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ABSTRACT

Driven by the increasing amount of music available elec-
tronically the need of automatic search and retrieval sys-
tems for music becomes more and more important. In this
paper an algorithm for automatic transcription of poly-
phonic piano music into MIDI data is presented, which
is a very interesting basis for database applications and
music analysis. The first part of the algorithm performs a
note accurate temporal audio segmentation. The resulting
segments are examined to extract the notes played in the
second part. An algorithm for chord separation based on
Independent Subspace Analysis is presented. Finally, the
results are used to build a MIDI file.

Keywords: Music Transcription, Audio Segmentation,
Independent Subspace Analysis

1. INTRODUCTION

Today’s available audio database applications allow to re-
trieve music from a database on the basis of a few notes
sung or hummed ("query by humming") as a very con-
venient human-machine-interface. To perform this task,
a pice of music sung into a microphone is analyzed and
transcribed into a set of notes. The well examined human
vocal tract helps this step to be relatively easy. More dif-
ficult is the side of the database. As many publications in
this field of research show, up to now there is no possibil-
ity to transcribe very different kinds of music into notes
in an automatic way.

Concentrating on polyphonic music played by one instru-
ment, i.e. one intrument playing several notes or chords at
one time, is also an interesting task. For example, a mu-
sician who is composing by playing his instrument, could
use an automatic transcription system to write down his
work.

In this paper a technique of note-accurate temporal au-
dio segmentation and MIDI-file generation is proposed,
which is currently able to extract polyphonic piano
sounds. First, the music is segmented into tone bricks.
This segmentation process can also be the basis for many
other applications, for example in the field of tempo anal-
ysis. After the segmentation, each segment is analyzed
which notes are played. Using a priori knowledge, that
a piano instrument is playing, polyphonic music can be
transcribed. For the separation of chords and an easier
note classification the Independent Subspace Analysis is
used.

Related work can be found for the segmentation process
[1], but also music transcription is an upcoming theme.
An other piano music transcription system is presented in
[2] and general music transcription is discussed in [3].

This paper is organized as follows. After the introduction
the algorithm for note accurate audio segmentation is de-
scribed in section 2. Both features in the time domain and
features in the frequency domain are used. In section 3
the algorithm extracting notes played in each segment is
introduced. At this time it is limited to polyphonic piano
sounds. The generation of MIDI files is described in sec-
tion 4. An approach to separate chords for a better note
classification is presented in section 5. In section 6 results
are discussed. Finally, a concluding summary is given in
section 7.

2. SEGMENTATION INTO NOTE EVENTS

This part of the algorithm shall not be limited to piano
music and is optimized for any audio sources, because
it could be used in other applications, too, where mixed
audio sources are examined. The segmentation into note
events without knowing the kind of instruments playing
has to be done using both features in the time domain and
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features in the frequency domain of the audio signal. For
example, if a piano is playing twice the same note con-
secutively, dealing with the properties in the frequency
domain of the audio signal will give no result. The other
side is a string instrument playing a set of different notes
in one go. Here it is not possible to get significant results
out of the course of the signal power. In the following,
the usage of both frequency and signal power properties
to extract segment boundaries are described.

2.1. Segmentation in the frequency domain

The basis for this processing step is a short time Fourier
transform (STFT), which is performed for windowed and
not overlapped analysis frames. For two consecutive anal-
ysis frames the cross-correlation coefficient of the spec-
trum is calculated. The resulting signal has values near 1
within a note segment and significant lower values mark-
ing segment boundaries, which are extracted by a search
for relative minima. First, the spectrum of the signal is
stored in an array vi of vectors.

vi =











vi,1

vi,2
...

vi,N











; i = 1, · · · ,N (1)

For two consecutive analysis frames the cross-correlation
coefficient φ(i) is calculated.

