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Abstract

Lattice reduction algorithms have been used for crypt-

analysis of many public key cryptosystems. Several

lattice reduction algorithms have been proposed in the

literature while the most popular among them is the

BKZ algorithm. When BKZ fails to find a shortest

vector, typically it returns a much longer vector than

the shortest. We proposed the extended search space

to find a shortest vector in such a case in our previous

paper and confirmed the effectiveness of it experimen-

tally. In this paper, we justify the effectiveness of the

extended search space by additional analysis. For that,

we analyzed coefficients of the shortest vector in a lat-

tice based on some heuristic assumptions. Moreover,

we examined the distribution of the coefficients that

highly affect the inclusion probability in the extended

search space. We showed that the inclusion probability

can be estimated based on the distribution, and the

estimated probability reflected the experimental results

in our privious paper.
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1 INTRODUCTION

A lattice L is the set of all linear combinations with in-
teger coefficients of a set of linearly independent vec-

tors b1, . . . ,bn ∈ R
m. The integer n is called the

dimension of the lattice L, and (b1, . . . ,bn) is called
a basis of the lattice L. A lattice has infinitely many
bases when n ≥ 2. The aim of lattice reduction is to

compute bases consisting of very short vectors or short-

est vectors.

Lattice reduction algorithms have been used for

cryptanalysis of many public key cryptosystems. On

the other hand, some public key cryptosystems were

suggested that are closely related to lattice problems

over the previous decade. Among them, the GGH cryp-

tosystem [5] and the NTRU cryptosystem [6] are well

known. Although four of the five challenges of the

GGH cryptosystem were broken [10], the GGH cryp-

tosystem was improved by the HNF technique [9]. The

NTRU cryptosystem was subject to no significant at-

tacks so far.

Many lattice reduction algorithms have been pro-

posed, and some of them have been applied to crypt-

analysis of these cryptosystems. The LLL algorithm

[7] was the major breakthrough in the lattice reduction.

It generates a reduced basis of proven quality in poly-

nomial time. The BKZ algorithm [11] combines the

LLL algorithm with exhaustive search in low dimen-

sional sublattices. Although there is no guaranteed run

time bound for the BKZ algorithm, the BKZ algorithm

works better than the LLL algorithm in practice. The

Random Sampling Reduction algorithm (RSR) [12]

combines the BKZ algorithm with the Sampling Algo-

rithm (SA) that samples a lattice vector from a search

space.

In every iteration of RSR, a lattice vector which is

shorter than b1 at least by the factor
√

0.99 is searched
by SA. While the search succeeds, BKZ is called after

the search. If the factor
√

0.99 can be decreased, the
number of iterations can be decreased. For this, the

search space must contain a very short vector such that

it is shorter than b1 by a factor smaller than
√

0.99.
In this paper, we show that such chances can be much

increased by extending the search space.

In our previous paper [3], we proposed the extended

search space, which is determined by the smalle num-

ber of parameters. Moreover, we experimentally con-

firmed that the extended search space includes a short-

est vector with considerably high probability. But, we

did not present theoretical analysis in [3].

In this paper, we justify the effectiveness of the ex-

tended search space by additional analysis. For that, we

analyze coefficients of the shortest vector in a lattice

based on some heuristic assumptions. Moreover, we
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examine the distribution of the coefficients that highly

affect the inclusion probability in the extended search

space. This paper is a revised version of [2].

2 PRELIMINARIES

2.1 Lattice

Definition 1 Given a set of n linearly independent vec-
tors B = [b1, . . . ,bn] ∈ Z

m×n, the integer lattice

L ⊂ Z
m spanned by B is defined as the set

L(B) = {Bx | x ∈ Z
n}

of all integral combinations of bi’s.

The integer n is called the dimension of L. When n =
m, we say that L is full-dimensional. In the rest of

this paper we concentrate on full-dimensional integer

lattices. The ordered set of vectorsB = [b1, . . . ,bn] ∈
Z

m×n is called a basis of L.
Every lattice has infinitely many bases when n ≥ 2.

The relation of bases that generate the same lattice can

be algebraically characterized as follows.

Lemma 1 Two lattice bases B,B′ generate the same

lattice L if and only if there is a unimodular matrix

U ∈ Z
n×n(i.e., detU = ±1) such that B ′ = BU .

Definition 2 The determinant of a lattice L = L(B),
denoted by det(L), is defined as the volume of the

parallelepiped spanned by the columns of B, i.e.,
det(L) = Vol({Bx | x ∈ [0, 1)n}).

