

Experimental and Theoretical Analysis of Storage Friendly TCP Performance in

Distributed Storage Area Network

Suresh Muknahallipatna, Gayathri Sivasankaran, Joseph Miles, Timothy Brothers and Nagapramod Mandagere

Department of Electrical and Computer Engineering, University of Wyoming, Laramie, WY – 82071, USA

Joseph L. White and Howard Johnson

Brocade Communications Systems. Inc., San Jose, CA – 95110, USA

ABSTRACT

Fibre channel storage area networks (SAN) are widely

implemented in production data center environments. Recently

the storage industry has moved towards deployment of

distributed SANs (DSAN), geographically dispersed across

large physical distances. In a DSAN, specialized gateway

devices interconnect the individual Fibre Channel (FC) fabrics

over IP networks using TCP/IP based protocols (iFCP or FCIP)

or over metro to long distance optical networks such as Dense

Wavelength Division Multiplexing (DWDM) based networks

that utilize native FC ports supporting large numbers of link

credits. When using TCP/IP based storage networking protocols

to interconnect local FC fabrics in a DSAN, the sustained

throughput achievable depends upon the link characteristics and

TCP/IP stack implementation. Sustaining maximum possible

storage traffic throughput across the wide area network enables

practical DSAN deployments by maintaining the required site to

site service level agreements.

This study explores the effects of several TCP/IP

modifications on sustained traffic throughput for a DSAN

interconnected via iFCP gateways across an impaired network.

The TCP/IP stack modifications, known as storage friendly,

include changes to the window scaling, congestion avoidance,

and fast recovery algorithms. The theoretical background and

experimental results are presented to explain and illustrate these

modifications.

Keywords: TCP, Congestion, Packet Loss, Storage, Fibre

Channel

1. INTRODUCTION

Fibre Channel Storage Area Networks (FC SANs) have a

maximum link length of about 100 miles because of the

limitations of the optical signaling electronics. Long distances

require use of expensive long wavelength lasers and single mode

fibers. Most FC SANs use less expensive short wavelength

lasers and have maximum link length of 100 to 300 meters.

Greater distances are achievable through the use of repeaters or

alternative signaling techniques such as wave division

multiplexing. The use of repeaters to extend range has not been

widely accepted by the industry due a number of reasons [1].

Dense Wavelength Division Multiplexing (DWDM) technology

over dedicated fibre optic link(s) is often deployed to directly

extend FC SANs across metropolitan distances using FC

equipment with sufficient buffer-to-buffer (BB) credits to

maintain transfer rate. The DWDM technology over long

distance (across continental USA) tends to be economically

infeasible due to cost of dedicated fibre optic link(s).

Figure 1. Distributed storage area network

The new approach to extend the range of FC SANs

economically is by using non-dedicated links between servers

and storages with the non-dedicated links constructed using

existing internet infrastructure with FC-to-IP gateways leading

to distributed SAN (DSAN). An IP based solution has the

advantage of running over a wide variety of network

infrastructures though commodity networking equipment.

DSANs optimize and ease deployment for a variety of extended

data center functions including data replication, business

continuance, centralized storage access, remote device sharing,

and distribution of storage resources. Figure 1 shows an example

of a DSAN deployment in which three local SAN’s spread

across continental distances are connected across the internet via

gateway devices.

A server connected to the client through a local area

network is shown in New York. The server may host enterprise

applications like Microsoft Exchange server, SQL server, and

Oracle Database which require large storage access. The large

storage at Los Angles could be used by the server on real time

basis where as the storage at Austin could be for

replication/backup [2]. The gateway device attached to each of

these SANs allows its local devices to communicate with remote

devices from the other SANs. The gateway acts as a proxy on

the local SAN for the remote devices. It converts the FC

protocol traffic from the device into IP storage protocol traffic.

The IP traffic is sent across the internet to the remote gateway

where it is converted back into FC. The storage industry has

created several TCP/IP based protocols to take advantage of IP

infrastructure. These are iSCSI, iFCP, and FCIP. The iSCSI

protocol primarily provides direct device interconnect, while

iFCP and FCIP primarily provide distance connections to

existing FC devices and FC SANs.

