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Abstract

Selection of relevant genes that will give higher ac-
curacy for sample classification (for example, to dis-
tinguish cancerous from normal tissues) is a common
task in most microarray data studies. An evolutionary
method based on generalization error bound theory of
support vector machine (SVM) can select a subset of
potentially informative genes for SVM classifier very
efficiently. The bound theories are developed for bi-
nary SVM, however multiclass SVMs do not have es-
tablished bounds on the generalization error. Several
multiclass SVMs have been proposed where multiclass
SVMs are typically constructed by combining several
binary SVMs. We evaluate an estimate of a general-
ization error bound for a multiclass SVM by combining
the error bound of binary SVMs which are used to con-
struct the multiclass SVM. In this paper our aims are
to compare the performance of several multiclass SVMs
in the SVM-based evolutionary method and then find
the best multiclass SVM classifier in the SVM-based
evolutionary method for multicategory cancer diagno-
sis using microarray gene expression data.
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1 Introduction

Patient samples for bioinformatic analyses are fairly
small in number compared to the number of genes in-
vestigated such as microarray datasets [1]. The vast
amount of raw gene expression data leads to statisti-
cal and analytical challenges including the classifica-
tion of datasets into correct classes [2]. In machine-
learning terminology, these data sets have high dimen-
sion and small sample size. However, the data man-
agement system allows researchers to gather a number

of genes of ever-increasing size, many of which are ir-
relevant to the distinction of samples. These irrelevant
genes have negative effect on the accuracy of a classi-
fier. The microarray data also contain technical and
biological noise. Selection of relevant genes that will
give higher accuracy for sample classification (for ex-
ample, to distinguish cancerous from normal tissues) is
a common task in most microarray data studies. There
exist several ranking based and evolutionary computa-
tion methods for gene selection in the microarray data
[1]-[5, 9, 11]. Gene selection can moderately or signifi-
cantly improve the performance of classifiers [4]. Gene
selection by evolutionary method and a good choice of
a classifier can outperform others [1].

Recently, Debnath and Kurita have proposed an evo-
lutionary method which selects and recombines gene
features based on SVM error bound values and an SVM
evaluates the fitness function [5]. Thus, selected genes
directly reflect to some extent the performance of the
SVM classifier unlike the conventional methods which
select and recombine genes using genetic algorithm
(GA) based approaches that are independent of the
algorithm to be used to construct the classifiers. The
bound theories are developed for binary SVM, how-
ever multiclass SVMs do not have established bounds
on the generalization error. Several multiclass SVMs
have been proposed where multiclass SVMs are typi-
cally constructed by combining several binary SVMs
[3, 7, 12, 13]. For multicategory diagnosis, gene fea-
tures are selected by combining error bounds of binary
SVMs which are used to construct the multiclass SVM
and the multiclass SVM evaluates the fitness function
in the SVM-based evolutionary method. Multiclass
SVMs such as one-versus-one and DAGSVM methods
construct k(k − 1)/2 binary SVM classifiers for a k-
class problem where each binary SVM classifier is con-
structed using data from two classes out of k classes
whereas the other methods such as one-versus-rest, all-
together, and Crammer and Singer methods construct
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k binary SVM classifiers where each binary SVM clas-
sifier is constructed using all the training data, and the
classifier separates one class from the others [7, 12].
Thus, multiclass SVMs are basically two types in the
case of constructing classifiers, however their decision
functions are different. In [4], Statnikov et al. have
compared various multiclass SVMs (MC-SVMs) with
microarray gene expression datasets and empirically
found that the one-versus-rest method has a superior
classification performance (on an average) than the
others. On the other hand, the one-versus-one method
fits perfectly the known characteristics of the binary
SVM, where the borderlines between classes are com-
puted directly.

In this paper, we compare the performance of one-
versus-one and one-versus-rest MC-SVM methods in
the SVM-based evolutionary method proposed in [5].
Both linear and nonlinear kernels are investigated to
evaluate the performance of multiclass SVMs. We per-
form experiments with binary SVM’s Opper-Winther
bound [10], Zhou-Tuck bound [11], and radius-margin
bound [13] for feature selection. Numerous experi-
ments on several data present that a small number of
genes can linearly separate datasets into classes with
highest classification accuracies. We also find that the
one-versus-one MC-SVM shows slightly better results
than the one-versus-rest MC-SVM in the evolutionary
method.

2 Methods and Materials

2.1 SVM Classifier

The SVM is arguably the single most important de-
velopment in supervising learning area. Theoretically,
the SVM approximately implements the structural risk
minimization principle, thus the SVM is situated on a
strong theoretical foundation. It has no local minima,
i.e., it solves a convex optimization problem. The algo-
rithm can automatically determine a network architec-
ture. It is less sensitive to the curse-of-dimensionality
and more robust to a small number of high dimensional
samples than other non-SVM classifiers. For these rea-
sons, it is much more attractive in application areas
than the other neural networks. Investigation of nu-
merous experiments on gene expression data using var-
ious models of SVMs and non-SVMs for cancer diag-
nosis were performed previously [4]. The best results
were obtained using the SVM methods. Basically SVM
is designed for binary classification problems, and sev-
eral algorithms exist that allow multiclass classification
with SVMs. In this section, we outline the principles
behind SVM algorithms used in this study. Detailed
review of binary SVM, exact mathematical formula-
tions of both binary and multiclass SVM algorithms
are given in [3, 7, 12, 13].

