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ABSTRACT

The image restoration methods based on the Bayesian's
framework and Markov random fields (MRF) have been widely
used in the image-processing field. The basic idea of all these
methods is to use calculus of variation and mathematical
statistics to average or estimate a pixel value by the values of its
neighbors. After applying this averaging process to the whole
image a number of times, the noisy pixels, which are abnormal
values, are filtered out. Based on the Tea-trade model, which
states that the closer the neighbor, more contribution it makes,
almost all of these methods use only the nearest four neighbors
for calculation. In our previous research [1, 2], we extended the
research on CLRS (image restoration and segmentation by using
competitive learning) algorithm to enlarge the neighborhood
size. The results showed that the longer neighborhood range
could improve or worsen the restoration results. We also found
that the autocorrelation coefficient was an important factor to
determine the proper neighborhood size. We then further
realized that the computational complexity increased
dramatically along with the enlargement of the neighborhood
size. This paper is to further the previous research and to discuss
the tradeoff between the computational complexity and the
restoration improvement by using longer neighborhood range.
We used a couple of methods to construct the synthetic images
with the exact correlation coefficients we want and to determine
the corresponding neighborhood size. We constructed an image
with a range of correlation coefficients by blending some
synthetic images. Then an adaptive method to find the
correlation coefficients of this image was constructed. We
restored the image by applying different neighborhood CLRS
algorithm to different parts of the image according to its
correlation coefficient. Finally, we applied this adaptive method
to some real-world images to get improved restoration results
than by using single neighborhood size. This method can be
extended virtually on all the methods based on MRF framework
and result in improved algorithms.

Keywords. Bayesian's theorem, Markov random field, Gibb's
distribution, Glifford Hammersley theorem, clique, competitive
learning, Cholesky decomposition, Toplitz-matrix.

1. INTRODUCTION

Image restoration is usually the first step of the whole image
processing process. It increases the definition of the image, gets
rid of the noisy pixels by averaging, threshoulding or applying
masks, and estimates the distorted or missing part of the image.
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Image segmentation and edge detection can be also counted as
parts of image restoration process because we cannot restore the
image by simply averaging the pixel values, which leads to a
blurred image. Instead, we need to preserve the most important
information — edges during the averaging process. The pixel
value averaging and edge preservation processes should be done
simultaneously during each update of the image.

Many researchers based their image restoration
methods on calculus of variation and mathematical statistics.
Bayesian's framework is the foundation of these methods. We
can model the image as F = (F), where F is the matrix of pixel
intensities. According to Bayesian's theorem

P(g | F)P(F
P(F lg)= (glp(g))( ) ()

F can be calculated by a given image g, if P(g|F), P(F) and P(g)
can be found. When we consider the pixel matrix as a MRF, we
then can describe it as in Gibb's form by Clifford Hammersley
theorem. Then the problem becomes a minimization problem.

Geiger and Girosi's[3] PDAM[4] (paralel and
deterministic agorithms from MRF's) first introduced line
processes and described an image as a triplet F=(F,H,V), where
H and V correspond to the matrix of horizontal and vertical edge
edements. Thus, F is referred to as an intensity process, H as
horizontal line process, and V as vertical line process. Then, the
problem becomes a minimization problem of the form ming E[(F,
H, V)| g] according to Gibb's distribution.

The assumption that observations lie in an simplified
MRF leads the computations to be restricted to immediate
neighborhoods, for example, a pixel f; can only interact with
fijen fij fivrj, @nd figj. According to the tea-trade model, the
closer of a neighbor, more contribution it will make. However,
the ignorance of the further neighbors can lead to the missing of
information. Our previous research showed the close relation
between the autocorrelation coefficient of the image and the
corresponding neighborhood size for restoration. We concluded
that we should use the proper neighborhood size for each
particular image according to the correlation coefficient of the
image.

An image usuadly has a range of autocorrelation
coefficients on different parts of it. Thus, to construct an adaptive
method or set the criteria to determine the right neighborhood
size for different parts of image for restoration is necessary. The
following sections of this paper are going to discuss this problem
in detail.
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2. CLRSALGORITHM

CLRS method uses the framework mentioned above and
competitive learning concept, which is based on principle of low-
level mammalian visual system. It deals with image restoration
and segmentation problems from a more direct and easily
understandabl e and acceptabl e aspect.

