
Detecting Internet Worms Using Data Mining Techniques
Muazzam SIDDIQUI

Institute of Simulation & Training
University of Central Florida

siddiqui@mail.ucf.edu

Morgan C. WANG
Department of Statistics and Actuarial Sciences

University of Central Florida
cwang@mail.ucf.edu

Joohan LEE
School of Electrical Engineering & Computer Science

University of Central Florida
jlee@cs.ucf.edu

ABSTRACT

Internet worms pose a serious threat to computer security.
Traditional approaches using signatures to detect worms
pose little danger to the zero day attacks. The focus of
malware research is shifting from using signature patterns
to identifying the malicious behavior displayed by the
malwares. This paper presents a novel idea of extracting
variable length instruction sequences that can identify
worms from clean programs using data mining techniques.
The analysis is facilitated by the program control flow
information contained in the instruction sequences. Based
upon general statistics gathered from these instruction
sequences we formulated the problem as a binary classi-
fication problem and built tree based classifiers including
decision tree, bagging and random forest. Our approach
showed 95.6% detection rate on novel worms whose data
was not used in the model building process.

Keywords
Data Mining, Worm Detection, Binary Classification,
Static Analysis, Disassembly, Instruction Sequences

1. INTRODUCTION

Computer virus detection has evolved into malware detec-
tion since Cohen first formalized the term computer virus
in 1983 [13]. Malicious programs, commonly termed as
malwares, can be classified into virus, worms, trojans, spy-
wares, adwares and a variety of other classes and sub-
classes that sometimes overlap and blur the boundaries
among these groups [24]. The most common detection
method is the signature based detection that makes the core
of every commercial anti-virus program. To avoid detec-
tion by the traditional signature based algorithms, a num-
ber of stealth techniques have been developed by the mal-
ware writers. The inability of traditional signature based
detection approaches to catch these new breed of malwares
has shifted the focus of malware research to find more gen-
eralized and scalable features that can identify malicious
behavior as a process instead of a single static signature.
The analysis can roughly be divided into static and dy-
namic analysis. In the static analysis the code of the pro-
gram is examined without actually running the program
while in dynamic analysis the program is executed in a real
or virtual environment. The static analysis, while free from

the execution overhead, has its limitation when there is a
dynamic decision point in the programs control flow. Dy-
namic analysis monitors the execution of program to iden-
tify behavior that might be deemed malicious. These two
approaches are combined also [23] where dynamic anal-
ysis is applied only at the decision-making points in the
program control flow.
In this paper we present a static analysis method using data
mining techniques to automatically extract behavior from
worms and clean programs. We introduce the idea of us-
ing sequence of instructions extracted from the disassem-
bly of worms and clean programs as the primary classifi-
cation feature. Unlike fixed length instructions or n-grams,
the variable length instructions inherently capture the pro-
grams control flow information as each sequence reflects a
control flow block.
The difference among our approach and other static anal-
ysis approaches mentioned in the related research section
are as follows.
First, the proposed approach applied data mining as a com-
plete process from data preparation to model building. Al-
though data preparation is a very important step in a data
mining process, almost all existing static analysis tech-
niques mentioned in the related research section did not
discuss this step in detail except [25]. Second, all features
were sequences of instructions extracted by the disassem-
bly instead of using fixed length of bytes such as n-gram.
The advantages are:

1. The instruction sequences include program control
flow information, not present in n-grams.

2. The instruction sequences capture information from
the program at a semantic level rather than syntactic
level.

3. These instruction sequences can be traced back to
their original location in the program for further anal-
ysis of their associated operations.

4. These features can be grouped together to form addi-
tional derived features to increase classification accu-
racy.

5. A significant number of sequences that appeared in
only clean program or worms can be eliminated to
speed up the modeling process.

6. The classifier obtained can achieve 95% detection rate
for new and unseen worms.

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 6 - NUMBER 648 ISSN: 1690-4524



It is worth noting that a dataset prepared for a neural net-
work classifier might not be suitable for other data mining
techniques such as decision tree or random forest.

