
Software Development Process Changes in the Telecommunications Industry

John Kevin Doyle
Benedictine University
Lisle, IL 60532 USA

Robert S. Janek
Lucent Technologies, Inc.

Naperville, IL 60540 USA

M. David Long
Tekelec, Inc.

Richardson, TX 75081 USA

INTRODUCTION:

The tremendous changes in the telecommunications busi-
ness in the last several years drove changes in the soft-
ware development processes of telecommunications
equipment providers. We compare changes in these very
large projects, in two companies, with those proposed in
the Theory of Constraints / Critical Chains [1], [2],
Extreme Programming [3], [4], and Agile [5] develop-
ment models.

The 2000s have been a time of significant challenge in
the telecommunications equipment business. Telecom-
munications service providers have excess equipment
capacity. Many are waiting for next generation telephone
switches that will simultaneously lower operating costs
and enable additional revenue generation. The large ser-
vice providers have drastically reduced their capital and
expense purchases. Many small service providers, par-
ticularly the dot-coms, went bankrupt; much of their
equipment is on the secondary market, at a fraction of the
original cost. Thus the equipment market has signifi-
cantly shrunk, and the equipment providers have been
reducing expenses, while continuing to deliver software
and hardware equipment at the high quality level required
by the service providers. This drove many changes in the
software development process. While the process
changes are reported in two telecommunication equip-
ment development organizations, the changes are appli-
cable in any product development organization.

THE BASELINE:

We describe the organizational structure and software
development processes used at Lucent Technologies in
mid-2001. This is then used as a baseline with which we
compare the current processes, at Lucent and at Tekelec.

Baseline organization:
Lucent Technologies was spun off from AT&T in 1996,
as a telecommunications equipment design and manu-
facturing firm. The baseline organization in this paper is
Lucent Technologies’ telephony switching division,
whose primary product at the time was the Lucent Tech-
nologies 5ESS®. By mid-2001, the 5ESS organization

included thousands of developers, testers, project
managers, and others.

The primary organizations involved in the software
development process were development and business.
Development was organized by function, with multiple
departments focused on requirements generation and
maintenance (called systems engineering), on project
management, on software development (design,
development, and unit test), on software construction
(load building), on test environment (planning, delivery,
and maintenance), on integration and system test, and on
process management and other quality-related activities.
Development’s primary external interfaces were to
business and directly to significant customers.

Business was primarily organized into departments
focused on customer regions (e.g., North American
customers) with a small coordination department. These
departments performed what is traditionally viewed as
product management. Their primary external interfaces
were to development and to sales.

Baseline process:
In mid-2001, the software development processes
consisted of Front End, Software Design, Software
Development, Software Construction, Project Manage-
ment, and Test.

In the Front End component, the tasks were Release
Planning, Requirements Generation, Project Commit-
ment, and Project Planning. Release Planning deter-
mined the baseline feature contents of major releases (an
annual release was approximately the maximum that
customers could afford/apply). The release content was
primarily a business decision, informed by initial feature
cost estimates from development. Changes in estimates,
or differences between estimated and actual costs, and
changes in the business priority of various features would
change the targeted feature contents over time. Release
planning also determined the release schedule, staffing
required, a business case, and (sometimes) a customer
offer or response to a customer RFP, RFI or RFQ.

The Requirements Generation activity took the high-level
feature definition, the existing documentation for the
overall system, industry standards, contractual obliga-
tions, regulatory requirements, modification requests

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 3 85ISSN: 1690-4524

targeted for this release in the area of this feature, and
generated and formally reviewed a requirements docu-
ment. Requirements generation was principally
performed by members of system engineering depart-
ments, with review as appropriate from others.

The project management departments performed Project
Commitment and Project Planning. The information
generated by the release planning step was somewhat
abstract – “it should take three people three months to
develop and test this feature”. The Project Commitment
step was to take the abstract planning information for all
features in a project, compare the staffing needs with staff
availability, and build a project network [7] which devel-
oped all the features. In the late 1990s, Critical Chains
planning [2] was introduced, and the committed delivery
date was the end of the project buffer. The Project Plan-
ning activity was to flesh out the project network to a
complete project plan, adding risk management, process
deviations, delivery mechanism planning, and test
environment scheduling. This plan was formally
reviewed, and this formal review often served as a project
kickoff.