φ(i) =
N

∑
k=1

vi(k) · vi+1(k)
√

p(i)p(i+1)
; i = 1, · · · ,n−1 (2)

To be independent of the overall signal power, the correla-
tion is normed by the spectral energy p(i) of each analysis
frame.

p(i) = Ei =
N

∑
k=1

vi(k) (3)

The threshold for the decision, whether a relative mini-
mum marks a segment boundary or not, is set adaptive
considering a neighborhood around the minimum. In
Fig. 1 the signal φ(i), the varying threshold and the ex-
tracted segment boundaries are shown. At this step there
may be some false alarms for segment boundaries when
the signal power is too low or noisy, for example when
one tone is decaying into silence. Because of that only
these boundaries where the signal power is higher than a
defined value are kept.

2.2. Segmentation in the time domain

The analysis frames for this step are the same as described
in section 2.1. With Parseval’s theorem the signal power
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Fig. 1. Segmentation using an adaptive threshold

for an analysis frame is calculated by summing up all fre-
quency coefficients. The waveform of the resulting power
signal is smoothed by filters and to detect the beginnings
of note segments, local maxima are searched. To be inde-
pendent of the absolute signal power, first the derivative
d(i) of the power signal is calculated.

d(i) = Ei−Ei+1 =
N

∑
k=1

vi(k)−
N

∑
k=1

vi+1(k); i = 1, · · · ,n−1

(4)
Local maxima within the power signal are now repre-
sented by zero crossings of d(i) from positive to negative
values, which can be easily extracted. A threshold, which
compares the absolute values of the derivative before and
after the zero crossing, is used to decide whether a local
maximum of the power curve represents the beginning of
a new note or not.

At this point it is necessary to take into account that the
maximum of the signal power does not represent the on-
set time. The first part of the audio envelope, the attack
time, has to be estimated. In the preceding surrounding
of the maximum the local minimum is searched, which
marks the actual beginning of the tone and thus a segment
boundary.

2.3. Benchmarking the segmentation

The results achieved in the processing steps described in
sections 2.1 and 2.2 are now merged together using a log-
ical OR-operation. If one segment boundary is detected
by both processes, there may be a little difference in the
detected time. This can obviously be ascribed back to the
imprecision of the attack time estimation. In these cases
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Fig. 2. Trade-off between finding all segments and over-
segmentation

the boundary detected by the segmentation using the cor-
relation analysis is used.

In the segmentation process described above are some pa-
rameters used, whose influence has to be discussed to
achieve good segmentation results. As shown in Fig. 2,
there is a trade off between finding all true segment
boundaries and over segmentation, i.e. finding false pos-
itive results, depending on the application. The solid
line shows the correct number of segments, the dashed
line represents all found segments whereas the dotted line
shows the true segments found. For the task of music tran-
scription, over segmentation is less worse than ignoring
segment boundaries, because the following note extrac-
tion algorithm is able to detect notes sounding over sev-
eral segments. To achieve an optimal set of parameters
for the segmentation, a cost function was defined using
equation 5.

q =
correctsegments
totalsegments

−b ·

(

f oundsegments
correctsegments

−1

)2

(5)

An other important property of a note segmentation algo-
rithm is the time resolution. Perceptual tests have shown,
that with up to 40ms between the onsets of two notes, they
are heard synchronous at the same time. For more than
two notes, this time is getting even longer up to 70ms [4].

3. NOTE EXTRACTION

In this section the note extraction process is described.
Into note events segmented audio streams are input data

for the now following note extraction algorithm.

3.1. Piano Sounds in the frequency domain

In this section, properties of piano sounds in the frequency
domain are discussed, which are used to identify notes
within a segment. First, the fundamental frequencies of
notes played by a piano can be calculated relative to each
other using equation (6).

fi+1 = 2
1
12 fi (6)

Usually, the standard pitch A with its fundamental fre-
quency of fA = 440Hz is used as starting point. The
claviature of a piano has a range of max. 88 half-tones.
This results in a range of possible fundamental frequen-
cies from 27.5Hz to 4186Hz.