The determinant is a lattice invariant. That is, it does

not depend on any particular basis.

Definition 3 For a lattice basis B = [b1, . . . ,bn], the
corresponding Gram-Schmidt orthogonalized vectors

b∗
1, . . . ,b

∗
n are defined by

b∗

i = bi−
i−1
∑

j=1

µi,jb
∗

j with µi,j = 〈bi,b
∗

j 〉/〈b∗

j ,b
∗

j 〉

(1)

where 〈x,y〉 =
∑n

i=1 xiyi is the inner product in R
n.

We call µi,j the Gram-Schmidt coefficients.

For every i, b∗

i is the component of bi that is orthog-

onal to b1, . . . ,bi−1. In particular, vectors b∗

i and

b∗

j (j 	= i) are orthogonal. We can compute the de-
terminant of the lattice by the product of the lengths of

the orthogonalized vectors

det(L(B)) =
n

∏

i=1

‖b∗

i ‖ (2)

where ‖x‖ =
√

∑n
i=1 x2

i is the Euclidean norm.

Let λ1(L) denote the Euclidean norm of the shortest

nonzero lattice vector in the lattice L.

Let v = Bx with x ∈ Z
n be a vector in the lattice

generated by the basis B. From Eq. (1), we can repre-
sent v with the Gram-Schmidt orthogonalized vectors

b∗
1, . . . ,b

∗
n and the Gram-Schmidt coefficients µi,j of

B. That is, v =
∑n

j=1 νjb
∗

j with ν ∈ R
n such that

νj =
∑n

i=1 xiµi,j . As b
∗
j are pairwise orthogonal,

‖v‖2 =

n
∑

j=1

ν2
j ‖b∗

j‖2. (3)

Eq. (3) means that for a lattice vector v =
∑n

j=1 νjb
∗

j

to be short, |νj | need to be small.
In the following, we call νj the Gram-Schmidt

coefficients of v. Notice that we defined the Gram-

Schmidt coefficients both in Definition 3 and here.

We defined them as coefficients µi,j obtained during

the Gram-Schmidt orothogonalization in Definition

3, and here we defined them as coefficients νj of the

Gram-Schmidt orothogonalized vectors in a vector.

What they mean is essentially the same because

µi,j = 〈bi,b
∗
j 〉/〈b∗

j ,b
∗
j 〉 and νj = 〈v,b∗

j 〉/〈b∗
j ,b

∗
j 〉.

But in order to avoid confusion, we use the symbol µ
for the former and ν for the latter.

2.2 Lattice Basis Reduction Algorithms

Several lattice basis reduction algorithms have been

proposed.

The BKZ algorithm [11] computes a (δ,β)-BKZ re-
duced basis for δ ∈ (1/4, 1] and an integer β such that
2 ≤ β < n. Let πi : R

n → span(b1, . . . ,bi−1)
⊥

be the orthogonal projection. Also, let L i denote the

orthogonal projection of L in span(b1, . . . ,bi−1)
⊥. A

(δ,β)-BKZ reduced basis B satisfies

1. |µi,j | ≤ 1
2 for all i > j, where µi,j are the Gram-

Schmidt coefficients,

2. δ‖b∗i ‖2 ≤ λ1(Li(b1, . . . ,bmin(i+β−1,n)))
2 for all

i.

There is no proven polynomial time bound for the

BKZ algorithm, but the algorithm behaves well in prac-

tice. Although the quality of a (δ,β)-BKZ reduced
basis is better for larger β, the computational cost in-

creases for larger β. For δ ∈ [1/3, 1], a δ-LLL reduced

basis [7] coincides with a (δ, 2)-BKZ reduced basis.
Schnorr proposed Random Sampling Reduction

(RSR) [12]. Recall that for a lattice vector v =
∑n

j=1 νjb
∗

j to be short, |νj | need to be small. It is
well known that the initial vectors b∗

1, . . . ,b
∗

k are usu-

ally longer than subsequent vectors b∗

j for j > k if
B is reduced by BKZ. So Gram-Schmidt coefficients

ν1, . . . , νk have a larger impact on the overall length of

v than νj for j > k. Then, it is reasonable to assume
that a vector v =

∑n
j=1 νjb

∗

j such that

|νj | ≤
{

1
2 for j < n − u

1 for n − u ≤ j < n
, νn = 1 (4)
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for some 1 ≤ u ≤ n is likely to be short. There are at
least 2u distinct lattice vectors of this form. Sampling

Algorithm (SA) generates a single vector v satisfying

(4). Let Su,B be the set of vectors satisfying (4) for the

specified u. We call Su,B the SA search space.

