
Adaptive Image Restoration and Segmentation Method Using 
Different Neighborhood Sizes 

 
Chengcheng Li and William J. B. Oldham, Senior Member, IEEE 

 
Texas Tech University 

Department of Computer Science 
Texas Tech University, Lubbock, TX, 79409, USA 

 
 

ABSTRACT 
 
The image restoration methods based on the Bayesian’s 
framework and Markov random fields (MRF) have been widely 
used in the image-processing field. The basic idea of all these 
methods is to use calculus of variation and mathematical 
statistics to average or estimate a pixel value by the values of its 
neighbors. After applying this averaging process to the whole 
image a number of times, the noisy pixels, which are abnormal 
values, are filtered out. Based on the Tea-trade model, which 
states that the closer the neighbor, more contribution it makes, 
almost all of these methods use only the nearest four neighbors 
for calculation. In our previous research [1, 2], we extended the 
research on CLRS (image restoration and segmentation by using 
competitive learning) algorithm to enlarge the neighborhood 
size. The results showed that the longer neighborhood range 
could improve or worsen the restoration results. We also found 
that the autocorrelation coefficient was an important factor to 
determine the proper neighborhood size. We then further 
realized that the computational complexity increased 
dramatically along with the enlargement of the neighborhood 
size. This paper is to further the previous research and to discuss 
the tradeoff between the computational complexity and the 
restoration improvement by using longer neighborhood range. 
We used a couple of methods to construct the synthetic images 
with the exact correlation coefficients we want and to determine 
the corresponding neighborhood size. We constructed an image 
with a range of correlation coefficients by blending some 
synthetic images. Then an adaptive method to find the 
correlation coefficients of this image was constructed. We 
restored the image by applying different neighborhood CLRS 
algorithm to different parts of the image according to its 
correlation coefficient. Finally, we applied this adaptive method 
to some real-world images to get improved restoration results 
than by using single neighborhood size. This method can be 
extended virtually on all the methods based on MRF framework 
and result in improved algorithms.  
 
Keywords: Bayesian’s theorem, Markov random field, Gibb’s 
distribution, Glifford Hammersley theorem, clique, competitive 
learning, Cholesky decomposition, Toplitz-matrix. 

  
 

1. INTRODUCTION 
 

Image restoration is usually the first step of the whole image 
processing process. It increases the definition of the image, gets 
rid of the noisy pixels by averaging, threshoulding or applying 
masks, and estimates the distorted or missing part of the image.  

Image segmentation and edge detection can be also counted as 
parts of image restoration process because we cannot restore the 
image by simply averaging the pixel values, which leads to a 
blurred image. Instead, we need to preserve the most important 
information – edges during the averaging process. The pixel 
value averaging and edge preservation processes should be done 
simultaneously during each update of the image.   
 Many researchers based their image restoration 
methods on calculus of variation and mathematical statistics. 
Bayesian’s framework is the foundation of these methods. We 
can model the image as F = (F), where F is the matrix of pixel 
intensities. According to Bayesian’s theorem  
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F can be calculated by a given image g, if P(g|F), P(F) and P(g) 
can be found. When we consider the pixel matrix as a MRF, we 
then can describe it as in Gibb’s form by Clifford_Hammersley 
theorem. Then the problem becomes a minimization problem.  

Geiger and Girosi’s[3] PDAM[4] (parallel and 
deterministic algorithms from MRF’s) first introduced line 
processes and described an image as a triplet F=(F,H,V), where 
H and V correspond to the matrix of horizontal and vertical edge 
elements. Thus, F is referred to as an intensity process, H as 
horizontal line process, and V as vertical line process. Then, the 
problem becomes a minimization problem of the form minF E[(F, 
H, V)| g] according to Gibb’s distribution. 

The assumption that observations lie in an simplified 
MRF leads the computations to be restricted to immediate 
neighborhoods, for example, a pixel fij can only interact with 
fi,j+1, fi,j-1, fi+1,j, and fi-1,j. According to the tea-trade model, the 
closer of a neighbor, more contribution it will make. However, 
the ignorance of the further neighbors can lead to the missing of 
information. Our previous research showed the close relation 
between the autocorrelation coefficient of the image and the 
corresponding neighborhood size for restoration. We concluded 
that we should use the proper neighborhood size for each 
particular image according to the correlation coefficient of the 
image.  