The second important aspect is the intensity of the har-
monics of a tone. The intensities of harmonics have a
significant influence to the timbre of a sound. For a reli-
able detection of notes, the harmonics of a tone must be
taken into account as well. The arrangement of the in-
tensities of the harmonics depends on the absolute value
of the fundamental frequency. For fundamental frequen-
cies higher than around the standard pitch A, the power of
each harmonic is lower than the power of the fundamen-
tal frequency and, going to higher frequencies, decreas-
ing. On the other side, for lower fundamental frequen-
cies, the power of the first harmonics may be higher than
the power of the fundamental frequency itself. The rea-
son for this may be found in the construction of a piano
[5]. The length of the strings within a piano is decreasing
from lower notes to higher notes, while the striking po-
sition of the sledge has a constant distance from one end
of the strings. When the striking position relative to the
string length is not constant, the strings are activated to
oscillate in different modes.

3.2. Examining the spectrum

The properties of piano sounds in the frequency domain
described above are used to extract notes. The basis for
this examination is a Fourier transform to get a signal
representation in the frequency domain. Because of the
segmentation of the signal before, it can be assumed that
audio signal is stationary except of the signal power. To
get the highest possible frequency resolution, the Fourier
transform is calculated for the whole segment as one
block. Each five percent at the beginning and at the end
of a segment are not used due to possible segmentation
inaccuracies.

In the next step, the frequency bins resulting out of the
Fourier transform are grouped into sub bands using the
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Fig. 3. Building a list of possibly played notes in the fre-
quency domain

possible fundamental frequencies calculated by equation
6 as center frequency fm. The boundaries for the sub
bands are determined using equations 7.

f1 = 2
1
24 fm, f2 = 2−

1
24 fm (7)

Within each sub band the frequency bin with a power
maximum is searched. Because of the frequency reso-
lution of the Fourier transform the power of a harmonic
may be broadened over several frequency bins. Two ad-
ditional frequency bins at each side are added in order to
loose no power of a harmonic.

The result of this step is a set of power maxima, one max-
imum within each sub band. To be independent of the
loudness of the audio source, a threshold is calculated us-
ing these power maxima. Each maximum, which is higher
than this threshold, is stored in a set of possibly played
notes. Each maximum below this threshold is not used
any more. In Fig. 3 this threshold is represented by the
dashed line.

The most important problem now is the decision, whether
a maximum is the fundamental frequency of a note or
one of its harmonics. To cope with this decision, first
our system was trained with piano music to learn the ar-
rangement of harmonics depending on the fundamental
frequency. Taking the first position in the list of possibly
played notes, the pattern of expected harmonics is com-
pared with the next elements within the list. If an item in
the list has equal or less power than expected, the item is
declared as harmonic and deleted from the list of possi-
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Fig. 4. Examination of consecutive analysis frames to de-
tect notes sounding longer than one segment

bly played notes. This algorithm is done for all remaining
items in the list. At the end, only list items representing
fundamental frequencies of played notes should remain
within this list.

The loundness of a note is determined by adding the
power of the fundamental frequency and a defined num-
ber of harmonics.

4. GENERATING A MIDI FILE

The objective of this paper is to generate a MIDI repre-
sentation out of an audio file. In this case, the instrument
is known as a piano. The following items are necessary to
build a MIDI file:

• Start time and end time

• MIDI note number

• Loudness

The start time and end time of a note are given by the
segment boundaries found by the segmentation process
described in section 2. Due to the temporal segmenta-
tion into single note events, it is possible that one tone
sounds over several segments, whereas other notes start
and stop. The detection of these long sounding notes is
done by an examination of the difference between two
analysis frames in the frequency domain. An example is
given in Fig. 4. Negative values within the difference of
two frames show that the corresponding note decays, even
if the current sub band is a harmonic of an other funda-
mental frequency now.
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The MIDI note value is determined by a look-up table,
where each MIDI note number is assigned to a note on
the claviature [6]. Finally, the loudness of a note is deter-
mined as described in section 3.2 by summing the power
of all identified harmonics to the power of the fundamen-
tal frequency.

5. CHORD SEPARATION USING INDEPENDENT
SUBSPACE ANALYSIS

An other approach to classify notes sounding in chords
is to separate them using Independent Subspace Analy-
sis (ISA) beforehand. The basis for this examination is
the assumption, that all sounding notes within polyphonic
music are statistically independent from each other and
can be separated using this property. A well-known algo-
rithm for signal separation is the Independent Component
Analysis (ICA), which is the basis for the ISA.