Let g = [gij]mn, denote the m x n matrix corresponding
to the observed intensity values. Here g;; denotes the observed
intensity value at the (i,j)th point on the lattice. G denotes the
prior estimates of the image. Assume, now we have a two-layer
network, with layers numbered as L and M. The priors g; liesin
layer L and corresponding to each (i, j) in layer M. Intensity
value at point (i, j) in M denoted by f;; represents the posterior
estimate. Let gy in the neighborhood in layer L compete to
update the value fij. In layer M. Contribution of each g; to fj; is
determined by the function C(K.,d), where K is the gain
parameter and d is given by

d=1f;~0gn (mk)Or; 2

and
C(K,d) =@/ 3
Normalizing C(K,d) over the neighborhood I"ij we have
o e—d?/(zkz)
/\[(l,]),(m,k),K] = (4)
(@i, 1).K]

where ¥(i, j),K] = e 9°/K) | As a result, when d, the

distance between two pixel values is smal, the contribution
function is large, hence, the closest contributing the most. This
concept is analogous to the leaky learning form of competitive
learning.

The update rule is given by the following equation

ofy = ar%k/\((i,j),(m,k)-K)(gmk - fij)

0E OE;
I [ 5
A G " ar )
J 1)
The first term of this equation has been discussed above where
a denotes the learning rate. The second term is to smooth the
discontinuities between the posterior neighbors, which adds the
line processes onto the image during each update iteration. B is
the parameter to control the weight of the edges we add. If B is
too large, the energy function cannot converge; if B is small, it
will lead to a blurred image.
The following figure shows a neighborhood size of
nearest eight pixels.

ij-1 151

i-13-1

h ij | i+1j

E i+l 3 +15+1

i-14+1

Figure 1. Eight-neighbor System
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When we only consider the contribution from the
immediate neighbors which are the nearest four pixel points (i, j-
1), (i+1, j), (i,j+1), and (i-1,j), E and E; can be calculated by the
following formulas.

E-Z(f,l—ljl @-h)+L,20H ©
6
2=y, @) L 2y
isthe line process term, and
E=lenZh i jaa*t oDV Vieg, j
2 2
IR AR Y Y )T g Vi Vi )]
]

2 2
RV o TS e N Rl PN DA Gl R e IS R FE T D
Hln Zhyj AR+, 2y @)
is the interaction term. The line processes are given by
_ h
hyj =tanh(Cp, A" f;; ) @®)

\

When we add the contribution from the nearest eight
neighbors. There are two more line processes sand t.

s; = tanh(Cg IASfij b, &=f-f,,, (0

ij
t
tj =tohC A D, A= —-f . @
And E, and E; can be calculated by the following formulas.

E =2 (f, -, a-h)+L, 2h
() @) LDy,

i 11 L j (12)
LIRS PR NCERRENIpIL!
EDNCTER TN Y- 1)L

& zlchX'\,j'\,jﬂ” Z"| Vit +|15251,js1+1,j 4% et Z"| Vil )+
5 2
FIneh IO Ragj ~j Y TS T S Ty Tl

AN Vg Vg, S TS 4,27

2
+ ZV [(lV J+lh h+l,] =5, ~Sewjun 7t taja)

AV Mg S S, _ti,j—l_ti+il,j—2)2]
(13)

MK (G I e I e )
g g ja N ViV e, j—2)2]
+ItZti,j[(l_tiﬁl_,j—l_h,j “Hagj Vi "Vija TS TS
+(l‘ti—1j+1‘h -1 +1‘k5 J M Vi _Si—Ljﬂ_Si,j—z)Z]

H R Ay 1+, 2V (0 1 TS () 1+ 8 ()

Thus, the computational complexity increases
dramaticly along with the enlargement of the neighborhood size.
During the rest of the paper, we keep the same line processes of

the eight-neighbor formula and only modify the first term of the
update equation when the neighborhood size is larger than eight.
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3. CONSTRUCTION OF SYNTHETIC IMAGES

Convolution mask method

In our previous study, we used convolution mask method to
generate the images with the needed correlation coefficient. Here,
we also use the idea of convolution mask to generate part of the
synthetic image. The basic idea of convolution mask is the
following.