In the Software Design component, the tasks were to
develop a High-Level Design Outline and High-Level
Design document. The former was a viewgraph-level
outline of the software design, covering decomposition
into modules, functionality of each module, inter-module
interactions and interactions between the modules and the
system of which the feature was a part. The latter
detailed the information outlined in the former, and was
formally reviewed.

In the Software Development component, the activities
were to Develop, Code Inspect, and Unit Test the
modules. The detailed processes used were specific to
the particular code areas. Formal code inspection was
required. Unit tests were expected to cover every leg of
code. The software design and development was
performed by members of the software development
departments. In telecommunications applications, a
significant proportion of the software is “data” –
customer configurable, recent change, office dependent,
equipment configuration, system generation, etc.

In the Software Construction component, the tasks were
Load-Line Planning, Load Building, Simulator and Labo-
ratory Bring-Up, and Delivery Information Generation.
These activities were performed by members of the Soft-
ware Construction department. In Load-Line Planning,
software construction and “bring-up” resources were
identified, and load building schedules determined,
including code submission and load availability dates. In
Load Building, software submissions from all developers
to a particular load were combined and built, and the
source code control databases updated and maintained.
In Simulator and Laboratory Bring-Up, the executables
were installed on the simulators and laboratories,
problems identified, fixes generated (typically with help
from software developers), fixes installed, “bring-up”
tests run and passed, and the environments made avail-
able for use. Finally, in Delivery Information Genera-

tion, delivery documents and media were generated to
allow transmission of the constructed software to manu-
facturing centers, for physical product production.

In the Project Management component, the activities
were Execution, Change Control, and Project Comple-
tion, and all were performed by members of the Project
Management departments. Project Execution involved
monitoring the project plan, including the network
diagram, staffing plans and reality, and identified and
emergent risks, and taking corrective action as required.
The project management model used was Critical Chains,
so buffer recovery was a principal focus. Change
Control was typically performed by a committee, chaired
by the project manager, which assessed every proposed
change to the project and decided to accept a change
proposal with no changes to the project plan, accept
subject to changes to the project plan, defer, or reject the
change. This always involved obtaining business impact,
resource availability, cost and schedule estimates from
others. Finally, in Project Completion, the project
manager archived the project network and plan (for
comparison in estimation and planning of future projects)
and developed a project retrospective.

The two major groups of activities in the Test component
were Test Environment and Testing. The Test Environ-
ment tasks were Laboratory Planning, Laboratory Engi-
neering and Operations, and Simulator Planning and
Development. The (direct) Testing tasks were Require-
ments Test Planning, Requirement Tests Execution,
Regression Test Planning, Regression Test Execution,
and Problem Report Fix Verification. All of these activi-
ties included hardware, software and data aspects of the
laboratory and simulator environments.

Laboratory Planning involved assessing project needs,
and forecasting and acquiring laboratory equipment. The
Laboratory Engineering and Operations activity config-
ured specific laboratories for use by specific projects
during specific periods, and provided first-level labora-
tory problem resolution. The Simulator Planning and
Development task determined what changes and
enhancements were needed in the simulator environ-
ments, and engineered and maintained specific instances
of the simulators to model specific hardware / software /
data configurations.

Of the direct testing tasks, the Requirements Test
Planning activity designed and developed tests which
would verify all requirements, and planned the detailed
testing schedule, including staff and laboratory/simulator
resources. Regression Test Planning designed and devel-
oped tests which would verify existing feature function-
ality, and planned regression testing schedule, including
staff and laboratory / simulator resources. The Require-
ments Test Execution and Regression Test Execution
activities executed these tests, identified problems (in the
software under test, the laboratory/simulator configura-
tion or implementation, or the tests), resolved the prob-
lems (with assistance from others as appropriate), and re-
executed the tests, repeating this as necessary. The
Problem Report and Fix Verification activity verified

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 386 ISSN: 1690-4524

fixes delivered in the software under test, to problems
which had been identified by development, by customer
service, and by customers.

PROCESS CHANGES IN LUCENT
TECHNOLOGIES:

In addition to the process changes driven by the usual
pursuit of increased efficiency and speed to market, the
significant downturn in the telecommunications equip-
ment market forced further changes. A project with thou-
sands of developers was downsized by an order of
magnitude. The level of process control should be
proportional to the number of people in an organization.
As the number of people decreased, we needed to reengi-
neer these controls and procedures to be appropriate for
the new organization.