Sampling Algorithm (SA)

Input: lattice basis B = [b1, . . . ,bn] with µi,j and an

integer u such that 1 ≤ u < n.
Output: v satisfying (4).

v := bn

for j = 1, . . . , n − 1 µj := µn,j

for i = n − 1, . . . , 1
Select y ∈ Z randomly such that |µi − y| ≤
{

1/2 if i < n − u
1 if i ≥ n − u

v := v − ybi

for j = 1, . . . , n − 1 µj := µj − yµi,j

Given a lattice basis B = [b1, . . . ,bn], RSR sam-
ples by SA up to 2u distinct lattice vectors v =
∑n

j=1 νjb
∗

j satisfying (4) until a vector v such that

‖v‖2 < 0.99‖b1‖2 is found. Subsequently RSR in-

serts the vector found by SA into the basis, and BKZ

is used to reduce the new basis. This random sampling

by SA and BKZ process are iterated several times.

2.3 Extended Search Space

In [3], we proposed an extended search space bounded

by a function f(x) = kan−x. The extended search

spaceWk,a,j0,B is defined formally as follows.

Definition 4 Let B be a lattice basis, and let k, a ∈
R

+, j0 ∈ Z
+
n . Then the extended search space

Wk,a,j0,B is the set of all lattice vectors v =
∑n

j=1 νjb
∗

j subject to

νj ∈











(−�2kan−j�/2, �2kan−j�/2] for 1 ≤ j < j0,

{1, . . . , �kan−j
} for j = j0,

{0} for j0 < j ≤ n,
(5)

for j = 1, . . . , n.

For the search in Wk,a,j0,B , we can use GenSample

which was proposed as one of variants of SA in [8].

The random coin toss in SA is replaced by the binary

digits of the integer argument x in GenSample. In [8],
it is proved that GenSample generates a different vector

for a different index x.

3 ANALYSIS OF THE

EXTENDED SEARCH SPACE

In the following, we estimate the probability with

which the shortest vector is included in the extended

search space.

Let v be the shortest vector in the lattice generated

by the basisB, and let b∗
1, . . . ,b

∗
n be the corresponding

Gram-Schmidt orthogonalized vectors. Recall that we

can represent v with b∗
1, . . . ,b

∗
n as v =

∑n
j=1 νjb

∗

j .

Then,

‖v‖2 =

n
∑

j=1

ν2
j ‖b∗

j‖2. (6)

If v is the shortest vector, each νj must be small. So,

each ν2
j should cancel the term ‖b∗

j‖2. If ν2
j exactly

cancels ‖b∗
j‖2,

|νj | = t/‖b∗

j‖ for j = 1, . . . , n (7)

holds for some constant t ∈ R+. For actual data, this

does not hold. So, we introduce error terms t j ∈ R for

j = 1, . . . , n into Eq. (7):
Assumption 1

|νj | = (t + tj)/‖b∗

j‖ for j = 1, . . . , n. (8)

Here, t is determined later.
It is well known that if a random lattice basis is

reduced by LLL or BKZ, the lengths of the Gram-

Schmidt orthogonalized vectors of the basis resemble a

geometric sequence ‖b∗

j‖2 ≈ qj−1‖b1‖2 for some q ∈
[0, 1]. This observation is crucial for Schnorr’s analy-
sis in [12] and supported also in [1] and [4]. In prac-

tice, we estimate q by the least mean square method.
Here, in order to estimate the similarity, we represent

the approximate equation ‖b∗

j‖2 ≈ qj−1‖b1‖2 by an

equation

‖b∗

j‖2 = eδjqj−1‖b1‖2 for j = 1, . . . , n, (9)

by introducing error terms eδj for j = 1, . . . , n. Here,
|δj | must be small. Then, from Eq. (8) and Eq. (9),

|νj | = (t + tj)/(e
δjqj−1‖b1‖2)1/2

= t/(qj−1‖b1‖2)1/2 + ((1 − eδj/2)t

+tj)/(e
δjqj−1‖b1‖2)1/2

= (t(q1/2)1−n/‖b1‖)(q1/2)n−j

+((1 − eδj/2)t + tj)/(e
δjqj−1‖b1‖2)1/2.