An image usually has a range of autocorrelation 
coefficients on different parts of it. Thus, to construct an adaptive 
method or set the criteria to determine the right neighborhood 
size for different parts of image for restoration is necessary. The 
following sections of this paper are going to discuss this problem 
in detail. 
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2. CLRS ALGORITHM 

 
CLRS method uses the framework mentioned above and 
competitive learning concept, which is based on principle of low-
level mammalian visual system. It deals with image restoration 
and segmentation problems from a more direct and easily 
understandable and acceptable aspect. 

Let g = [gij]mn, denote the m x n matrix corresponding 
to the observed intensity values. Here gij denotes the observed 
intensity value at the (i,j)th point on the lattice. G denotes the 
prior estimates of the image. Assume, now we have a two-layer 
network, with layers numbered as L and M. The priors gij lies in 
layer L and corresponding to each (i, j) in layer M. Intensity 
value at point (i, j) in M denoted by fij represents the posterior 
estimate. Let gmk in the neighborhood in layer L compete to 
update the value fij. In layer M. Contribution of each gij to fij is 
determined by the function C(K,d), where K is the gain 
parameter and d is given by  

mkij gfd −=  
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Normalizing C(K,d) over the neighborhood Γij we have 
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distance between two pixel values is small, the contribution 
function is large, hence, the closest contributing the most. This 
concept is analogous to the leaky learning form of competitive 
learning.  

The update rule is given by the following equation 
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The first term of this equation has been discussed above where 
α  denotes the learning rate. The second term is to smooth the 
discontinuities between the posterior neighbors, which adds the 
line processes onto the image during each update iteration. β is 
the parameter to control the weight of the edges we add. If β is 
too large, the energy function cannot converge; if β is small, it 
will lead to a blurred image. 

The following figure shows a neighborhood size of 
nearest eight pixels. 

 
 

 
Figure 1. Eight-neighbor System 

When we only consider the contribution from the 
immediate neighbors which are the nearest four pixel points (i, j-
1), (i+1, j), (i,j+1), and (i-1,j), El and Ei can be calculated by the 
following formulas.  
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is the line process term, and  
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is the interaction term. The line processes are given by  

|)|tanh( ijfh
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 When we add the contribution from the nearest eight 
neighbors. There are two more line processes s and t.  
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And El and Ei can be calculated by the following formulas. 
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 Thus, the computational complexity increases 
dramaticly along with the enlargement of the neighborhood size. 
During the rest of the paper, we keep the same line processes of 
the eight-neighbor formula and only modify the first term of the 
update equation when the neighborhood size is larger than eight.   
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3. CONSTRUCTION OF SYNTHETIC IMAGES 
 

Convolution mask method 
In our previous study, we used convolution mask method to 
generate the images with the needed correlation coefficient. Here, 
we also use the idea of convolution mask to generate part of the 
synthetic image. The basic idea of convolution mask is the 
following.  

To find the exact relation between correlation 
coefficient and corresponding proper neighborhood size, we need 
to construct an synthetic image with a Toplitz-like[5, 6] 
correlation coefficient matrix. To make the problem more 
explicit, we need to construct a random image with the following 
correlation matrix, where ρ  is the correlation coefficient. 
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cρ  and rρ  are the coefficients of column and row. 

The size of the matrix can be as big as the whole image if we do 
not ignore the coefficient with high powers.  

Let x(i,j) be a pixel of the random image at i,j position 
in a two-dimensional random field. Also, let us assume Toeplitz 
forms for correlation coefficients as 
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The above is the correlation coefficient between x(i,j) 

and x(i+k,j+l) and can be assumed to be the product of 
)(c
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Here, we assume cρ  = rρ .= ρ  If ρ is small 

enough, for example, 0.2, then 
2ρ =0.04 and 

3ρ =0.008. We 

can ignore 
3ρ  and all the coefficients with the power higher 

than 3. To do this, we can compare the restoration results from 
four-neighbor and eight-neighbor CLRS programs without 
considering the contributions from further pixels.  

