
  

Abstract — The optical flow of high interest points in images of an 
uncalibrated scene is used to recover the camera orientation of an 
eye-in-hand robotic manipulator. The system is completely 
automated, iteratively performing a sequence of rotations and 
translations until the camera frame is aligned with the 
manipulator’s world frame. The manipulator must be able to 
translate and rotate its end-effector with respect to its world frame. 
The system is implemented and being tested on a Stäubli RX60 
manipulator using an off-the-shelf Logitech USB camera.  
 
Keywords — Camera Calibration, Eye-in-hand manipulator, 
Robotics, Computer Vision.  

I. INTRODUCTION 
Visual input sensors are incorporated into robotic 
automation tasks to enhance an application’s flexibility, 
precision, and/or functionality. Key features are extracted 
from input image sequences and used to guide the 
manipulator’s end-effector to a desired pose where a specific 
automation task is then accomplished. Some typical 
automation tasks include picking/placing, spot welding, 
spray painting, drilling holes, and product assembly. [1] is 
an excellent article that describes several vision-based object 
handling industrial applications currently in use.   

There has been much work in the area of closed-loop 
visually guided robotics ([2]-[7] are just a few of the papers 
in the literature that present good overviews of visually 
guided robotics research with the focus on closed loop 
systems, or visual servoing). However, many current 
industrial applications employ also calibrated systems – [8]-
[10].  

In a visual servoing system, visual feedback is used to 
minimize the image plane error of the manipulator’s actual 
and desired positions. The vision system looks at the current 
pose of the manipulator and estimates how its joints should 
be moved so that the manipulator draws closer to the desired 
pose. Typical tasks like tracking and positioning are 
performed by reducing the image distance error between a 
set of current and desired image features in the image plane. 

In a calibrated system, the camera and robot kinematics 
are calibrated relative to a fixed 3D frame. The classical 
approach is to move the end-effector and observe/perceive 
the movement of the eye: or AX =XB, where A is the robot 
end-effector motion 2

1
t

t T , B the induced camera motion 

2
1

c
c T ,and X is the hand-eye transformation c

tT to be 
determined. 

In this paper we present an approach that overcomes two 
traditional problems that calibrated systems face: having to 
manually re-calibrate over time, and relying on a calibrated 
input scene.  

Over time the precision of the robot/camera coordinate 
system calibration degrades due to movement, vibrations and 
other forces [11], and so the system must be periodically re-
calibrated. This is a potentially cumbersome task if a human 
operator is responsible for performing this constant re-
calibration procedure. The approach presented here 
automatically recovers the orientation of the camera frame 
with respect to (w.r.t) the robot world frame. The algorithms 
are designed for a monocular eye-in-hand system where the 
robot controller is capable of rotating and translating the tool 
frame w.r.t. the world frame. Since this method is 
completely automated, there is no need for a human operator 
to re-calibrate the system. The re-calibration procedure could 
be run periodically and automatically by the system to ensure 
that precise calibration is maintained.  

A calibrated input image is usually required in order to 
recover camera orientation. For example, [12] uses a 
bimodal thresholding algorithm [13] and the movements of a 
single blob on a solid colored background to recover camera 
orientation, [13] uses several circles on a cube shaped 
surface, and [14] uses the traditional checkerboard pattern. 
The approach in this paper brings enhanced flexibility to the 
input scene by using the optical flow of high interest points 
in an uncalibrated scene to recover camera orientation. 
Although a precisely calibrated image is not required, there 
are some restrictions placed on the input scene which are 
outlined in the next section. 

In a nutshell, the approach employs three iterative 
processes, each of which can be described as follows. An 
image is captured, the end-effector is translated in a specific 
direction, and a second image is then captured. The 
correspondences of high interest points (corner points) from 
the first image is found in the second image. Based on the 
actual movements of the points and the known desired 
movements, the end-effector is incrementally rotated about a 
specific axis. This process is repeated until the actual 
movement equals the desired movement. 

The remainder of this paper is organized as follows. In the 
following section we list assumptions about the robot’s work 
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cell environment and also describe the initializations that are 
required for the algorithms to function properly. The control 
and vision algorithms are presented in sections III and IV, 
respectively. In section V, we present some experimental 
results and section VI offers some concluding remarks and 
future work.   

II. INITIAL SETUP 
In order for the algorithms in the following sections to 
properly converge, the following assumptions and 
initializations are required: 
 
 Although a precisely calibrated image is not required, 

there cannot be moving objects in the scene and there 
must be high interest points (we used corner points) 
somewhere in the input scene. For example, an input 
scene of a solid color wall, floor or table will not contain 
high interest points. Figure 1 depicts an example input 
scene that is used in our implementation. The camera is 
looking at an un-calibrated scene of randomly placed 
shapes and objects.   