2. RELATED RESEARCH

[18] divided worm detection into three main categories;
Traffic monitoring, honeypots and signature detection.
Traffic analysis includes monitoring network traffic for
anomalies like sudden increase in traffic volume or change
in traffic pattern for some hosts etc. Honeypots are dedi-
cated systems installed in the network to collect data that is
passively analyzed for potential malicious activities. Sig-
nature detection is the most common method of worm de-
tection where network traffic logs, system logs or files are
searched for worm signatures.
Data mining has been the focus of many malware re-
searchers in the recent years to detect unknown malwares.
A number of classifiers have been built and shown to have
very high accuracy rates. Data mining provides the means
for analysis and detection of malwares for the categories
defined above. Most of these classifiers use n-gram or API
calls as their primary feature. An n-gram is a sequence
of bytes of a given length extracted from the hexadecimal
dump of the file. Besides file dumps, network traffic data
and honeypot data is mined for malicious activities.
[17] introduced the idea of using tell-tale signs to use gen-
eral program patterns instead of specific signatures. The
tell-tale signs reflect specific program behaviors and ac-
tions that identify a malicious activity. Though a tell-
tale sign like a sequence of specific function calls seems
a promising identifier, yet they did not provide any experi-
mental results for unknown malicious programs.
The idea of tell-tale signs was furthered by [10] and they
included program control and data flow graphs in the anal-
ysis. Based upon the tell-tale signs idea, they defined a
security policy using a security automata. The flow graphs
are subjected to these security automata to verify against
any malicious activity. The method is applied to only one
malicious program. No other experimental results were
reported to describe algorithm efficiency, especially on un-
seen data.
In another data mining approach, [20] used three different
types of features and a variety of classifiers to detect ma-
licious programs. Their primary dataset contained 3265
malicious and 1001 clean programs. They applied RIP-
PER (a rule based system) to the DLL dataset. Strings
data was used to fit a Naive Bayes classifier while n-grams
were used to train a Multi-Naive Bayes classifier with a
voting strategy. No n-gram reduction algorithm was re-
ported to be used. Instead data set partitioning was used
and 6 Naive-Bayes classifiers were trained on each parti-
tion of the data. They used different features to built dif-
ferent classifiers that do not pose a fair comparison among
the classifiers. Naive-Bayes using strings gave the best ac-
curacy in their model.
A similar approach was used by [15], where they built dif-
ferent classifiers including Instance-based Learner, TFIDF,
Naive-Bayes, Support vector machines, Decision tree,
boosted Naive-Bayes, SVMs and boosted decision tree.

Their primary dataset consisted of 1971 clean and 1651
malicious programs. Information gain was used to choose
top 500 n-grams as features. Best efficiency was reported
using the boosted decision tree J48 algorithm.
[9] used n-grams to build class profiles using KNN algo-
rithm. Their dataset was small with 25 malicious and 40
benign programs. As the dataset is relatively small, no n-
gram reduction was reported. They reported 98% accuracy
rate on a three-fold cross validation experiment. It would
be interesting to see how the algorithm scale as a bigger
dataset is used.
[22] proposed a signature based method called SAVE
(Static Analysis of Vicious Executables) that used behav-
ioral signatures indicating malicious activity. The signa-
tures were represented in the form of API calls and Eu-
clidean distance was used to compare these signatures with
sequence of API calls from programs under inspection.
Besides data mining, other popular methods includes activ-
ity monitoring and file scanning. [19] proposed a system
to detect scanning worms using the premises that scanning
worms tend to reside on hosts with low successful connec-
tions rates. Each unsuccessful or successful connection at-
tempt was assigned a score that signals a host to be infected
if past a threshold. [14] proposed behavioral signatures to
detect worms in network traffic data. [16] developed Hon-
eycomb, that used honeypots to generate network signa-
tures to detect worms. Honeycomb used anomalies in the
traffic data to generate signatures.
All of this work stated above, that does not include data
mining as a process, used very few samples to validate
their techniques. The security policies needed human ex-
perts to devise general characteristics of malicious pro-
grams.
Data preparation is a very important step in a data min-
ing process. Except [25], none of the authors presented
above have discussed their dataset in detail. Malicious pro-
grams used by these researchers are very eclectic in na-
ture exhibiting different program structures and applying
the same classifier to every program does not guarantee
similar results.