Front End/Project Management:
The front-end organization was merged into project
management. All of the activities were project manage-
ment activities, but the sheer size of the team in the 1990s
necessitated two departments. The resultant benefits, in
reduced handoffs and simpler communication, are appar-
ent.

It’s interesting to note the momentum in behavior. After
years of automating to reduce costs, there was still a
tendency to identify significant tool development work to
further automate process checks. This is an effective way
to reduce costs in a growing or stable company. We
contend, however, that when shrinking, an organization
generally needs less controls and more informality. Our
challenge to right-size processes becomes not just to
attack the technical problem, but also to overcome the
mind set momentum that had been pushing in the other
direction for a decade.

For example, databases and tools that produced auto-
mated reports were excellent in supporting an organiza-
tion of hundreds of product managers and thousands of
developers. Filling out forms and populating databases is
a cumbersome way to communicate to a few key people.
In a small organization, a telephone call handoff is more
efficient.

Removing some of these tool steps, for example during
project estimation, has become the new target. Roles
were eliminated so that the product manager hands off
directly to the project manager, who estimates the project.
Similarly, driving action via a myriad of reports has been
discarded and email or phone is used for the handoff.
The tool that sent email automatically to alert dozens of
people of a new feature estimation is no longer helpful.

Estimation of new product features was perhaps the
biggest surprise. With the reduced overall organization
size, and fewer handoffs, one naturally expects faster
execution in development. Estimation was to a large
extent based on ‘Yesterday’s Weather’ [3]. With the
rapid change in the organization size, history was
predicting what turned out to be overestimates of project
duration and cost. Over twenty years, the organization
had built an ability to estimate projects very accurately.

This estimation process needed to be recalibrated to fac-
tor in the significant increase in speed of working with a
smaller team. Subsystems that formerly spanned several
groups or departments were now supported within a sin-
gle work team. The end result was that feature develop-
ment velocity increased significantly.

In a small organization, estimation and commitment
databases can be quite simple. There is no need for tools
connected to these databases, to produce reports or to
help to assure process integrity. However, there are
limits to how much can be shed even if it is no longer
ideal. The commitment process was perhaps the biggest
demonstration of this. A database had been developed to
keep track the dozens of load lines and thousands of
options for customers. With features in progress at all
times, the only way to assure compatibility was to keep
track of these options as soon as they came into existence,
during the commitment process. So if a customer in
Europe was getting a feature that treated Caller Id one
way, and an Asian customer was getting a different
version, the database kept track of the customers and their
options. This way, when the European customer
upgraded from one release to another, we could assure
that the new release wouldn’t deactivate features the
customer had purchased over the years. Also, as a
customer received new features, appropriate regression
testing would be planned. So an options database, begin-
ning at commitment time, was beneficial. With less code
being produced and fewer streams, a simpler database
would have been workable. However, re-architecting this
complex tool for a mature product was infeasible.

A significant process change was the introduction of
Theory of Constraints for project management of devel-
opment [2]. Although underway at the baseline point,
continuous refinement of the implementation has yielded
large gains. Whether applied to a small or large organi-
zation, the benefit in interval, throughput, and control of a
project is evident. Managing buffers, taking advantage of
early finishes from the previous tasks, minimizing multi-
tasking, and having a critical chain with a constraint that
doesn’t bounce from area to area with each new feature,
were large benefits. It continues to be embraced in the
new organizations as well. With 350 to 400 TOC
projects annually, we believe Lucent delivers the largest
number of such projects in the world.

The commitment to quality has not changed, although the
way it is accomplished has changed. Now, a distributed
model is used in which each area is responsible for doing
root cause analysis and driving corrective action. A small
core quality team exists for the purpose of tying these
pieces together and for maintaining ISO 9000/TL 9000
certification. The result is fewer people coordinating and
more people personally taking action to improve or
maintain quality.

Software Development:
As next generation telecommunication product lines were
started during this time, new organizations were created
to support these. Although the staff for these new organi-
zations came from the once large project, it was interest-

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 3 87ISSN: 1690-4524

ing to see how quickly and happily the staff relished their
freedom and abandoned the desire for process controls.
This is understandable: to produce a high quality, on time
project in a large organization, procedures and controls
were needed to allow thousands of developers to success-
fully submit code on the same load line or on a dozen
parallel load lines. With a small team, these same devel-
opers need a simpler process. This supports the Agile
principles that larger teams need heavier methodologies,
as was the case with 5ESS, and that excess methodology
weight is costly, and thereby to be avoided in the smaller
organization [5].