 The manipulator must be able to translate and rotate its 
tool frame {T} w.r.t. its world frame {W}.  As the 
location of the tool flange changes in time, the 
transformation ( W

TT ) between points in {T} and {W} is 
automatically maintained internally by the robot 
controller. 

 The camera must be mounted to the end effector. The 
pose of the camera frame {C} is not known w.r.t. {T} or 
{W}.  

 A rough alignment of the {C} w.r.t. {W} must be initially 
determined. The closest axis XW, YW, and ZW in {W} 
(within 45o or -45o) must be mapped to XC, YC, and ZC in 
{C}. For example, +XC is within 45o or -45o to –YW, +YC 
is within 45o or -45o to –XW, and +ZC is within 45o or -
45o to –ZW. This could be done manually, but section II.A 
describes an algorithm that automates this initialization 
process. 

 

 
 
Fig. 1.  An example configuration of the robot and camera. The camera is 
looking at an uncalibrated scene of random shapes and objects.   

A   Initial Rough Alignment   
 
An initial rough alignment of the robot world {W} and 
camera frame {C} axes must be determined so that an 
approximate correlation between movements in the robot 
world frame and the interest points can be established. 
Figure 2 depicts an initial rough alignment that was used in 
one of our experiments.  
  

 
 

Fig 2. An example initial alignment of camera and robot frames. The unknown 
angle differences are recovered by the algorithms in the following sections.  
 
The initial axis correlations are recovered by moving the 
end-effector (and thus the camera) along each of the robot’s 
world axes and observing the greatest interest point change 
in the camera coordinate system. For example, in Figure 2, a 
translation of the end-effector in +YW  resulted in maximum 
interest point movement along +XC, which would imply that 
+YW is most aligned with –XC. 
 
The initial alignment is determined as follows: 
 
- Translate some distance in +XW., +YW., and +ZW. 

o The distance is arbitrary, but the high interest 
points should not move out of the FOV of the 
camera. 

- Compute high interest point correspondence movement 
in XC and YC after each translation. 

o Each translations results in XC and YC high 
interest point movements (six values in total).  

- The top two high interest point movements in XC and YC 
indicate the alignment of two of the robot axes, and the 
third alignment can then be automatically determined. 

 
We will refer to this initial alignment later by means of a 
MAPPING( ) function, where, for example, MAPPING(XC) 
corresponds to the robot world axis that is most closely 
aligned with the camera’s X axis.  
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III. MANIPULATOR CONTROL ALGORITHMS 
The vision algorithms communicate with the manipulator 

control algorithms by sending a three tuple of information 
that indicates what type of incremental movement should be 
made by the end-effector: ({rotation, translation}, {XW, YW, 
ZW axis, {positive or negative decimal number}). The 
positive or negative decimal number indicates the direction 
of the translation or rotation, and also how many mm or 
degrees should be moved. Only incremental movements are 
made until the camera and robot world frames are aligned, 
avoiding the need to determine a mm per pixel relationship 
which would be work cell specific.   

The algorithm is summarized below in a V+ type syntax 
which is used by Stäubli RX series manipulators. 
   

 
WHILE (NOT ALIGNED) DO 
 
(TYPE,AXIS,VALUE)  THREE TUPLE 
 
CUR_POS  CURRENT END-EFFECTOR POSITION 
 
(CUR_X,CUR_Y,CUR_Z, 
CUR_YAW,CUR_PITCH,CUR_ROLL)  DECOMPOSE(CUR_POS) 
 
IF (TYPE == TRANSLATE) THEN 
 IF (AXIS == X) THEN 
     MOVE TRANS(VALUE,0,0,0,0,0):CUR_POS 
 END 
 ELSE IF (AXIS == Y) THEN 
     MOVE TRANS(0,VALUE,0,0,0,0):CUR_POS 
 END 
 ELSE (IF AXIS == Z) THEN 
     MOVE TRANS(0,0,VALUE,0,0,0):CUR_POS 
 END 
END 
 
IF (TYPE == ROTATE) THEN 
 IF (AXIS == X) THEN 
   MOVE TRANS(CUR_X,CUR_Y,CUR_Z):RX(VALUE): 

TRANS(0,0,0,CUR_YAW,CUR_PITCH,CUR_ROLL) 
 END 
 IF (AXIS == Y) THEN 
   MOVE TRANS(CUR_X,CUR_Y,CUR_Z):RY(VALUE): 

      TRANS(0,0,0,CUR_YAW,CUR_PITCH,CUR_ROLL) 
 END 
 IF (AXIS == Z) THEN 
   MOVE TRANS(CUR_X,CUR_Y,CUR_Z):RZ(VALUE): 

      TRANS(0,0,0,CUR_YAW,CUR_PITCH,CUR_ROLL) 
 END 
END 
 
END 
 

The control algorithm receives the three tuple of 
information and makes the movement relative to the current 
location of its end-effector. Each time a movement is made, 
the location of the end-effector must be updated. 
Communication and movement must be synchronized so that 
the robot completes its current motion before the vision 
algorithms compute the next motion.  