3. DATA PROCESSING

Our collection of worms and clean programs consisted of
2775 Windows PE files, in which 1444 were worms and
the 1330 were clean programs. The clean programs were
obtained from a PC running Windows XP. These include
small Windows applications such as calc, notepad, etc and
other application programs running on the machine. The
worms were downloaded from [8]. The dataset was thus
consisted of a wide range of programs, created using dif-
ferent compilers and resulting in a sample set of uniform
representation. Figure 3 displays the data processing steps.

Malware Analysis
We ran PEiD [5] and ExEinfo PE [2] on our data collection
to detect compilers, common packers and cryptors, used
to compile and/or modify the programs. Table 1 displays

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 6 - NUMBER 6 49ISSN: 1690-4524



Table 1. Packers/Compilers Analysis of Worms

Packer/Compiler Number of Worms
ASPack 77
Borland 110
FSG 31
Microsoft 336
Other Not Packed 234
Other Packed 83
PECompact 26
Unidentified 140
UPX 67

Table 2. Packers/Compilers Analysis of Worms and Clean
Programs

Type of Program Not
Packed

Packed Unidentified

Clean 1002 0 49
Worm 624 340 140
Total 1626 340 189

the distribution of different packers and compilers on the
worm collection.
The clean programs in our collection were also sub-
jected to PEiD and ExeInfo PE to gather potential pack-
ers/crytpors information. No packed programs were de-
tected in the clean collection. Table 2 displays the number
of packed, not packed and unidentified worms and clean
programs.
Before further processing, packed worms were unpacked
using specific unpackers such as UPX (with -d switch) [6],
and generic unpackers such as Generic Unpacker Win32
[3] and VMUnpacker [7].

File Size Analysis
Before disassembling the programs to extract instruction
sequences, a file size analysis was performed to ensure that
the number of instructions extracted from clean programs
and worms is approximately equal. Table 3 displays the
file size statistics for worms and clean programs.
Table 3 indicates the that the average size of the clean pro-
grams is twice as large as average worm size. These large
programs were removed from the collection to get an equal
file size distribution for worms and clean programs.

Table 3. File Size Analysis of the Program Collection

Statistic Worms
Size
(KB)

Cleans
Size
(KB)

Average 67 147
Median 33 43
Minimum 1 1
Maximum 762 1968

Figure 1. Portion of the output of disassembled Netsky.A
worm.

Figure 2. Instruction sequences extracted from the disas-
sembled Netsky.A worm.

Disassembly

Binaries were transformed to a disassembly representation
that is parsed to extract features. The disassembly was ob-
tained using Datarescues’ IDA Pro [4]. From these dis-
assembled files we extracted sequences of instructions that
served as the primary source for the features in our dataset.
A sequence is defined as instructions in succession until
a conditional or unconditional branch instruction and/or a
function boundary is reached. Instruction sequences thus
obtained are of various lengths. We only considered the
opcode and the operands were discarded from the analy-
sis. Figure 1 shows a portion of the disassembly of the
Netsky.A worm.

Parsing

A parser written in PHP translates the disassembly in fig-
ure 1 to instruction sequences. Figure 2 displays the output
of the parser. Each row in the parsed output represented a
single instruction sequence. The raw disassembly of the
worm and clean programs resulted in 1972920 instruction
sequences. 47% of these sequences belonged to worms
while 53% belonged to clean programs.

Feature Extraction

The parsed output was processed through our Feature Ex-
traction Mechanism. Among them 1972920 instruction se-
quences, 213330 unique sequences were identified with
different frequencies of occurrence. We removed the se-
quences that were found in one class only as they will re-
duce the classifier to a signature detection technique. This
removed 94% of the sequences and only 23738 sequences
were found common to both worms and clean programs.
Each sequence was considered as a potential feature.

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 6 - NUMBER 650 ISSN: 1690-4524



Figure 3. Data preprocessing steps.

Feature Selection
The Feature Selection Mechanism considered frequency
of occurrence of each sequence in the entire data to be
the primary selection criteria. Sequences with less than
10% frequency of occurrence were identified as rare items
are were not included in the dataset. This removed 97%
of the sequences and only 679 sequences were selected.
The dataset consisted of frequency of occurrence of each
of these sequences in each file. A binary target variable
identified each file as worm or clean.
Using the occurrence frequency as the primary data item
in the dataset enabled us to consider the features as count
variables.