Start ups of new product lines during this period did not
implement the checks and controls in place in the large
organization, choosing face-to-face communication
instead, in line with another Agile principle that this is the
fastest channel for exchanging information [5]. In the
large organization, to make a change in code that affected
data, a tool notified a core set of developers, who each
approved the code prior to submission. The hundreds of
developers in the 1980s and 1990s and constant learning
curves from the influx of new developers made this
necessary. While appropriate when introduced, and still
in use, this tool is now being reevaluated. The balance
between assuring consistency between developers, and
the flexibility and speed to submit code is being
reassessed.

In other cases, the process did not change, but the execu-
tion of the process did. For example, document reviews
and code inspections are still required. With smaller
teams, individual peer reviews have become more preva-
lent. Although years of data show that meetings are more
effective for finding faults (due to the synergy effect), the
team size allows closely working together and individual
reviews have been adequate in more cases. Switch avail-
ability over 99.9999% is still produced in the field.

With thousands of developers, manually monitoring
quality execution (e.g., determining if staff are giving in
to the temptation of skipping a code inspection) became a
large job. A tool was created to make sure a code
inspection record existed before allowing code submis-
sion. But in the new, relatively small organizations, this
can again be handled manually.

As the organization shrunk, considerable training was
needed due to the collapsing of jobs and the learning
curve as staff picked up work. In addition, training was
needed as the team was growing in other regions of the
world. This globalization during a shrinking period
presented managers with significant challenges. Experi-
enced people were training staff in other countries, while
they themselves took on new responsibilities. It became
obvious which tools and processes were the least user
friendly during this time. For example, the volume of
internal help requests for the commitment database
peaked. This was a challenge, because when trying to
maximize product feature content as staff declined, user
interface enhancements to internal tools are low priority.

Software Construction:
We moved away from a central software construction
team. This may seem counter-intuitive, since a central
team eases personnel coverage/backup concerns, and
generally ensures staff and computer utilization is kept
high. However, we decided that a distributed load build-
ing model better met our needs. Each organization
gained flexibility and speed from load building catering
to that specific organization’s needs. This is particularly
beneficial in the next generation organizations as code
development has migrated toward the XP principle of
small, frequent releases [3].

Test:
In the drive for more efficiency, with consequent lower
costs and shorter time to market, another change imple-
mented since the early 2000s was the use of Cross Func-
tional Teams for a development project. The idea was
not new; however, true participation by system testers
and customer technical support personnel has historically
not occurred until the feature arrived at their door. In the
early 2000s, these Cross Functional Teams became a
reality. System testers and customer technical support
members joined with coders and system engineers in the
requirements and design stage for reviews, and began to
write test plans at this early point, supporting an XP
principle [4]. This reduced disconnects late in the
project, and reduced the overall testing effort.

Conclusion:
The resulting 5ESS organization is quicker to release
quality features to meet customer needs. Building on the
years of process and quality management, coupled with
the current market needs, 5ESS is well positioned. The
newer, smaller teams on the next generation of telephony
switches have strong quality and process heritage, and
achieve fast time to market, with smaller processes.

PROCESS CHANGES IN THE TAQUA BUSINESS
UNIT OF TEKELEC:

History and Introduction:
Taqua Systems was founded in 1998 to build a low cost,
compact, Class 5 switch. The number of developers and
testers was small, and venture capital funding was based
on delivering many rapidly developed prototypes. The
software development processes were initially ad hoc. In
2001, the first customers installed switches in small, but
live, central offices. Product quality was as expected for
an initial release. By the end of 2001, due to the
economic climate and its impact on venture capital,
Taqua Systems ran out of money.

In January 2002, Taqua Inc. was recapitalized with new
venture capital, and new leadership was brought in to
improve product quality and delivery performance. The
software development and testing processes needed
dramatic improvements, and the initial focus incorporated
TOC/CC into the organization structure, product
management, and project management. The strategy was
to evolve the processes through practice, and not spend a
lot of effort on process formalism or in process
“meddling” [8]. As DeMarco and Lister [9] observe

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 388 ISSN: 1690-4524

“Voluminous [methodology] documentation is part of the
problem, not part of the solution” and “The total of all
standards imposed should be described in no more than
ten pages”.