Now, we know what kind of the random image we 
want; the problem becomes how we can go in retro-direction 
with the coefficient matrix to generate the image. We implement 
the generation of the image by using convolution mask. 

The most elementary combination of the pixels in a 
neighborhood is given by an operation which multiplies each 
pixel in the range of the filter mask with the corresponding 
weighting factor of the mask, adds up the products, and writes 
the result to the position of the center pixel. This operation is 
known as a discrete convolution and is defined as: 
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This equation assumes an odd-sized mask with 
)12()12( +×+ rr  coefficients.  

Let us assume that we perform the convolution line by 
line and from the left to the right. When we apply the 
convolution mask onto one single pixel, the values at all pixels 
positioning above and to the left of this pixel have already 
processed the correlation properties we need by the previous 

computed results. The pixels lower and to the right of the current 
pixel do not have the correlation properties. Consequently, the 
calculated result of the pixel does not have the perfect match of 
the correlation properties as the mask since half of the pixels in 
the mask do not have the desired values and are going to be 
updated right afterwards. This problem is common to all kinds of 
neighborhood operations, not only convolutions. The solution to 
this problem is to apply the mask several times on the original 
images.  

Suppose the correlation coefficient cρ  = rρ .= ρ = 

0.8. The weight of the each neighbor is given by 
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must is 
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 We applied this mask on a random image ten times and 
found the distribution of the pixel values tended to be Gaussian 
and the correlation coefficient mask was in the needed Toplitz 
matrix format.  

 
LU Decomposition method 
The convolution mask works well in generating large correlation 
coefficient image. When working with small correlation 
coefficient, even if we only apply the mask three times, it is hard 
the get ρ  lower than 0.5. So, we need to find another method to 
generate ρ  lower than 0.5.  

X is the column vector on the needed image. The covariance 
is Σ=E[(X-M)(X-M)T], where M is the mean. Then  Σ can be 
further described as Σ=ΓRΓ, where Γ is a diagonal matrix with 

the diagonal elements iiic σ= , and R is the Toplitz-like 

correlation coefficient matrix.  
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An explicit expression of a normal distribution is  

)},(
2

1
exp{

||)2(

1
),( 2

2/12/1
XdMN X −

Σ
=Σ

π
  (17)  

where )()()( 12 MXMXXd T −Σ−= −  
From LU decomposition, we got 

ΓΓ=Σ LU , and 11111 −−−−− ΓΓ=Σ UL  then  
)()()( 11112 MXLUMXXd T −ΓΓ−−= −−−−   (18) 

Since R is a symmetric matrix, L=UT;  Γ is diagonal matrix, 
Γ-1=(Γ-1)T. so,  

)]([)]([)( 11112 MXLMXLXd T −Γ−Γ−= −−−−  (19) 
Let us assume ')(11 XMXL =−Γ −− , then the transfer 

vector 'X is a standard normal vector with zero mean and unit 
variance. Now we can calculate X by 

MXLX +Γ= '     (20) 
When we combine X’s as the columns to an image, this 

image will have the Toplitz-matrix like correlation coefficient 
property on column which is in the vertical direction. This can be 
verified by calculating the correlation matrix S which is defined 
by 

RXLXLEXXES TTT =ΓΓ=ΓΓ== ])')('[(][      (21) 

 To let the image have the needed property on the horizontal 
direction, we can easily follow the above steps except that we 
need to use row vectors instead of column vectors. To combine 
these row and column vectors, we get an image by using 
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MUXXLX +Γ+Γ= 222111 ''    (22) 

Here, X is a matrix (the needed image) rather than a vector. 
Attention, L1 and U2 are not from the same LU decomposition of 
R. For example, if we want to generate an image with 400x512 

pixels, 
'
1X  and 

'
2X are 400x512 matrix with standard normal 

deviates (zero mean and unit variance). L1 is from LU 
decomposition of a 400x400 matrix R1 while U2 is from LU 
decomposition of a 512x512 matrix R2, where R1 and R2 are 
from (21). Γ1, Γ2 and M, which are the standard deviation on 
vertical and horizontal directions and the mean, can be set 
arbitrary. 