Independence Test
A Chi-Square test of independence was performed for each
feature to determine if a relationship exists between the
feature and the target variable. The variables were trans-
formed to their binary representation on a found/not found
basis to get a 2-way contingency table. Using a p-value
of 0.01 for the test resulted in the removal of about half
of the features that did not showed any statistically signif-
icant relationship with the target. The resulting number of
variables after this step was 268.

4. EXPERIMENTS

The data was partitioned into 70% training and 30% test
data. Similar experiments showed best results with tree
based models for the count data [21]. We built decision
tree, bagging and Random forest models using R [1].

Decision Tree
A decision tree recursively partitions the predictor space
to model the relationship between predictor variables and
categorical response variable. Using a set of input-output
samples a tree is constructed. The learning system adopts a
top-down approach that searches for a solution in a part of
the search space. Traversing the resultant tree gives a set of
rules that finally classified each observation into the given
classes. We used the decision tree model to obtain a set of
rules that can classify each sample into either malicious or
benign class.
The decision tree model we built in R used Gini as split
criterion with a maximum depth of 15.

Bagging
Bagging or Bootstrap Aggregating is a meta-algorithm to
improve classification and regression models in terms of
accuracy and stability. Bagging generates multiple ver-
sions of a classifier and uses plurality vote to decide for
the final class outcome among the versions. The multi-
ple versions are created using bootstrap replications of the
original dataset. Bagging can give substantial gains in ac-
curacy by improving on the instability of individual classi-
fiers. [11]
We used classification trees with 100 bootstrap replications
in the Bagging model.

Random Forest
Random forest provides a degree of improvement over
Bagging by minimizing correlation between classifiers in
the ensemble. This is achieved by using bootstraping to
generate multiple versions of a classifier as in Bagging but
employing only a random subset of the variables to split at
each node, instead of all the variables as in Bagging. Using
a random selection of features to split each node yields er-
ror rates that compare favorably to Adaboost, but are more
robust with respect to noise.[12]
We grew 100 classification trees in the Random forest
model. The number of variables sampled at each split was
22.

5. RESULTS

We tested the models using the test data. Confusion ma-
trices were created for each classifier using the actual and
predicted responses. The following four estimates define
the members of the matrix.
True Positive (TP): Number of correctly identified mali-
cious programs.
False Positive (FP): Number of wrongly identified benign
programs.
True Negative (TN): Number of correctly identified benign
programs.
False Negative (FN): Number of wrongly identified mali-
cious programs.
The performance of each classifier was evaluated using the
detection rate, false alarm rate and overall accuracy that
can be defined as follows:
Detection Rate: Percentage of correctly identified mali-
cious programs.

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 6 - NUMBER 6 51ISSN: 1690-4524



Table 4. Experimental results

Classifier Detection
Rate

False
Alarm
Rate

Overall
Accu-
racy

Random Forest 95.6% 3.8% 96%
Bagging 94.3% 6.7% 93.8%
Decision Tree 93.4% 13.4% 90%

Figure 4. ROC curve comparing decision tree, bagging and
random forest test results.

DetectionRate = TP
TP+FN

False Alarm Rate: Percentage of wrongly identified benign
programs.
FalseAlarmRate = FP

TN+FP

Overall Accuracy: Percentage of correctly identified pro-
grams.
OverallAccuracy = TP+TN

TP+TN+FP+FN

Table 4 displays the experimental results for each classifier.
Figure 4 displays the ROC curves for test data for each
model. The meta-algorithms performed better than a sin-
gle decision tree as expected. Random forest performed
slightly better than Bagging which is endorsement of its
superiority over Bagging as claimed in [12]

6. CONCLUSIONS

In this paper we presented a data mining framework to de-
tect worms. The primary feature used for the process was
the frequency of occurrence of variable length instruction

Table 5. Area under the ROC curve for each classifier.

Classifier AUC
Decision Tree 0.9060
Bagging 0.9775
Random Forest 0.9871

sequences. The effect of using such a feature set is two
fold as the instruction sequences can be traced back to the
original code for further analysis in addition to being used
in the classifier. We used the sequences common to both
worms and clean programs to remove any biases caused
by the features that have all their occurrences in one class
only. We showed 95.6% detection rate with a 3.8% false
positive rate.