The discipline of the development and testing organiza-
tion matured and improved as a result of root cause
analysis and release postmortems. The quality improve-
ments were typically implemented via automated
controls, or by simply communicating to everyone on the
team that we were going to change a particular way of
doing things, rather than by adding additional text to
process documentation. The results were dramatic
improvements in product quality with each subsequent
release as well as dramatically increased development
throughput (eight major releases were delivered in 18
months). The processes as executed were also very
repeatable.

In April 2004, Taqua was acquired by Tekelec, and the
product renamed the Tekelec 7000 Class 5 Switch
(T7000). Using these processes and practices, the T7000
R&D team has produced a 99.999% available Class 5
switch, in service with over 100 customers.

Front End:
Release Planning is managed by the Project Office and
brings input from Engineering (hardware, software, and
systems), Product Line Management (PLM), and Sales,
with PLM the final authority. The release scheduling
targets two or three releases per year, although additional
incremental releases are possible, if sales opportunities
exist.

The release candidates are managed through Release
Candidate forms which capture market requirements,
business opportunity, rough order of magnitude develop-
ment estimates, and an abbreviated business case. These
release candidates are prioritized by PLM for a particular
release, and further estimation is performed.

The product roadmap typically looks two years into the
future. The contents of the roadmap are re-evaluated as
each release is estimated and committed (e.g., to move
unselected features to later releases). The roadmap
primarily includes “larger” market features that would
require the majority of development resources to address.
The market features for a release define the “theme” for a
release.

From an Engineering perspective, the initial release plan-
ning provides a prioritized list of features which need
additional estimation and brainstorming. The list is
initially pared to roughly twice the available development
resources (i.e., if there are fifty candidates, and the first
ten over-commit Engineering by 2×, then these first ten
get additional estimation). The 2× idea is that by
providing better estimation on these items, the final
priority of the features at release commitment may differ.
This is very similar to the XP “planning game” [3], [4].

The final selection of features is matched to the resources
available in development. Engineers then are identified
by name (and skill pool match) and exclusively dedicated
to a feature being developed over the life of requirements,

software development, and testing. This is a TOC/CC
concept [2]. After feature testing, the development team
is available and redeployed to other features in this or
future releases. Some of the developers will follow the
release into technical support, where they will stay for
roughly one year.

Feature progress is tracked at a macro level by the Project
Office (at weekly Core Team meetings) and is project
managed by the responsible software development
Director.

Requirements Generation:
Requirements are produced by Systems Engineering (in
the PLM organization) and use customer interaction and
standards (ITU, Telcordia, IETF, etc.) as input. The
requirements are “tagged.” System level interaction is
typically described in terms of message sequence charts.

Software Design:
Both Data Design and High Level Design are performed
and documented by the feature team as part of High
Level Design (typically via whiteboard presentations and
working discussions). The high level design includes
object definition. Objects are defined by procedural
behavior (a calling feature/service described by a state
machine) or as persistent data (with additional dynamic
attributes). Designs (and their coding) are described via
state machines. The high level designs include message
sequence diagrams and state models. Object definitions,
state machines, states, and events are described in the
high-level design documents.

Software Development:
Data and code are produced at the same time. There are
coding and data modification rules (e.g., all static
variables must be explicitly initialized, new attributes and
enumerations are added to the end of existing structures,
etc.). There are a number of static code checkers /
analyzers in place, which check for problem areas found
in the past. These were developed in-house, by develop-
ers supporting the field.

Code inspection is done through formal meetings. The
inspection is done with a laptop and a projector on a
screen, with the author serving as “reader.” The
moderator also serves as the recorder. Alternatives and
solutions are discussed at the meeting.

White Box testing using a software simulator is done
prior to code inspection. White Box testing is performed
using a software simulation of the T7000, which can run
on any PC (laptop, desktop, at home, etc.). The devel-
oper must assure that his code does “no harm” to the
mainstream. Automated No Harm (regression) testing is
performed prior to approval of code submitted to the
mainstream code base.

Software Construction:
The basic tenet in software construction is “there is one
and only one code stream”. So, as a rule, the next
release’s branch is only created after a release moves to
Controlled Introduction (CI). There have been small
exceptions to this (an earlier than CI branch for the next
release), but the merge back to a single stream occurs as

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 3 89ISSN: 1690-4524

the first order of business when the previous release is
declared CI.