We can actually rotate the above matrix X to any directions 
and by adding them together, we can generate an image with the 
needed correlation matrix property on every direction. However, 
since we only need this image to have correlation coefficient 
lower than 0.5 and this image is suggested restoring by the 
nearest four neighbors, only the vertical and horizontal properties 
are necessary.   

By doing LU decomposition to a symmetric matrix, we 
found a direct way to calculate L and U by an equation instead of 
using Cholesky decomposition method.  

If R is a block Toeplitz matrix which is defined above, and 
LU=R, then 
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This result can be easily proved by induction proof.  
 
 

4. ADAPTIVE METHOD 
 
The idea of constructing an adaptive method is to restore the 
images by automatically detecting the correlation coefficient and 
using CLRS algorithm with the corresponding neighborhood size. 
To do this, we need to set the thresholds for using the different 
neighborhood size. Using the synthetic images generated from 
methods mentioned above, we found the best restoration results 
for each correlation coefficient. The details of the relation can be 
found in the following table.  
 
Table1. Correlation Coefficient and Corresponding 
Neighborhood Size for Image Restoration by CLRS Algorithm 
Average correlation 
coefficient 

Neighborhood size for best 
restoration result 

<=0.5 for 1-pixel away 
horizontally and vertically 

Nearest 4 neighbors 
horizontally and vertically 

<=0.7 for 1-pixel away and  
>=0.5 for moving 1-pixel 
away in 45 and 135-degree 
directions 

Nearest 8 neighbors in all  
directions 

<=0.7 for 1-pixel away 
horizontally and vertically and  
>=0.5 for 2-pixel away 
horizontally and vertically 
while the 45 and 135-degree 
correlation coefficient is 
below 0.2 

Nearest 8 neighbors in the 
horizontal and vertical 
directions 

<=0.8 for 1-pixel away and 
>=0.5 for 2-pixel away 
horizontally and vertically, 
and >=0.5 for 2-pixel away in 
45 and 135-degree directions 

Nearest 24 neighbors in all  
directions 

>=0.8 for 1-pixel away and 
>=0.5 for 3-pixel away 
horizontally and vertically, 
and >=0.5 for 3-pixel away in 
45 and 135-degree directions. 

Nearest 48 neighbors in all 
directions. 

 
 A real-world image usually has a range of correlation 
coefficients, so we cannot just apply the restoration algorithm on 
an image with single neighborhood size. We actually need a 
robotic and adaptive method, which can apply different 
neighborhood range algorithms to different regions on the image.  
The solution to this problem is to divide the whole images into 
regions according to the correlation coefficient. The size of the 
region is user defined and the correlation coefficient of the region 
stored to an array. During the restoration process, the regions are 
restored separately and the different CLRS algorithms are called 
by the values obtained from the correlation coefficient array. To 
test the result of this adaptive method, we did experiment on a 
synthetic image. The image (Figure 2.) is composed of five 
different images randomly which are the images with the 
different correlation coefficients described in Table 1. And then, 
we added ome percent of noise to Figure 1. After that, we 
restored the image by the nearest four-neighbor, nearest eight-
neighbor and the adaptive CLRS algorithms. The restoration 
results cannot be differentiated by naked eyes. So we compared 
the results numerically.   
 
 

 
 

 
5. RESULTS 

 
Results on synthetic image 
 

 
Figure 2.  Synthetic Image Composed by Five Images with 
Correlation Coefficients Shown in Table 1. 
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Figure 3.  Restored by Nearest Four-neighbor Program 

 
Figure 4. Restored by Nearest Eight-neighbor Program 
 

 
Figure 5. Restored by Adaptive CLRS Program 

 
 
 
 
 
 
 

Table 2. Comparison between Figure 1. and Figure 2. 

 
Table 3. Comparison of Figure 1. and Figure 3. 

 
Table 4. Comparison between Figure 1. and Figure 4. 