7. FUTURE WORK

The information included for this analysis was extracted
from the executable section of the PE file. To achieve a bet-
ter detection rate this information will be appended from
information from other sections of the file. This will in-
clude Import Address Table and the PE header. API calls
analysis has proven to be an effective tool in malware de-
tection [22]. Moreover header information has been used
in heuristic detection [24]. Our next step is to include this
information in our feature set.

References

[1] The r project for statistical computing http://www.r-
project.org/.

[2] ExEinfo PE. http://www.exeinfo.go.pl/.

[3] Generic Unpacker Win32.
http://www.exetools.com/unpackers.htm.

[4] IDA Pro Disassembler.
http://www.datarescue.com/idabase/index.htm.

[5] PEiD. http://peid.has.it/.

[6] UPX the Ultimate Packer for eXecutables.
http://www.exeinfo.go.pl/.

[7] VMUnpacker. http://dswlab.com/d3.html.

[8] VX Heavens. http://vx.netlux.org.

[9] T. Abou-Assaleh, N. Cercone, V. Keselj, and
R. Sweidan. N-gram-based detection of new mali-
cious code. In Proceedings of the 28th Annual Inter-
national Computer Software and Applications Con-
ference - Workshops and Fast Abstracts - (COMP-
SAC’04) - Volume 02, pages 41–42, 2004.

[10] J. Bergeron, M. Debbabi, J. Desharnais, M. M. Er-
hioui, Y. Lavoie, and N. Tawbi. Static detection of
malicious code in executable programs. Symposium
on Requirements Engineering for Information Secu-
rity (SREIS’01), 2001.

[11] L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[12] L. Breiman. Random forests. Machine Learning,
45(1):5–32, 2001.

[13] F. Cohen. Computer Viruses. PhD thesis, University
of Southern California, 1985.

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 6 - NUMBER 652 ISSN: 1690-4524



[14] D. Ellis, J. Aiken, K. Attwood, and S. Tenaglia. A
behavioral approach to worm detection. In Proceed-
ings of the 2004 ACM Workshop on Rapid Malcode,
pages 43–53, 2004.

[15] J. Z. Kolter and M. A. Maloof. Learning to detect
malicious executables in the wild. In Proceedings of
the 2004 ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2004.

[16] C. Kreibich and J. Crowcroft. Honeycomb creating
intrustion detection signatures using honeypots. In
2nd Workshop on Hot Topics in Network, 2003.

[17] R. W. Lo, K. N. Levitt, and R. A. Olsson. Mcf:
A malicious code filter. Computers and Security,
14(6):541–566, 1995.

[18] J. Nazario. Defense and Detection Strategies against
Internet Worms. Van Nostrand Reinhold, 2004.

[19] S. E. Schechter, J. Jung, , and B. A. W. fast detection
of scanning worms infections. In Proceedings of Sev-
enth International Symposium on Recent Advances in
Intrusion Detection (RAID), 2004.

[20] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo.
Data mining methods for detection of new malicious
executables. In Proceedings of the IEEE Symposium
on Security and Privacy, pages 38–49, 2001.

[21] M. Siddiqui, M. C. Wang, and J. Lee. Data mining
methods for malware detection using instruction se-
quences. In Proceedings of Artificial Intelligence and
Applications, AIA 2008. ACTA Press, 2008.

[22] A. H. Sung, J. Xu, P. Chavez, and S. Mukkamala.
Static analyzer of vicious executables. In 20th An-
nual Computer Security Applications Conference,
pages 326–334, 2004.

[23] Symantec. Understanding heuristics: Symantec’s
bloodhound technology. Technical report, Symantec
Corporation, 1997.

[24] P. Szor. The Art of Computer Virus Research and
Defense. Addison Wesley for Symantec Press, New
Jersey, 2005.

[25] M. Weber, M. Schmid, M. Schatz, and D. Geyer.
A toolkit for detecting and analyzing malicious soft-
ware. In Proceedings of the 18th Annual Computer
Security Applications Conference, page 423, 2002.

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 6 - NUMBER 6 53ISSN: 1690-4524


	QI505RM

