 1
0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 0 0

 
Step 1: Express numbers in the binary form for 

imaginary and real parts.  
4. ARITHMETIC OPERATION Part 1 (J)     7 = 01 11     7 = 001  011 

Part 2 (R)    2 = 00 10     2 = 000  010  
 Complex numbers expressed in the RCBNS form are 

used as operands to perform arithmetic operations. The 
results of the operation will be in the RCBNS form. An 
example of the addition operation is shown below. In the 
subtraction operation the sign of real and imaginary parts 

Step 2: Get 3 bits of each part and combine them 
together starting with LSB as 3 bits of J and put them 
together with 3 bits of R.  011 010 & q  001 000 0q 1
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of the subtrahend are complemented and then added to the 
minuend. An example of the addition of two complex 
numbers, (9+j11) and (35+j25) expressed in the RCBNS 
form is illustrated below. 

++

3-bit 3-bit3-bit3-bit3-bit 3-bit

2,0*2 q− 1,0*1 q3,0*2 q1,0*1 q− 0,0*1 q3,0*2 q

5-bit 5-bit
0R 0J

                   (b) 

 
First, two complex numbers (9+j11) and (35+j25) are 

converted into the RCBNS form. Then the addition 
operation is performed. The complex number (9+j11) is 
equivalent to (10-1-1 0100 10-10) in the RCBNS form, 
and similarly the complex number (35+j25) is equivalent 
to (0000  010-2  0-112). 
 Figure 2. Conversion diagram from RCBNS to SBN     X           1  0  -1  -1     0   1  0   0      1   0  -1  0              Y           0  0   0   0      0   1  0  -2      0  -1  1  2 The calculation for a row is giving by the following 

expressions.              1  0  -1  -1      0  2  0  -2      1  -1  0  2 1S
  

In some cases the result may have numbers ranging 
from      -6 to 6; in such cases normalization is necessary. 
The process of normalization is as follows: 

)*1()*1()*0()*2( 0,01,02,03,00 qqqqR +−++=

)*0()*1()*2()*2( 0,01,02,03,00 qqqqJ ++−+=  
  

• Normalize the intermediate result to be in the set 
of {-3, -2, -1, 0, 1, 2, and 3}. 

The maximum value of the Real part for one row of 
the RCBNS form is between -12 and 12 
([ )1*3()]1(*3[)]22(*3 ++−−++ jj

)]1(*3[)]2(*3[)]22(*3 jjj +−+

), and the 
maximum value of the Imaginary part for one row            
of RCBNS form is between –15 and 15 
([ −−++  ). This method 
requires 5 bits for the output in the adder unit.  

• Get the final result  S = Normalization + Carry, 
or S= , if  in the range of   –3 to 3. 1S 1S

The above result will be in the RCBNS form. The 
next section discusses the conversion of the RCBNS 
result to an equivalent binary number. 
  

5. CONVERSION FROM RCBNS FORM 
TO BINARY FORM 

For example, in this method, convert the RCBNS 
number )021120201110(  ( 1  is used for -1 and 

2  for -2 for convenience) to SBN form. The result is 
equal to row0 )0211( - 4* 1row )2020( + 

16* row2 )1110(    = 44+j36 where row  0

]0*11*2]2*1[ +++= 1*2[+ j0*11*2 +  and so on for the rest 
of the rows. 

 
The result of the arithmetic operation that is in the 

RCBNS form should be converted back to the standard 
binary number (SBN) form. Two methods are presented 
for the conversion. Both methods produce the final result 
in the 2’s complement form. 
Method 1: In this method split the real and imaginary 
parts of each group (one row) and forward it to two 
dedicated registers. The real number portion is moved 
into R register and the imaginary number portion is 
moved into J register as shown in Figure 2(a), (b). 

 
Method 2: In this method, separate the real and 

imaginary numbers of each digit in a row to have two 
parts, one for real and the other for imaginary. This 
method modifies each row in the form shown 

 and the entire real 

number part goes into register . For each row, 
00,001,012,013,0 ,,, RqJqJqRq ====

R′ 0R′ has 5 

bits and 1R′ have 3 bits, and the imaginary number part 

goes into register J ′ . For each row, has 3 bits and 0J ′

1J ′ has 5 bits. The values for the real and the imaginary 
parts go into the output registers R and J for each row 
of 0R′ , 1R′ , 0J ′ , and 1J ′  where: 

 

2+j2 -j2 -1+j 1

3,0q 2,0q 1,0q 0,0q

0R1RnR

0J1JnJ

 
(a) 

000 JRR −=′ ,      11 RR =′

00 JJ =′ ,                111 RJJ −=′
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Figure 3 shows the block diagram for implementation of 
Method 2 for conversion from the RCBNS form to the 
SBN form. An example of this conversion is shown in 
Figure 4. 

 
 
 
 

  
 6. CONCLUSION 
  
 A method to convert complex numbers to their equivalent 

RCBNS form has been presented. Combining two 
algorithms, the redundant binary numbers system and the 
binary number system for complex numbers, results in the 
Redundant Complex Binary Number System. Operands 
are received in the RCBNS form as inputs to an adder for 
the addition (with the sign changed to the subtrahend 
operation) and the sum results in the RCBNS form. Two 
methods have been presented for the conversion of the 
RCBNS result into the SBN form. The entire process will 
increase the speed of arithmetic operations due to a 
decrease in the number of steps involved. A circuit 
diagram implementation of the arithmetic unit based on 
RCBNS form using FPGA is under progress. 
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Figure 3. Conversion diagram from RCBNS to SBN 
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1R ′′ 0R ′′1J ′′ 0J ′′

1J ′′′ 0R ′′′ 1R ′′ 0R ′′ 1R′

1J ′′′ 0J ′′′ 1J ′′ 0J ′′ 1J ′ 0J ′

R

1R ′′′ 0R ′′′1J ′′′ 0J ′′′
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-1 0-1 -1+1 1    2-0 0 0 -2-0 -1-1 0 1 2-0

       The final result is = [16*(2)-4*(-2) + 4] +j[16*(1)-4*(-4) +(4)] = 44 + j36 
 

Figure 4. Conversion of the final result back to SBN 
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