To find the exact relation between correlation
coefficient and corresponding proper neighborhood size, we need
to construct an synthetic image with a Toplitz-likeg5, 6]
correlation coefficient matrix. To make the problem more
explicit, we need to construct a random image with the following
correlation matrix, where O is the correlation coefficient.

2
pf
(14)
PP P PP
R=|- p p. 1 p p°
PP B PP
pz

P, and O, are the coefficients of column and row.

The size of the matrix can be as big as the whole image if we do
not ignore the coefficient with high powers.

Let x(i,j) be apixel of the random image at i,j position
in a two-dimensional random field. Also, let us assume Toeplitz
forms for correlation coefficients as

AIX(, §) x( +k, j+1] = o p") (15)
The above is the correlation coefficient between x(i,j)

and x(i+k,j+l) and can be assumed to be the product of plﬁc) and

(r)
2
Here, we assume o, = 0, = PO If O is smdl
enough, for example, 0.2, then ,02 =0.04 and ,03 =0.008. We

can ignore p3 and al the coefficients with the power higher

than 3. To do this, we can compare the restoration results from
four-neighbor and eight-neighbor CLRS programs without
considering the contributions from further pixels.

Now, we know what kind of the random image we
want; the problem becomes how we can go in retro-direction
with the coefficient matrix to generate the image. We implement
the generation of the image by using convol ution mask.

The most elementary combination of the pixels in a
neighborhood is given by an operation which multiplies each
pixel in the range of the filter mask with the corresponding
weighting factor of the mask, adds up the products, and writes
the result to the position of the center pixel. This operation is
known as a discrete convol ution and is defined as:

G'"“ = Zr: i Hm‘n‘Gm—m‘,n—n‘ = i zr: H—m‘,—n‘Gm+m‘,n+n' (16)

This equation assumes an odd-sized mask with
(2r +) x (2r +1) coefficients.

Let us assume that we perform the convolution line by
line and from the left to the right. When we apply the
convolution mask onto one single pixel, the values at all pixels
positioning above and to the left of this pixel have already
processed the correlation properties we need by the previous
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computed results. The pixels lower and to the right of the current
pixel do not have the correlation properties. Conseguently, the
calculated result of the pixel does not have the perfect match of
the correlation properties as the mask since half of the pixelsin
the mask do not have the desired values and are going to be
updated right afterwards. This problem is common to all kinds of
neighborhood operations, not only convolutions. The solution to
this problem is to apply the mask severa times on the original
images.

Suppose the correlation coefficient 0, = 0, .= 0=
0.8. The weight of the each neighbor is given by

(K+)

Weight = Pkl Then
(K+)
k.l

0.111 0139 0111
0139 0 0139
0.111 0.139 0.111

We applied this mask on a random image ten times and
found the distribution of the pixel values tended to be Gaussian
and the correlation coefficient mask was in the needed Toplitz
matrix format.

the convolution

must is

L U Decomposition method
The convolution mask works well in generating large correlation
coefficient image. When working with small correlation
coefficient, even if we only apply the mask three times, it is hard
theget O lower than 0.5. So, we need to find another method to
generate O lower than 0.5.

X is the column vector on the needed image. The covariance
is Z=E[(X-M)(X-M)"], where M is the mean. Then X can be
further described as Z=I'RI", where I' is a diagonal matrix with

the diagonal elements c; =0, , and R is the Toplitz-like
correlation coefficient matrix.

1 P = Pn
R= /0'12 1
Pr ol

An explicit expression of a normal distributionis

1 1
N,(M,>)=——————exp{-=d*(X)}, 17
x (M, 2) 2 12 o > (X)}
where d*(X) = (X -M)"ZH(X -M)

From LU decomposition, we got

2=TLUl ,and =" =r LU 1 * then

d2(X)==(X-M)"T UL (X -M) (18)

Since R is a symmetric matrix, L=U"; ris diagonal matrix,
=Y. so,

d*(X) =L (X -M)"[LTH(X-M)] (19

Let us assume LT (X -M)=X', then the transfer
vector X'is a standard normal vector with zero mean and unit
variance. Now we can calculate X by