Load build frequency depends on code inflow rates. At
the beginning of a release, there are weekly builds. When
the code submission rate increases, builds are two or at
most three times a week. In some cases, a build (and
associated “no harm” testing) is reserved for a particular
feature. The idea in all cases is to keep the code delta per
build at a low level, to reduce complexity and the likeli-
hood of breakage. This is both a TOC/CC concept [2]
and an XP concept [3].

Load building is automated, with one person supervising
the activity. A full system build takes three hours.
Release notes are automatically generated as part of the
code extraction process, along with the NCSL counts, and
distributed to all engineers.

After the load is built, overnight testing determines a
“stability index.” If the index is reduced (which rarely
happens), all submitting developers are brought in to
determine the cause and implement a fix. All other code
submissions and no harm testing are halted until this is
resolved. This is similar to the Microsoft process
described in Brooks [6].

Test:
The software test management team plans needed test
environments, based on the features on the release road-
map. The resulting plan is implemented by a lab techni-
cian.

Feature tests are reviewed and approved, and placed into
an on-line test management system that is the sole manual
testing tool used by testers in the lab. The test scripts are
written so that it is easy to automate the tests. Some
features utilize 100% automation of their test plans.

During feature test execution, if a test fails, all testing on
that feature or switch halts until the developer finds /
debugs / understands the failure. The philosophy is to not
create a mountain of change requests for a feature under
test (i.e., the testers are not held to an expectation on test
execution speed). The last one across the finish line
(developer or tester) is the one that declares the finish
time. This is the famous “we’re not at the top of the
mountain until Herbie gets here” story from [1] – a
TOC/CC concept.

A new “fast feature team” is being developed, and will
utilize pair-wise development [4] and small features [3],
both XP concepts. The XP “write the test before the
design and coding” concept is also attractive and will be
considered.

Conclusion:
A small, highly-focused development organization is an
ideal setting in which to utilize the principles of the
TOC/CC, XP, and Agile development models. Taqua’s
success in product development, addressing customer
needs, and field quality, shows these models are well
suited for this environment.

CONCLUSIONS:

In both the Lucent organization and in Taqua Systems,
major industry and market changes, coupled with signifi-
cant internal changes, drove changes to the software
development processes. The resulting development
models are surprisingly similar, although one organiza-
tion moved from a less formal to more formal process, to
address needed delivery fidelity and quality improve-
ment, and the other organization in the other direction, to
address changing customer buying levels. In the latter
organization, many process steps were reevaluated to
ensure the original precipitating reasons continued to
apply, and that the steps were still appropriate ways to
address the problems. Many of the changes in both
organizations are consistent with those discussed in the
TOC/CC, XP and Agile development models.

Virginia Satir’s change model [9] posits that change
never proceeds from the old status quo to the new status
quo. Instead, change proceeds from the old status quo to
chaos (induced by some foreign element), then to practice
and integration (induced by some transforming idea),
then to the new status quo. The foreign element can be
an outside force, or the recognition that the world has
changed. This fits exactly the experiences reported in
this paper: business stress drove process changes that are
similar or identical to those proposed in TOC/CC, XP and
Agile. The organizations on which we report are more
productive and energized than before the change.

REFERENCES:

[1] E. M. Goldratt, It’s Not Luck, North River Press,
Great Barrington (1994).

[2] L. P. Leach, Critical Chain Project Management,
Artech House, Boston (2000).

[3] K. Beck and M. Fowler, Planning Extreme
Programming, Addison-Wesley, Boston (2001).

[4] D. H. Steinberg and D. W. Palmer, Extreme Soft-
ware Engineering, a Hands-On Approach, Pear-
son/Prentice Hall, Upper Saddle River (2004).

[5] A. Cockburn, Agile Software Development,
Addison-Wesley, Boston (2002).

[6] F. P. Brooks, Jr., The Mythical Man-Month:
Essays on Software Engineering, Addison-
Wesley, Reading (1995): 90-92.

[7] R. K. Wysocki and R. McGary, Effective Project
Management, 3rd ed., Wiley, Indianapolis (2003).

[8] W. E. Deming, Out of the Crisis, MIT Center for
Advanced Engineering Study, Cambridge (1982).

[9] T. DeMarco and T. Lister, Peopleware:
Productive Projects and Teams, Dorset House,
New York (1987): 116.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 4 - NUMBER 390 ISSN: 1690-4524

	P901391