 
Table 5. Comparison between Figure 1. and Figure 5. 

 
From Figure 3, 4, 5 and  Table 3, 4 and 5, we see that with 
different neighborhood size, the CLRS algorithm does a good job 
in getting rid of the noises on the image. The four-neighbor 
program reduces the pixel value difference from 7.3 to 5.5. Some 
regions with low correlation coefficient are too much averaged 
by the nearest eight-neighbor program, and the image looks more 
blurred than the result from using the four-neighbor program, so 
the overall pixel value difference does not show improvement. 
By using the adaptive method, the image does not show too 
much blur as eight-neighbor program does, and the average pixel 
value difference is reduced to 5.1, which is about eight percent 
improvement from using four neighbors and fourteen percent 
improvement from using eight neighbors.  
 
Results on real-world images 
There is a problem to test the restoration result by using the 
synthetic image method mentioned above. Since the whole image 
is composed by different image squares randomly. The 
boundaries of the different images should be regarded as edges 
and there is absolutely no relation between the pixels belonged to 
different image squares. However, when we restore the pixels on 
the boundaries, we counted the contributions from pixels in 
different image squares, and this is wrong. This causes the blur 
of the boundaries and can extend to the whole image after 
iterations.  To solve this boundary problem, we can either ignore 
the restoration of the pixels which are close to the boundaries or 
set small value to the size of the regions for calling different 
CLRS algorithms. This problem does not exist in the real-world 
images because a real-world image usually has different 
correlation coefficients distributed on the image and the pixels in 
the neighborhood has somehow relations to each other.  The 
restoration results from a real-world image can be seen in the 
following figures. 
  
 
 

Original 
Image 

Noisy 
Image 

Sum of the squared 
difference 

Average Pixel 
Value Difference 

Figure 2. 1% noise 6409321 7.28011 

Original 
Image 

Restored 
Image 

Sum of the squared 
pixel difference 

Average Pixel 
Value Difference 

Figure 2. Figure 3. 3695959 5.477226 

α β κ Iterations 
0.2 0.03 5 20 

Original 
Image 

Restored 
Image 

Sum of the 
difference square 

Average Pixel 
Value Difference 

Figure 2. Figure 4. 4105273       5.830952 
α β κ Iterations  

0.2 0.03 5 15 

Original 
Image 

Restored 
Image 

Sum of the 
squared difference 

Average Pixel 
Value Difference 

Figure 
2. 

Figure 5. 3220269       5.099020 

α β κ Iterations 
0.2 0.03 5 15 
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Figure 6. Noisy Lubbock Image 
 

Figure 7. Restored by Nearest Four-neighbor Program 
 

Figure 8. Restored by Nearest Eight-neighbor Program 

Figure 9. Restored by the Adaptive Method 
Figure 6. is a noisy image of Lubbock. It has all the 

needed correlation coefficients mentioned in Table 1. except for 
the third one, which needs to be restored by the nearest eight 
vertical and horizontal neighbors. Figure 7. and Figure 8. show 
the restoration results by using the nearest four and eight-
neighbor CLRS algorithms respectively. The noises are 
averaged out better by using the eight-neighbor program because 
of the contributions from more neighbors. On the other hand, the 
details are also blurred by the eight-neighbor program. Figure 9., 
which uses the adaptive method, shows better noise reduction 
result on the background and the sky because of the high 
correlation coefficient there. It also shows clearer details 
 

6. CONCLUSIONS 
 

Different neighborhood size can improve or worsen the 
restoration results. The autocorrelation coefficient is an 
important factor to determine the proper neighborhood size for 
image restoration. Based on this assumption, we developed an 
adaptive method, which uses the CLRS algorithm, to determine 
the correlation coefficients for different regions on the same 
image so that we could maximize the restoration results by using 
the proper neighborhood size. The adaptive method shows better 
restoration results than the common used nearest four and eight-
neighbor methods. This conclusion is based on experimenting 
on both synthetic and real-world images.  
 Theoretically, this adaptive method can be extended to 
all the image restoration methods, which are based on MRF and 
Baysian’s framework.  
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