Let k = t(q1/2)1−n/‖b1‖, a = q1/2, and εj = ((1 −
eδj/2)t + tj)/(e

δjqj−1‖b1‖2)1/2. Then,

|νj | = kan−j + εj . (10)

Here, k and a are parameters for the extended search
space. From Definition 4, for v =

∑n
j=1 νjb

∗

j to

be included in the extended search space, νj for j =
1, . . . , n need to satisfy at least the following inequal-
ity:

|νj | ≤ �2kan−j�/2. (11)

From Eq. (10), for νj to satisfy Eq. (11) the following

condition needs to be satisfied:

Condition 1

εj ≤ πj with πj = �2kan−j�/2 − kan−j . (12)

Note that πj ≤ 0.5. If Condition 1 is satisfied for all
j, then v =

∑n
j=1 νjb

∗

j is included in the extended

search space.
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4 DISTRIBUTION OF εj

The analysis in Section 3 explains why the search in the

extended search space worked in [3]. From the analy-

sis in Section 3, νj can be divided into two part: the

exponential part kan−j and the perturbation part εj .

Here, we used the bases of the GGH cryptosystem.

In the GGH cryptosystem, the private basisR is defined
as R = dI + R′ where d = l� 1 +

√
n � is a param-

eter from a given integer bound l(e.g., l = 4) and R ′

is a perturbation matrix with entries chosen indepen-

dently and uniformly at random from {−l, . . . ,+l}. R
is transformed into a public basis B by applying ele-

mentary column operations 2n times. At every step we
add to a column a random integer combination of the

other columns. The coefficients in the integer combi-

nation are chosen at random from {−1, 0, +1}.
Let R be a GGH private basis and let B be its

(0.99,β)-BKZ reduced public basis. Then the short-
est vector v is included in R. We represent v by the
Gram-Schmidt orthogonalized vectors b∗

1, . . . ,b
∗
n as

v =
∑n

j=1 νjb
∗

j . We computed νj from the unimodu-

lar matrix U such that R = BU . In our experiments,
we used the version 5.5.1 of the NTL software package

[13] with some additional programs written in C++.

We used the BKZ routine of the NTL with quadratic

precision. All programs were run on a 2.33 GHz Intel

Core 2 Quad with Linux.

Here, we experimentally find out the distribution of

tj and δj . For this, we must first determine t. Here,
we replace νj in (6) with (7). Because the length of the

shortest vector v is λ1, we have

λ2
1 =

n
∑

j=1

(t2/‖b∗

j‖2)‖b∗

j‖2 = nt2. (13)

From this, we have t = λ1/n
1/2.

We got t = 4.743, q = 0.943, a = 0.971, k = 0.946
for a (0.99, 10)-BKZ reduced public basis in dimen-
sion 160. Figure 1 and Figure 2 show the distribution

of tj and δj for the (0.99, 10)-BKZ reduced public ba-
sis in dimension 160. We found that tj and δj tend to

distribute according to the normal distribution.

Next, assuming the distributions of tj and δj are the

normal distributions, we estimate the probability with

which Condition 1 is satisfied for each j. Recall that
εj = ((1 − eδj/2)t + tj)/(e

δjqj−1‖b1‖2)1/2. We

computed 106 possible values of εj according to the

distribution of tj and δj for each j. Then we com-
puted Pr[εj ≤ πj ] for each j. Figure 3 shows the ac-
tual values of πj . Finally, we got the probability with

which Condition 1 is satisfied for all j as 0.000942 by
∏n

j=1 Pr[εj ≤ πj ]. We note that the probability ob-
tained experimentally for (0.99, 10)-BKZ reduced pub-
lic bases in [3] was roughly 10 times higher than the

probability 0.000942. So far, we have interpreted the
cause of the difference between the probabilities was

the errors occurred in assuming the distribution of δ j

and tj .
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Figure 1: The distribution of tj . The average of tj is

-0.909, and the variance is 7.846.
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Figure 2: The distribution of δj . The average of δj is

0.149, and the variance is 0.00464.
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Figure 3: Values of πj
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5 CONCLUSION

We estimated the deviation of a basis from the so-called

geometric sequence assumption by introducing error

terms δj . We showed that error terms δj for the ge-

ometric sequence assumption distributed according to

the normal distribution. In our experiment, the devia-

tion factor eδj was less than 1.5 at the maximum. So, it
can be said that the deviation tend to be small.

We also examined the actual distribution of tj on As-

sumption 1. Because values of tj was very small com-

pared with values of ‖b∗
j‖, it can be said that the devi-

ation of actual bases from Assumption 1 is also small.

Moreover, we showed the method to estimate the

probability with which the shortest vector was included

in the extended search space by utilizing the distribu-

tion of δj and tj .
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