The DECOMPOSE function recovers the X, Y, Z, Yaw, 

Pitch, and Roll values of CUR_POS, the current location of 
the end-effector. The TRANS(X, Y, Z, Yaw, Pitch, Roll) 
function returns a transformation created from its 
parameters. The RX(p), RY(p),and RZ(p) functions returns 
pure rotation transformations of p degrees around the world 
X, Y, and Z axes, respectively. A colon denotes 
transformation matrix multiplication. 

Notice for the rotations portion of the algorithm, that a 
pure translation transformation is first created from the end-
effector’s X, Y, and Z values. The yaw, pitch and roll values 
of this transformation are equal to the world frame. This 
transformation is then multiplied by a pure rotation 
transformation around the desired world axis. Finally, the 
result is multiplied by a pure rotation transformation created 
from the original Yaw, Pitch and Roll from CUR_POS. This 
ordering is essential for rotating the end-effector around 
{W} and not {T}. Using the X, Y, and Z components from 
CUR_POS ensures that the rotation is made from a point 
close to the camera which will prevent a large end-effector 
movement that would move most high interest points 
identified in the first image out of the camera’s FOV.       

 

IV. VISION ALGORITHMS 
 
A  High Interest Points and Correspondences 
 
We implemented a traditional approach to detecting high 
interest points, the Moravec operator [16]. This operator 
detects corner points as high interest points by observing the 
intensity variation in every direction - horizontal, vertical, 
left diagonal and right diagonal. The variance is calculated 
over a nxn search window where n is a positive odd integer. 
The sums of squares of differences of pixels adjacent to each 
other in each of the four directions is calculated and the 
minimum value is returned. 

The non-maximal suppression technique that we used to 
identify local maxima is to choose high interest points as 
those image locations with normalized values above 0.9. 
Figure 3 shows a test image in which high interest points 
have been identified using this process. The image features 
an uncalibrated, oddly shaped object that would deliver good 
high interest points. 

We used a 7x7 matching window in our experiments since 
the Moravec operator is more sensitive to noisy data in very 
small windows. Also, because the Moravec operator is 
sensitive to noise, we first smooth the input images using a 
median filter. A median filter replaces the center pixel of the 
window with the median value in the window and is 
implemented using a quicksort approach which usually finds 
the median value without having to sort all values in the 
window [13]. 
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Fig 3. An example test image where the Moravec operator has identified high 
interest corner points.   
 
Each high interest point in the first image is searched for in 
the second image which has also been smoothed. The 
location of the best match of each interest point is 
determined by using the sum of squared differences. Figure 4 
shows a second test image in which the camera has moved 
and the correspondences and movements of the interest 
points are overlaid.  
 

 
 
Fig 4. A second example test image in which the camera has moved and the 
correspondences and movements of the interest points are drawn on top it. 
 
Because of lens distortion issues and the possibility of 
interest points moving out of the field of view of the camera, 
we do not consider high interest points close to outer edges 
of the image (outer 20% of pixels). 
 
B      Orientation Recovery 
 
We use a sequence of three iterative processes to recover the 
camera’s orientation. In each process: 

 An image is taken 
 The camera is translated along one of the robot’s 

world axes 
 A second image is taken 
 High interest points are found in the first image and 

their correspondences found in the second image.  

 Based on the actual movement of the interest points, 
small rotations around the robot world axes are made 
until the actual movements equal the desired 
movements.  

 
The below ordering of the translations and rotations is not 
necessarily required as long as a sequence of three Euler 
angle rotations is used to recover the three angles.   
 Desired interest point movement is very intuitive. If the 
camera and robot axes are perfectly aligned, then: 
 

 A translation along MAPPING (XC) would result in 
perfect horizontal interest point movements in the 
image. 

 A translation along MAPPING (YC) would result in 
perfect vertical interest point movements in the 
image. 

 A translation along MAPPING (ZC) would result in 
interest point movements whose corresponding lines 
extend through the center of the image.  

In our system, the sequence of three iterative steps is 
arranged as follows: 
  
- First, translate back and forth along MAPPING(XC), 

note the movement of the interest points, and then 
incrementally rotate around MAPPING(ZC) until the 
difference of the row values of the correspondences is 
minimized. 

o This aligns XC to the plane created by 
MAPPING(XC) and MAPPING(ZC) axes.  