5.1. Independent Component Analysis

Assuming that there are n statistically independent au-
dio sources s(t) = [s1(t), · · · ,sn(t)]T and n microphones
m(t) = [m1(t), · · · ,mn(t)]T recording the auditory scene,
the relationship between s(t) and m(t) can be defined us-
ing a mixing matrix A as follows:

m(t) = A · s(t) (8)

In the case that there are the same number of microphones
as signal sources, the separation of statistically indepen-
dent sources performs well. An un-mixing matrix W ≈

A−1 is calculated iteratively to maximize statistic inde-
pendence for the output signals y(t) = [y1(t), · · · ,yn(t)]T .

y(t) = W ·m(t) = W ·A · s(t) (9)

The result of independent components is achieved, when

p(y) =
N

∏
i=1

p(yi) (10)

where p(yi) is the probability density function (PDF) of yi

and p(y) is the joint PDF of y. More detailed descriptions
of the ICA can be found in [7] and especially in [8].

For many applications in the field of audio classification
the ICA is inapplicable because of the number of required
microphones and the unknown number of components,
especially if already recorded data has to be examined.
In this case, both the number of components and the mix-
ing matrix are unknown and in most cases only one audio
stream is available.

5.2. Independent Subspace Analysis

To exceed the limits of the ICA, the Independent Sub-
space Analysis (ISA) is a powerful tool, because it tries to
segregate polyphonic audio sources recorded in one audio
stream into their components. Related work based on In-
dependent Subspace Analysis reports that this algorithm
for separating sound into its components has still difficul-
ties in the sound quality of the resulting components, but
this does not influence the succeeding note classification
presented in this paper.

To perform the ISA, the basis of the input space is
changed before a canonical ICA algorithm is employed.
A one-channel audio stream of size 1×N, which is one
segment after the temporal segmentation in our algorithm,
is first projected onto a new basis using a windowed Short
Time Fourier Transform (STFT) to yield a spectrogram S
of dimension n×m, where n is the number of frequency
bins and m is the number of time slices. The dimension
of this new multidimensional manifold is reduced by per-
forming a Singular Value Decomposition (SVD) on the
covariance matrix C of the input spectrogram.

C = U ·D ·V T (11)

The diagonal matrix D contains the eigenvalues σi of C in
descending order, which are a measurement for the sig-
nificance of the belonging spectral components. For di-
mension reduction, only the first r eigenvalues represent-
ing information up to a threshold Φ are used for the next
steps.

∑r
i=1 σi

∑m
i=1 σi

≥ Φ (12)

In matrix D̃, all eigenvalues σi with i > r of matrix D are
set to zero. By this operation some information is lost,
but this does not affect the designation of this work, the
classification of notes in audio sources. The input spectro-
gram is projected onto this new basis to get a dimension-
reduced input space X of dimension n× r.

X = D̃ ·V T
·ST (13)

This new input space X is used as input data for an ICA,
the inverse W of the mixing matrix of the audio sources
is estimated. This un-mixing matrix is multiplied against
the dimension reduced basis vectors from the spectrogram
projection to get the independent components of the audio
source oriented in time.

F = W ·X ; T = F−1
·S (14)

Finally, individual subspace spectrogramsVi(n) are calcu-
lated out of the inverse of the mixing matrix and the basis
vectors for each separated component.
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Vi(n) = fi · t
T
i ; i = 1, · · · ,r (15)

These spectrograms may be transformed into the time do-
main using an inverse STFT to achieve the independent
components in the time domain, but here the spectro-
grams itselves are examined in the next step.

5.3. Analyzing Segments

One tone played by an instrument consists of the funda-
mental frequency and its harmonics. Usually, the ISA
results in more independent components than simultane-
ously played notes, because not all harmonics are sepa-
rated to the component containing their fundamental fre-
quencies. Some harmonics are separated in components
of their own.