FCIP is a tunneling protocol which connects one or

more SAN islands and integrates them into a single SAN entity

[3]. In the example the FC switches and devices from Austin,

New York, and Los Angeles form a single extended high latency

27SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 4ISSN: 1690-4524

fabric. Switch to switch communication traffic must be

converted and sent across the internet just like device to device

storage traffic.

 iFCP is an individual device proxy protocol which

maintains individual SAN islands as separate entities. In the

example each city would have an individual FC SAN. The

switch to switch traffic in the Austin SAN would not be sent to

New York or Los Angles. The iFCP gateway presents itself as

an edge switch on the local SAN. Remote devices appear to the

local fabric as though they are attached to the gateway.

A DSAN is typically used for replication or backup

purposes which require sustained bulk data transfer between end

devices. The parameter selected to measure the performance of

DSAN is the throughput across the internet link. Since FC-to-IP

involves encapsulating FCP data into an IP packet, the TCP

implementation play a significant role on the performance of a

DSAN. The TCP implementation is housed in the gateways in

Figure 1. The links between the gateways are typically operated

at OC3 speeds although only a significant minority of

deployments actually utilizes the full Gigabit-Ethernet speed.

Even though most deployed links do not experience sustained

high packet loss rates, the storage traffic has to maintain

throughput when packet losses do occur or during transient

problems. The maximum distance and possible throughput

depends primarily upon the internet packet loss and latency;

gateway’s buffering and TCP/IP stack implementation. The

effect of latency and packet loss on performance is dependent on

the TCP congestion control techniques, window scale options,

error detection and recovery techniques. The internet packet loss

on an average across continental US is 16% with an average

delay of 67 msecs [http://www.internettrafficreport.com]

indicating multiple packet loss. The internet link between the

FCtoIP gateways may also consist of wireless sections leading

to higher packet loss rate (in excess of 25%). Since, DSAN

implementation is achieved by leasing inter continental high

speed links (OC3) from service providers, in this investigation,

the effect of wireless links is not considered. The authors

recognize the existence of vast literature discussing the packet

loss issue in wireless networks. At present, majority of bulk

transfer operations are performed at enterprise data centers

implemented on FC SAN constituting mainframes and high end

servers. Even though iSCSI is becoming popular in small data

centers due to low infrastructure costs and low incompatibility

issues, it has not been widely implemented at enterprise data

centers. Hence, the modifications to TCP/IP stack in iFCP, to

improve the throughput during bulk transfer with large latency

and packet loss is the focus of this investigation. Also, it should

be noted that the modifications to the TCP/IP stack investigated

can be applied to FCIP and iSCSI with minimal additional work.

This paper first presents a theoretical study of the

effects of some of the modifications of the TCP/IP stack

implementation known as storage friendly TCP/IP on high rate,

long latency sustained bulk storage traffic performance. Next,

the performance due to the modifications is demonstrated by

experimental results obtained using iFCP gateway’s with the

modified TCP/IP stack.

2. RELATED WORK

A large body of literature exists regarding modification to

TCP/IP stack to improve the performance under packet loss and

congestion scenarios. But, the literature is very sparse with

regard to modifications to TCP/IP stack in high latency links in

particular with distributed storage area networks. Hence a few

investigations related to this investigation are discussed. The

investigations [4, 5, 6, 7, 8 and 9] discuss improving the

performance by modifying the TCP/IP stack either under

congestion conditions or large latency. The investigation [4]

discusses a delay based approach to eliminate the congestion

control problem associated with the binary nature of congestion

control. The investigation [5] discusses enhancing the IP routing

capability by combining the congestion control with routing

scheme. In the third investigation [6], the modifications to

improve performance when packet reordering occurs due to

route fluttering and retransmissions are discussed. A number of

algorithms have been proposed in this investigation. The fourth

investigation [7] deals with hybrid networks consisting of

terrestrial and wireless links. This investigation deals with

improving the performance over the wireless links by TCP

splitting. The common thread of all of the above investigations

is that the links have low to medium latency and the desired data

transfer rates are in the range 10 to 100 Mbps. As mentioned

previously, DSANs experience large latency (>100 ms) at data

transfer rates of 1 to 4 Gbps. Also, the investigations in cited

literature have demonstrated the improvement by theoretical

analysis in most cases with simulations in a few [8, and 9]. In

this investigation, we not only show the improvement through

theoretical analysis but also through experimental results by

implementing the modified TCP/IP stack on iFCP gateways.