X =L X+M (20)

When we combine X's as the columns to an image, this
image will have the Toplitz-matrix like correlation coefficient
property on column which isin the vertical direction. This can be
verified by calculating the correlation matrix S which is defined
by

S=E[XX"]=E[(LTX")(LFX)"]=ITT =R (21)

To let the image have the needed property on the horizontal
direction, we can easily follow the above steps except that we
need to use row vectors instead of column vectors. To combine
these row and column vectors, we get an image by using
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X=r LX+LX,U,+M (22)

Here, X is a matrix (the needed image) rather than a vector.
Attention, L, and U, are not from the same LU decomposition of
R. For example, if we want to generate an image with 400x512

pixels, X, and X, are 400x512 matrix with standard normal

deviates (zero mean and unit variance). L; is from LU
decomposition of a 400x400 matrix R; while U, is from LU
decomposition of a 512x512 matrix R,, where R; and R, are
from (21). 'y, ', and M, which are the standard deviation on
vertical and horizontal directions and the mean, can be set
arbitrary.

We can actually rotate the above matrix X to any directions
and by adding them together, we can generate an image with the
needed correlation matrix property on every direction. However,
since we only need this image to have correlation coefficient
lower than 0.5 and this image is suggested restoring by the
nearest four neighbors, only the vertical and horizontal properties
are necessary.

By doing LU decomposition to a symmetric matrix, we
found a direct way to calculate L and U by an equation instead of
using Cholesky decomposition method.

If Risablock Toeplitz matrix which is defined above, and
LU=R, then

0 0 0

1
P 1-p° 0 | (2

0
L=| p* pJ1-p? Ji1-p% - 0
pn—l pn—2 [1_ p2 pn—3 1_p2 [1_p2

This result can be easily proved by induction proof.

4. ADAPTIVE METHOD

The idea of constructing an adaptive method is to restore the
images by automatically detecting the correlation coefficient and
using CLRS algorithm with the corresponding neighborhood size.
To do this, we need to set the thresholds for using the different
neighborhood size. Using the synthetic images generated from
methods mentioned above, we found the best restoration results
for each correlation coefficient. The details of the relation can be
found in the following table.

Tablel. Correlation  Coefficient and  Corresponding
Neighborhood Size for Image Restoration by CLRS Algorithm

>=0.8 for 1-pixel away and
>=0.5 for 3-pixel away
horizontally and vertically,
and >=0.5 for 3-pixel away in
45 and 135-degree directions.

Nearest 48 neighbors in all
directions.

Average correlation | Neighborhood size for best
coefficient restoration result
<=05 for 1-pixel away | Nearest 4 neighbors

horizontally and vertically

horizontally and vertically

<=0.7 for 1l-pixel away and
>=0.5 for moving 1-pixel
away in 45 and 135-degree
directions

Nearest 8 neighbors in all
directions

<=0.7 for 1-pixel away
horizontally and vertically and
>=05 for 2-pixel away

horizontally and vertically
while the 45 and 135-degree

Nearest 8 neighbors in the
horizontal and vertical
directions

correlation  coefficient  is

below 0.2

<=0.8 for 1l-pixel away and | Nearest 24 neighbors in all
>=05 for 2-pixel away | directions

horizontally and vertically,
and >=0.5 for 2-pixel away in
45 and 135-degree directions
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A real-world image usually has a range of correlation
coefficients, so we cannot just apply the restoration algorithm on
an image with single neighborhood size. We actually need a
robotic and adaptive method, which can apply different
neighborhood range a gorithms to different regions on the image.
The solution to this problem is to divide the whole images into
regions according to the correlation coefficient. The size of the
region is user defined and the correlation coefficient of the region
stored to an array. During the restoration process, the regions are
restored separately and the different CLRS algorithms are called
by the values obtained from the correlation coefficient array. To
test the result of this adaptive method, we did experiment on a
synthetic image. The image (Figure 2.) is composed of five
different images randomly which are the images with the
different correlation coefficients described in Table 1. And then,
we added ome percent of noise to Figure 1. After that, we
restored the image by the nearest four-neighbor, nearest eight-
neighbor and the adaptive CLRS algorithms. The restoration
results cannot be differentiated by naked eyes. So we compared
the results numerically.