An grouping algorithm tries to estimate which compo-
nents may be merged together to get a fundamental fre-
quency and its harmonics into one component for fur-
ther classification. First, for each component a probability
function pi(n) out of the spectrum fi(n) of each compo-
nent is calculated.

pi(n) =
fi(n)

∑n
j=1 fi( j)

; i = 1, · · · ,r (16)

Now, the Kullback-Leibler divergence KL(pi(n), p j(n))
between all components pi(n) and p j(n) is calculated.

KL(pi(n), p j(n)) =

1
2 ∑

n
pi(n)log

pi(n)

p j(n)
+

1
2 ∑

n
p j(n)log

p j(n)

pi(n)
(17)

If the divergence is smaller than a given threshold, com-
ponents are added together. This is done for all compo-
nents until the divergences between all components are
bigger than the threshold. The result of this algorithm is a
set of components containing single notes consisting of a
fundamental frequency an its harmonics.

In the next step, for each component the frequency bins
are grouped into subbands using possible fundamental
frequencies calculated by equation (18) as center fre-
quency fm, using the standard pitch A with its fundamen-
tal frequency of fA = 440Hz as starting point.

fm+1 = 2
1

12 fm (18)

The boundaries f1 and f2 for the sub bands are determined
using equation (19), and within each sub band the fre-
quency bin with maximum power is searched.

f1 = 2
1
24 fm, f2 = 2−

1
24 fm (19)

a)
Title right positive false positive
Chopin-Nocturnes 71.3 % 36.9 %
Satie-Gymnopedie 71.2 % 10.5 %

b)
Title right positive false positive
Chopin-Nocturnes 67.6 % 19.4 %
Satie-Gymnopedie 70.8 % 10.3 %

Table 1. Results for detected notes
(a) using all segments (b) using segments >500ms

An example of a separation of a chord is given in Fig. 5,
which shows a segment containing two notes played at
the same time. In Fig. 5 a) the segment is presented in
the time domain and in the frequency domain. In the fre-
quency domain, the two notes consisting of fundamen-
tal frequencies and harmonics can be seen. The note
with lower fundamental frequency has a characteristic set
of harmonics, whereas the note with higher fundamental
frequency has one small harmonic in the presented fre-
quency range. In Fig. 5 b) and c) both separated notes are
showed. In the frequency domain can be seen, that the as-
signment of harmonics to fundamental frequencies after
the separation of all statistically independent components
works well.

6. RESULTS

To evaluate the results of the algorithm, piano music from
compact disc recordings was used. The results of the
automatic transcription were compared with hand-crafted
transcriptions. Table 1 (a) shows the results for two pieces
of piano music, no matter how long the segments out of
the segmentation process are. The first one - Chopin’s
Nocturnes - is characterized by a high tempo. Too short
segments can not properly be examined, because the fre-
quency resolution is too low within short segments. This
leeds to a high number of false positive detected notes.
The second one - Satie’s Gymnopedie - is characterized
by lower tempo resulting in longer segments, which can
be better analyzed due to higher frequency resolution. In
table 1 (b) the results for the same pieces of music are
shown if segments shorter than 500ms are neglected. The
number of right detected notes does not change, but the
number of false positive detected notes decreases signif-
icantly for Chopin’s Nocturnes, whereas for the slower
piece of music the results are not changed. Keeping in
mind that very short segments occur due to segmentation
errors, it is suggestive to neglect segments shorter than a
given length.
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Fig. 5. a) Segment with two notes played simultaneously in the time domain and in the frequency domain.
b) and c) Separated notes after grouping of harmonics

7. CONCLUSION

In this paper an algorithm for automatic transcription of
polyphonic piano music into MIDI data is discussed. The
process is divided into two parts. First, the audio stream
is segmented into note events in the time domain. The
second step is the analysis of each segment in the fre-
quency domain to extract which notes are played. Using
the results of both processing steps sufficient data is avail-
able to build a MIDI file. For piano music played by one
instrument this algorithm performs well. Problems arise
when there is background noise or even if there is more
than one instrument playing at one time. A very promis-
ing approach to cope with sound mixes is the Indepen-
dent Subspace Analysis (ISA). The ISA could be used as
a preprocessing step to separate different audio sources
and chords into single notes.
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