3. iFCP

A DSAN based on iFCP is shown in Figure 2. In this figure,

local FC devices attach directly to F_Ports on the gateways.

Only device-to-device storage traffic is allowed to pass through

the gateways creating SAN islands. For example if one of the

gateway’s ports in the diagram were instead an E_Port attached

to a local switch, such a switch would not be allowed to

communicate through the gateway, but storage traffic passing

through the switch destined for a remote device would be

forwarded across the IP network. This behavior ensures that any

disruptive behavior within a local SAN is contained improving

DSAN stability. The remote devices are addressed in two modes

in iFCP: transparent or translated. Transparent addressing in

iFCP is rarely used in practice and so will not be addressed in

this paper.

Figure 2. iFCP based DSAN [11, 12]

28 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 4 ISSN: 1690-4524

The iFCP address translation is analogous to IP

network address translation, where an iFCP gateway presents

remote devices as though they are directly attached to the

gateway. The gateway appears as an FC switch to the local

fabric. The iFCP gateway assigns local 24-bit FC IDs known as

the proxy address to the remote device N_Ports [1, 12]. In

addition iFCP always assigns an iFCP specific FC ID to the

device and uses this ID to distinguish device and its traffic

within a group of gateways. iFCP gateways perform address

conversion when they convert from FC protocol to iFCP

protocol.

An iFCP gateway communicates across an IP network

using an assigned IP address and TCP/IP connections. The

gateway opens a separate TCP/IP connection for each local FC

device to remote FC device session created. Each of these

sessions uses the gateway IP address and the iFCP FC IDs

assigned by the gateways to keep track of the TCP connections

and storage traffic. This enables communication between any

pair of FC devices over the IP network. Since each device pair

communication session has a TCP connection, an iFCP frame is

routed to its destination using standard IP infrastructure and the

gateway performs congestion control, error detection and

recovery through TCP. The iFCP gateways maintain a lookup

table [12] containing actual remote N_Port addresses, proxy

N_Port addresses and IP addresses. On receipt of an FC frame

destined for a remote device, the iFCP gateway translates the

local source device’s FC address into an iFCP address, translates

the remote device’s proxy FC address into an iFCP address,

encapsulates the FC frame in an iFCP header, determines which

TCP/IP connection belongs to that FC session, and transmits the

encapsulated frame on the TCP/IP connection. The IP header in

the iFCP frame will have its destination address set to the

destination iFCP gateway IP address. When the iFCP gateway

receives a TCP segment, the gateway determines if it can

complete the construction of an encapsulated FC frame for that

connection. If it can, the iFCP gateway translates the destination

iFCP address into the destination device’s local FC address and

the source iFCP address into the remote devices proxy address.

It then forwards the FC frame into the local SAN.

Translation of addresses improves scaling and

configuration of DSANs. Since remote devices are imported as

individual devices independent of their actual local FC SAN

attachment or addressing, multiple remote devices can have the

same FC addresses on their individual remote SANs and yet still

be uniquely accessible from a the local SAN through their

proxy addressed.

4. STORAGE FRIENDLY TCP/IP

The storage friendly TCP/IP is a group comprising a number of

modifications to the TCP/IP stack designed to increase data

transfer rate with packet loss and large latency. The major

modifications implemented were TCP Window Scaling, fast

retransmit/recovery, reorder resistance, and selective

acknowledgement scheme. Due to page limitations, the

modifications of storage friendly TCP/IP that will be discussed

in this paper are the automatic TCP window scaling, and the

modified fast retransmit/recovery algorithm.