- Second, translate back and forth along MAPPING(YC) 
direction, note the movement of the interest points, and 
then incrementally rotate around MAPPING(XC) until 
the difference in the column values of the 
correspondences is minimized. 

o This aligns YC perfectly with MAPPING(YC). 
- Third, translate back and forth along MAPPING(ZC), 

note the movement of the blob, and then incrementally 
rotate around MAPPING(YC) until the difference 
between the line that extends through the 
correspondences and the center of the image is 
minimized. 

o This results in all three camera axes being 
aligned with their corresponding world axes. 
 

The distance to be translated in each step is an arbitrary 
length in millimeters that must be small enough to prevent 
the high interest points around the center of the image to 
move outside of the camera’s FOV. The incremental rotation 
value should be small. In our experiments it was set at 1o, 
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but using a much smaller rotational amount would not have 
an adverse affect of system. A positive or negative rotation is 
made if the location of the actual column/row 
correspondence value is greater than or less than the desired 
value, respectively.  

V. EXPERIMENTAL RESULTS 
The system has been implemented on a Stäubli RX60 robotic 
manipulator which is controlled by a CS7B controller 
running the V+ operating system and programming 
language. The vision algorithms are written in Java and use 
the Java Media Framework (JMF) API to communicate with 
an off-the-shelf Logitech USB camera. We have been 
choosing random starting configurations and then executing 
the algorithms. Initial results show that the algorithms 
converge for the test cases as long as the scene contained 
high interest points whose correspondences were correctly 
found in the image pairs. The rotation algorithms iteratively 
recover the unknown angles in a linear fashion, so 
convergence speed of the algorithm is linear and varied 
based on the size of the angles. A typical example execution 
of the first alignment step is carefully outlined below. The 
second and third steps are similar and will not be further 
presented here.      
 Figure 5 shows an example input scene taken initially 
before the orientation recovery algorithms are executed. 
Notice that the uncalibrated scene contains several arbitrary 
objects lying in random. This is the second image taken after 
the robot has translated in MAPPING(XC). The movement of 
the strongest high interest points (normalized value > 0.9) 
from the previous image are overlaid on this image.   
 

 
 

Fig. 5 Example initial input scene of random objects with the movements of 
strong high interest points overlaid.  
 
From this image, it is obvious that MAPPING(XC) is not 
aligned with XC, so a small rotation is made around 
MAPPING(XZ) and the process is repeated until the high 

interest points make a perfectly horizontal movement.  
 Figure 6 show the same scene after at the eleventh 
iteration of this process. This screen shot was chosen because 
a completely incorrect correspondence of a high interest 
point was calculated which resulted in an incorrect rotational 
value. The algorithm converges as long as correspondences 
for the high interest points are correctly determine for the 
majority of input image pairs. An occasional incorrect match 
as shown in Figure 6 can sometimes result in a rotational 
value opposite to the desired rotational value (which 
happened in iteration eleven), reducing convergence speed of 
the algorithm. If the majority of correspondences are 
incorrect, the algorithm will not converge.   
 

 
 

Fig. 6 Example screenshot at the eleventh iteration of the algorithm which 
contains an incorrect interest point correspondence.       
 
Finally, Figure 7 shows movement of the interest points after 
23 iterations. The algorithm has converged and movement of 
high interest points are perfectly horizontal which indicates 
XC is aligned with the plane created by MAPPING(XC) and 
MAPPING(XZ). 
 

 
 

Fig. 7 Example screenshot at the twenty third iteration of the algorithm which 
shows perfect horizontal movement of the interest points which causes the 
algorithm to terminate. 
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Figure 8 plots the row error of the correspondences during 
the execution of the algorithm. The somewhat jagged nature 
of the plot is expected due to slightly incorrect 
correspondence matches. At iterations 11 and 13, incorrect 
correspondences causes the error distance to flip signs which 
delayed the convergence of the algorithm.  
 

 
 

  Fig. 8 Plot of row error distances from interest point correspondences.  
  
A 19o angle offset between MAPPING(XC) and XC was 
correctly recovered by the algorithm after 23 iterations. The 
algorithm converges linearly, but needed an additional four 
iterations: two incorrect rotations were made which then 
required an additional two correct rotations to compensate 
for these erroneous movements. 

VI. CONCLUSIONS AND FUTURE WORK 
The optical flow of high interest points in an uncalibrated 
input scene can be used to iteratively recover the camera 
orientation of an eye-in-hand robotic manipulator. The 
algorithms could be periodically executed by the manipulator 
to maintain precise calibration over time. 

To recover translation offsets of the camera’s coordinate 
system, we are implementing the depth extraction algorithms 
in [15] and will also try to improve on the accuracy of that 
work. We are also implementing various corner point 
detection approaches [18] to determine which technique 
yields the best results for our application.   
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