5.RESULTS

Results on synthetic image

Figure 2. Synthetic Image Composed by Five Images with
Correlation Coefficients Shownin Table 1.
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Table 2. Comparison between Figure 1. and Figure 2.

Figure 4. Restored by Nearest Eight-neighbor Program

Figure 5. Restored by Adaptive CLRS Program
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Original Noisy | Sum of thesquared | Average Pixel
Image Image difference Value Difference

Figure2. | 1% noise 6409321 7.28011
Table 3. Comparison of Figure 1. and Figure 3.

Original Restored | Sum of the squared | Average Pixel
Image Image pixel difference Value Difference

Figure2. | Figure3. 3695959 5.477226
a B K Iterations
0.2 0.03 5 20
Table 4. Comparison between Figure 1. and Figure 4.
Original Restored Sum of the Average Pixel
: . Image Image difference square | Value Difference
Figure 3. Restored by Nearest Four-neighbor Program
Figure 2. Figure 4. 4105273 5.830952
o B K Iterations
0.2 0.03 5 15
Table 5. Comparison between Figure 1. and Figure 5.

Original | Restored Sum of the Average Pixel
Image Image squared difference | Vaue Difference
Figure Figure5. 3220269 5.099020

2.
a B K Iterations
0.2 0.03 5 15

From Figure 3, 4, 5 and Table 3, 4 and 5, we see that with
different neighborhood size, the CLRS algorithm does a good job
in getting rid of the noises on the image. The four-neighbor
program reduces the pixel value difference from 7.3 to 5.5. Some
regions with low correlation coefficient are too much averaged
by the nearest eight-neighbor program, and the image looks more
blurred than the result from using the four-neighbor program, so
the overall pixel value difference does not show improvement.
By using the adaptive method, the image does not show too
much blur as eight-neighbor program does, and the average pixel
value difference is reduced to 5.1, which is about eight percent
improvement from using four neighbors and fourteen percent
improvement from using eight neighbors.

Results on real-world images

There is a problem to test the restoration result by using the
synthetic image method mentioned above. Since the wholeimage
is composed by different image squares randomly. The
boundaries of the different images should be regarded as edges
and there is absolutely no relation between the pixels belonged to
different image squares. However, when we restore the pixels on
the boundaries, we counted the contributions from pixels in
different image squares, and this is wrong. This causes the blur
of the boundaries and can extend to the whole image after
iterations. To solve this boundary problem, we can either ignore
the restoration of the pixels which are close to the boundaries or
set small value to the size of the regions for calling different
CLRS agorithms. This problem does not exist in the real-world
images because a rea-world image usualy has different
correlation coefficients distributed on the image and the pixelsin
the neighborhood has somehow relations to each other. The
restoration results from a real-world image can be seen in the
following figures.
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Figure 7. Restored by Nearest Four-neighbor Program

Figure 8. Restored by Nearest Eight-neighbor Program

Figure 9. Restored by the Adaptive Method
Figure 6. is a noisy image of Lubbock. It has all the
needed correlation coefficients mentioned in Table 1. except for
the third one, which needs to be restored by the nearest eight
vertical and horizontal neighbors. Figure 7. and Figure 8. show
the restoration results by using the nearest four and eight-
neighbor CLRS algorithms respectively. The noises are
averaged out better by using the eight-neighbor program because
of the contributions from more neighbors. On the other hand, the
details are also blurred by the eight-neighbor program. Figure 9.,
which uses the adaptive method, shows better noise reduction
result on the background and the sky because of the high
correlation coefficient there. It also shows clearer details

6. CONCLUSIONS

Different neighborhood size can improve or worsen the
restoration results. The autocorrelation coefficient is an
important factor to determine the proper neighborhood size for
image restoration. Based on this assumption, we developed an
adaptive method, which uses the CLRS algorithm, to determine
the correlation coefficients for different regions on the same
image so that we could maximize the restoration results by using
the proper neighborhood size. The adaptive method shows better
restoration results than the common used nearest four and eight-
neighbor methods. This conclusion is based on experimenting
on both synthetic and real-world images.

Theoretically, this adaptive method can be extended to
al the image restoration methods, which are based on MRF and
Baysian's framework.
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