Slow Start and TCP Window Scaling
The TCP connection carrying iFCP traffic typically runs across

a long fat network (LFN) [13, 14] with a large capacity. The

capacity of LFNs is expressed mathematically as the product of

bandwidth (BW) and round-trip time (RTT) as shown in (1).

Capacity (bytes) = BW (bytes/sec) x RTT (sec) (1)

This capacity, often called the bandwidth delay

product, represents how much data the link or pipe can hold at a

given time. To achieve maximum throughput for a given

latency, the sender must transmit data at the capacity of the pipe.

When this is achieved it is known as the ideal steady state of the

connection. For TCP/IP the maximum amount of data that can

be transmitted by a sender without waiting for an

acknowledgement from the receiver is dependent on the

advertised TCP receive window (TCP receive buffer). The

initial value for this window and its scale value are determined

during connection establishment [15].

As shown in Figure 2, an iFCP TCP connection can

cross an arbitrary IP network. This network can include multiple

sub-networks with potentially slow links or congestion. If the

sender starts off by immediately injecting multiple TCP

segments (packets) up to the TCP window size advertised by the

receiver this can lead to drastic reduction of throughput [13] due

to packet loss in slow routers and links along the network path

followed by the iFCP connection. In order to reach the ideal

steady state without drastic reduction in throughput, TCP uses

an algorithm known as slow start [13, 15]. The slow start

algorithm states that the rate at which new packets should be

injected into the network is the same as the rate at which the

packets are acknowledged. This leads to exponential growth of

the amount of data that the sender is allowed to transmit. The

sender’s TCP implementation tracks this amount per connection

with another window known as congestion window (cwnd).

During the connection setup process, the cwnd is initialized to

one segment. The slow start algorithm increases this cwnd by

one segment each time an acknowledgement (ACK) is received.

The sender can now transmit up to the minimum of the current

cwnd and the advertised TCP receive window.

In Figure 3, the interactions between the sender and

receiver at discrete time steps to transfer certain amount of data

using the slow start algorithm is shown. For illustration

purposes, assume that one time unit is needed to transmit one

segment and also assume that the receivers advertised window is

large enough that it is not a limit for the example.

At time 0, the sender’s cwnd is 1 segment and the

sender transmits a single segment D1. D1 travels to the receiver

at time steps 1 and 2. At time 3 the receiver gets D1 and

acknowledges it with transmission A1 at time 4. A1 travels back

to the sender at times 5 and 6 (not shown). At time 7, the sender

gets A1, increases the cwnd to 2 segments, and notes that the

RTT is 8 time units. At time 8, the sender transmits D2 and then

at time 9 transmit D3 since the sender is allowed to transmit 2

segments by the current cwnd. These then travel to and are

acknowledged by the receiver such that by time 16 the sender

has a cwnd of four and can transmit D4, D5, D6, and D7 into the

network. At times 23, 24, 25, and 26 the sender increases the

cwnd by 1 and transmits another segment with a cwnd of 8 with

4 segments already transmitted (D8, D9, D10, and D11) at time

27. The sender can then send 4 additional segments D12, D13,

D14, and D15 without violating the cwnd value before A8 is

received at time 31. It can be seen that by time 31, the number of

segments entering the pipe is equal to the number of ACKs

returning indicating the ideal steady state of the connection. At

this time, the cwnd equals or exceeds the advertised TCP receive

window or capacity of the network, causing the data flow to be

limited. The term ideal here represents a condition where there

are no packet losses.

29SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 4ISSN: 1690-4524

Time: 0
D1Sender

Time: 1

D1

Time: 2

D1

Time: 3

D1 Receiver

Time: 4

ReceiverA1

Time: 7

A1

Time: 8

D2Sender

Time: 9

D3Sender D2

Time: 15

Sender

Sender

A2 A3

Time: 16

D4Sender
A3Sender

Time: 19

D7Sender D6 D5 D4 Receiver

Time: 20

D7 D5D6
A4

Receiver

Receiver

Time: 23

A4 ReceiverA7A6A5

D11Sender

Time: 27

D10 D9 D8

Sender

Time: 28

D11 D10 D9

Receiver

D12

A8 Receiver

Time: 31

Receiver

D15 D14 D13 D12

A8 A9 A10 A11

Receiver
Sender

Sender

Figure 3. Slow start with bulk data transfer [13]

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

0 200 400 600 800 1000 1200 1400 1600

Time (ms)

T
ra

n
sm

it
te

d
 b

y
te

s

Slow Start

Figure 4. Continuous data flow with slow start

 The continuous time data flow due to the slow start

algorithm and the advertised TCP receive is shown in Figure 4.

The exponential increase represents the slow start, and the

constant part represents the pipe reaching the ideal steady state.

The ideal steady state value depends on the capacity of the pipe

and the advertised TCP receive window size. If the advertised

TCP receive window size is less than the capacity of the pipe,

the throughput achieved will be less than the bandwidth of the

pipe. The standard TCP implementation [16] allows a receiver to

advertise a maximum of 64 KB TCP window due to the use of

only 16-bits in the TCP header for this purpose.

Typically, iFCP runs through networks formed by

interconnection of local area networks (LANs) using high speed

backBone networks operating at data rates in excess of 1 Gbps

(125 MB/s) and possibly experiencing round-trip time in excess

of 100 msecs[10]. To achieve maximum throughput on this kind

of LFN, the advertised TCP window has to be significantly

higher than the maximum 64 KB possible in the standard TCP.

In this work, the TCP implementation at the receiver has been

modified to implement TCP window scaling option [17, 18].

The TCP window scaling option involves increasing the size of

the window covered with the 16-bit TCP header window value

by applying a 1 byte scale factor to the value. The scale factor

indicates by how many bit positions the 16-bit TCP window

value in the TCP header has to be left shifted to obtain the real

advertised window size. The scale factor is sent as an option

parameter in the TCP header during connection establishment.

Using the scale factor [13] the theoretical maximum advertised

window size has been increased from 64KB to 64KB x 214. The

received scaling factor is stored at the iFCP gateways. The iFCP

gateway implementation used for the tests in this paper always

negotiates a scale factor of 10 for its iFCP TCP connections

giving 1 KB per count in TCP header window size field.

Modified Fast Retransmit/Recovery Algorithm
A congestion avoidance algorithm to handle packet losses is an

integral part of standard TCP implementation [16]. The

implementation details and analysis of the congestion avoidance

algorithm has been discussed extensively in various literatures

[13, 14, and 19]. If a packet loss is detected due to the expiration

of the retransmission timer, half of the current cwnd is stored in

the slow start threshold (ssthresh), the cwnd is reinitialized to

one segment, and transmission resumes (using slow start)

starting with any unacknowledged data. The transmission of

data continues under slow start only up to a cwnd of ssthresh

(which is half of the original cwnd). Above this value cwnd only

increases by one segment per RTT regardless of how many

ACKs are received. This changes the exponential growth of

cwnd into linear growth and is known as congestion avoidance

algorithm [13]. This process is repeated any time the

transmission timer expires (on any packet loss) and can cause

significant reduction of throughput. Later, the TCP

implementation was modified to retransmit the missing segment

before the retransmission expired, cut the current cwnd in half,

and then enter congestion avoidance [14, 15, and 18] but without

entering slow start. Entering slow start would force the cwnd to

1 segment and force the retransmission of all unacknowledged

data. This retransmission of the missing segment followed by

congestion avoidance is known as fast retransmit and fast

recovery algorithms. The fast retransmit algorithm is based on

the requirement that TCP has to generate an immediate ACK (a

duplicate ACK) when an out-of-order segment is received. This

duplicate ACK is used to inform the sender that a segment was

received out-of-order, and to tell what sequence number is

expected. Since, the duplicate ACK could be caused either by

packet loss or simple reordering; the sender waits for a small

number of duplicate ACKs to be received. In case of only

reordering of the segments, this will cause only one or two

duplicate ACKs before the reordered segment is processed,

which results in a new (non-duplicate) ACK [13]. Three or more

duplicate ACKs received by a sender in a row, indicate strongly

the loss of a segment and initiates the fast retransmit algorithm

without waiting for the transmission time to expire. The fast

30 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 4 ISSN: 1690-4524

retransmit and fast recovery algorithm stages implemented

together are shown below:

1. On receiving the third duplicate in a row, set ssthresh to

one-half of the minimum of current cwnd and the

advertised TCP receive window.

2. Retransmit the missing segment.

3. Set current cwnd to ssthresh plus 3 times the segment size.

4. Each time another duplicate ACK arrives, increment cwnd

by the segment size and transmit a packet (if the new cwnd

is less than the advertised TCP receive window).

5. Next, on receiving an ACK acknowledging new data, set

current cwnd to ssthresh (one half of the cwnd when packet

loss was detected).

Figures 5 and 6 show the simulated data flow under

packet loss with slow start/congestion avoidance and fast

retransmit/fast recovery algorithms.

0

500000

1000000

1500000

2000000

2500000

0 200 400 600 800 1000 1200 1400

Time (ms)

T
ra

n
sm

it
te

d
 b

y
te

s

Congestion AvoidanceSlow Start

Packet Loss

Throughput = 11.8 Mbps

Figure 5. Data flow under packet loss with slow

start/congestion avoidance

In Figure 5, because fast retransmit and fast recovery

are not used, the cwnd is initialized to one segment every time a

packet is lost and slow start is initiated before congestion

avoidance.

In Figure 6, fast retransmit prevents slow start from

occurring when a packet is lost. The effects of fast recovery and

congestion avoidance are also shown. The overall throughput is

higher in this case as compared to figure 5. The fast transmit and

fast recovery algorithm allows higher throughput as compared to

only slow start under moderate congestion. However, the iFCP

connections in a DSAN with very large TCP receive window

capability (several MB) at the iFCP gateways are expected to

provide close to maximum network throughput even with packet

losses. To meet this requirement, the fast retransmit/fast

recovery algorithm has been modified. The standard fast

retransmit/fast recovery algorithm reduction of the current cwnd

value at the time of packet loss detection to one-half of its value

as seen in Figure 6 contributes to reduced throughput. Based on

this observation, the fast retransmit/fast recovery algorithm was

modified to reduce the current cwnd value at the time of packet

loss detection by only 1/8th of its current value. This causes the

TCP implementation to react more slowly to packet loss events.

Figure 7 shows the simulated data flow under packet loss with

the modified fast recovery algorithm. From the graph, it can be

seen that the sender is responding slowly to packet loss there by

maintaining a higher throughput.

0

200000

400000

600000

800000

1000000

1200000

0 200 400 600 800 1000 1200 1400

Time (ms)

T
ra

n
sm

it
te

d

b
y

te
s

Packet Loss

Fast Retransmit

Fast Recovery

Throughput = 14.7 Mbps

Figure 6. Data flow under packet loss with fast

retransmit/fast recovery

0

100000

200000

300000

400000

500000

600000

0 200 400 600 800 1000 1200 1400

Time (ms)

T
ra

n
sm

it
te

d

B

y
te

s

Packet Loss

Fast Recovery

Throughput = 17.08 Mbps

Figure 7. Data flow under packet loss with smaller cwnd

reduction fast retransmit/fast recovery

 As can be seen from the figures the linear ramp of

cwnd after a packet loss event suppresses throughput. An option

to disable congestion avoidance was also added so that the ramp

of cwnd would always be exponential.

5. EXPERIMENTAL SETUP

The experimental setup used to measure a DSAN performance is

shown in Figure 8. FC traffic is generated by using FC simulator

(FCSim) cards instead of actual FC end devices (server and

storage). An FCSim card manufactured by Brocade can generate

FC traffic at rates up to 4 Gbps using the embedded FCLoadTM

program. In this test setup, two FCSim cards are located in a

single PC, with one FCSim card generating traffic and the other

receiving the traffic. An FCSim card can also measure

throughput and the latency of every FC frame transmitted and

received and was used to collect the performance data. The

FCSim cards are connected to two Sphereon 4500 FC switches

from Brocade. The two FC switches in turn are connected to two

Eclipse 1620 iFCP gateways from Brocade Corp. The two iFCP

gateways are connected together by a 1 Gbps IP link through a

packet loss/latency generator. The packet loss/latency generator

is used to simulate packet loss and RTT conditions in the IP

network. The modified TCP/IP stack is implemented on the two

iFCP gateways by programming the firmware on the two

Eclipse 1620s. The Eclipse 1620 TCP implementation has a

maximum TCP receive window size per connection of 8MB

using a scale factor of 10.

31SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 4ISSN: 1690-4524

Figure 8. DSAN test setup

6. EXPERIMENTAL RESULTS

The theoretical throughput possible with increasing RTT at a

constant 8MB TCP window size on a 1 Gbps iFCP link is

presented in Table 1, this information was computed using (1).

Using the previously discussed experimental setup, the FCLoad

program was used to transmit traffic at data rates (load) ranging

from 10% to 90% of the link bandwidth. The packet loss/latency

generator was used to simulate RTT ranging from 0 to 200 ms to

simulate internet behavior [10].

Table 1 Theoretical throughput with increasing RTT
TCP Window Size (MB) Round Trip Delay (ms) Computed Throughput (MB/s)

8 80 100.00

8 100 80.00

8 120 66.67

8 140 57.14

8 160 50.00

8 180 44.44

8 200 40.00

Figure 9 shows the variation of throughput with

increasing RTT. It can be seen that up to 80 ms RTT, increasing

the load causes a corresponding linear increase in the

throughput. When the RTT is increased to 100 ms, it can be seen

that the throughput can reach only 80 MB/s due to the advertised

TCP window size maximum value of 8MB. As the RTT is

increased further, the limiting effect of the TCP window size

further reduces the throughput. The measured steady state

throughput shown in Figure 9 matches the theoretical values

shown in Table 1.

Next, FCLoad was used to drive 90% of line rate with

the network simulation applying a constant RTT of 25 ms and

various loss rates. In this setup the effects of the fast recovery

modification and congestion avoidance disabling were

measured. Figure 10 shows these results. It can be seen that the

throughput with standard TCP decreases to a value of 9 MB/s at

1 in 1000 packet loss rate. The throughput with the same packet

loss rate with smaller cwnd reduction modification and

congestion avoidance disable has increased to 16MB/s and

11.5MB/s respectively. The increase in throughput with

congestion avoidance disable modification by itself is less

compared to the smaller cwnd reduction.

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90

Load (%)

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

0, 1, 5, 10, 20, 40 and 80 ms

100 ms

120 ms

140 ms

160 ms

180 ms

200 ms

Figure 9. Throughput variation with increasing RTT and

constant 8MB TCP window size

0

20

40

60

80

100

120

1.00E-05 1.00E-04 1.00E-03 1.00E-02

Packet loss rate

T
h
ro

u
g
h
p

u
t

(M
B

p
s)

Storage Friendly TCP

Smaller CWND ReductionCongestion Avoidance Disable

Standard TCP

Figure 10. Storage friendly TCP influence on throughput

with packet loss rate

 This is due to the congestion avoidance disable

starting point being at one-half of the cwnd value as compared

to 7/8th of the cwnd value with smaller cwnd reduction. Next, on

selecting both of the modifications the throughput with the same

packet loss rate has increased to a value of 30MB/s. This is due

to exponential ramp from the higher 7/8th cwnd value.

7. CONCLUSIONS

The problems faced with bulk storage data transfer with the

standard TCP implementation has been demonstrated both by

theoretical analysis and experimental results. The standard TCP

implementation performance has been improved with LFNs by

incorporating the TCP window scaling option. The improvement

in throughput by using fast retransmit/fast recovery over slow

start/congestion avoidance has been demonstrated with a

theoretical analysis. Further modifications of fast retransmit/fast

recovery by decreasing the one-half cwnd reduction to 1/8th

cwnd reduction on detecting a packet loss increase the

throughput significantly. This modification when paired with the

congestion avoidance disable increases the throughput by a

factor of 3.

 The modifications introduced to the standard TCP and

know as storage friendly TCP or storage optimized TCP enable

more widespread implementations of iFCP based DSANs across

transcontinental distances for storage backup and replication.

32 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 4 ISSN: 1690-4524

Further modifications such as reorder resistance, increasing

initial cwnd value in slow start, and others remain to be

explored.

8. REFERENCES

[1] R. W. Kembel, Fibre Channel Switched Fabric, Northwest

Learning Associates, Inc., 1st Edition, 2001.

[2] S. Muknahallipatna, T. Brothers, N. Mandagere, P. Patil, and

J. Hamann, “The effect of end to end latency in a distributed

storage area network on Microsoft Exchange Server 2003

performance - part 1," The 29th Annual IEEE Conference on

Local Computer Networks (LCN), 16-18 November 2004.

[3] Fibre Channel over TCP/IP (FCIP), RFC 3821, The Internet

Engineering Task Force (IETF), July. 2004.

[4] D. Wei, C. Jin, S. Low, and S. Hegde, “FAST TCP:

Motivation, Architecture, Algorithms, Performance,”

IEEE/ACM Transactions on Networking, Vol. 14, No. 6,

December 2006, 1246-1259

[5] H. Han, S. Shakkottai, C. Hollot, R. Srikant, and D.

Towsley, “Multi-Path TCP: A Joint Congestion Control and

Routing Scheme to Exploit Path Diversity in the Internet,”

IEEE/ACM Transactions on Networking, Vol. 14, No. 6,

December 2006, 1260-1271

[6] D. Leung, V. LI, and D. Yang, “An Overview of Packet

Reordering in Transmission Control Protocol (TCP): Problems,

Solutions, and Challenges,” IEEE Transactions on Parallel and

Distributed Systems, Vol. 18, No. 4, April 2007, 522-535

[7] J. Zhu, S. Roy, and J. Kim, “Performance Modelling of TCP

Enhancements in Terrestrial-Satellite Hybrid Networks,”

IEEE/ACM Transactions on Networking, Vol. 14, No. 4, August

2006, 753-766

[8] J. Jo, Y. Kim, and H. Chao, “TCP Performance Comparison

Under Various Load Balancing Methods Using OPNET,” in

Proc. OPNETWORKS, August 2002

[9] G. Corral, A. Zaballos, T. Fulgueira, and J. Abella,

“Simulation-based study of TCP flow control mechanisms using

OPNET Modeler,” in Proc. of OPNETWORKS, August 2002

[10] AT & T Global IP Network, Network delay,

http://ipnetwork.bgtmo.ip.att.net/pws/network_delay.html

[11] T. Clark, IP SANs: A Guide to iSCSI, iFCP and FCIP

Protocols for Storage Area Networks, Addison-Wesley, 1st

Edition, 2002.

[12] A Protocol for Internet Fibre Channel Storage Networking

- iFCP, RFC 4172, The Internet Engineering Task Force (IETF),

September 2005.

[13] W. R. Stevens, TCP/IP Illustrated: The protocols, Vol. 1,

Addison Wesley, 1994.

[14] TCP Extensions for High Performance, RFC 1323, The

Internet Engineering Task Force (IETF), May 1992.

[15] TCP Slow Start, Congestion Avoidance, Fast Retransmit,

and Fast Recovery Algorithms, RFC 2001, The Internet

Engineering Task Force (IETF), January 1997.

[16] V. Jacobson, “Congestion Avoidance Algorithm,” in Proc.

ACM SIGCOMM, 1988, pp. 314-329.

[17] L. Kalampoukas, A. Varma, and K. K. Ramakrishnan,

“Explicit Window Adaptation: A Method to Enhance TCP

Performance,” IEEE/ACM Trans. on Networking, Vol. 10, No. 3,

June 2002.

[18] T. V. Lakshman, and U. Madhow, “The Performance of

TCP/IP for Networks with High Bandwidth-Delay Products and

Random Loss,” IEEE/ACM Trans. on Networking, Vol. 5, No. 3,

June 1997.

[19] G. R. Wright, and W. R. Stevens, TCP/IP Illustrated: The

Implementation, Vol. 2, Addison Wesley, 1994.

33SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 4ISSN: 1690-4524

	P998040