2.1.1 Binary SVM

Binary SVM is a linear classifier that maximizes the
margin between the separating hyperplane and the
training data points [13]. The hyperplane is based on
a set of training data which lie closest to the boundary
and are called support vectors. The algorithm implic-
itly maps the input data in the feature space, and an
inner-product induced in the algorithm is calculated by
kernel functions without considering the feature space
itself. The SVM problem is expressed by a quadratic
programming (QP) optimization problem with linear
constraints. For this reason, the SVM always produces
global solution for classifiers. The SVM is an unique
supervised learning algorithm that often achieves su-
perior generalization performance compared to other
learning algorithms across most domains and tasks.

2.1.2 Multiclass SVM: One-Versus-Rest

For a k-class problem, the one-versus-rest method con-
structs k SVM models [3, 7, 12]. The ith SVM is
trained with all of the training examples in the ith
class with positive labels, and all other examples with
negative labels. The final output of the one-against-
rest method is the class that corresponds to the SVM
with the largest output value. The method is com-
putationally expensive, since we need to solve k QP
optimization problems where each problem size is the
same as the training data set size. This technique does
not have theoretical justification such as the analysis of
generalization, which is a relevant property of a robust
learning algorithm.

2.1.3 Multiclass SVM: One-Versus-One

The one-versus-one method constructs all possible pair-
wise binary classifiers, where each classifier is con-
structed using the training examples from two classes
chosen out of k classes [3, 7, 12]. There exist k(k−1)/2
different decision functions for a k-class problem. The
most popular method for the class identification of the
one-versus-one method is the “Max Wins” algorithm.
In the “Max Wins” algorithm, each classifier casts one
vote for its preferred class, and the final result is the
class with the most votes. When more than one class
have the same number of votes, i.e., a tie situation
arises, each point in the unclassifiable (tie) region is
assigned to the closest class using the real valued de-
cision functions. Unlike the one-versus-rest method,
tie-breaking plays only a minor role and does not af-
fect the decision boundaries significantly. One of the
benefits of this algorithm is that for every pair of classes
we deal with a much smaller optimization problem. Al-
though we need to solve k(k − 1)/2 QP optimization
problems, the computational complexity is polynomial
to the training data set size. Similar to one-versus-rest
method, one-versus-one method does not have an es-
tablished bound on the generalization error. However,
the one-versus-one method fits perfectly the known
characteristics of the binary SVM, where the border-
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lines between classes are computed directly. Moreover,
some researchers postulate that even if the entire mul-
ticategory problem is non-separable, while some of the
binary subproblems are separable, then one-versus-one
method can lead to improvement of classification accu-
racy compared to one-versus-rest method [4, 12].

2.1.4 Bounds on Generalization Error

SVMs are provided with many statistics that allow
us to estimate their generalization performance from
bounds on the leave-one-out error. The leave-one-out
error is an unbiased estimate for the true error rate of a
classifier. Several error bound theories for binary SVMs
exist and most of the bounds are developed for hard
margin SVMs. Multiclass SVMs do not have estab-
lished bound on generalization error. The one-versus-
one and one-versus-rest MC-SVMs are constructed by
combining several binary SVMs. We evaluate an es-
timate of a generalization error bound for a multiclass
SVM by averaging the values of the generalization error
bound of all binary SVMs which are used to construct
the multiclass SVM. In this paper, we test our experi-
ments with binary SVM’s Opper-Winther bound [10],
Zhou-Tuck bound [11], and radius-margin bound [13]
for gene feature selection. Detailed description of these
bound are presented in [10, 11, 13].

2.2 SVM-based Evolutionary Method

The evolutionary algorithm that we use maintains a
population of predictors whose effectiveness can be de-
termined by using them as features in an SVM clas-
sifier. The initial predictors in the population are
randomly constructed from the gene features set. In-
stead of applying crossover and mutation operations,
the method selects and recombines new features based
on an estimate of the error bound value of an SVM and
the frequency of occurrence of the features in the evolu-
tionary approach. Let us denote that Tm is the bound
value of an SVM where the training dataset contains m
features of a predictor and T i

m−1 is the bound value for
all m genes except gene i. Then, T i

m−1 for all i in each

predictor are calculated. The T j
m−1 < T k

m−1 means
removing gene j from the predictor can reduce error
bound much more than removing gene k. Thus genes
j with small T j

m−1 should be deleted in the next gen-
eration. Again, if T i

m+1 is the bound value for m genes

on a predictor plus a new gene i. The T j
m+1 < T k

m+1

means adding gene j to the predictor can reduce error
bound much more than adding gene k. The derivative
of the bound values can also be used for feature selec-
tion. The minimum derivative value with respect to a
gene feature means the bound is less sensitive to that
gene feature and the maximum derivative value with
respect to a gene feature means the bound is highly
sensitive to that gene feature. We can remove a gene
feature from a predictor to which derivative of error-
bound is minimum and add a gene feature to a pre-
dictor to which derivative of error-bound is maximum.

The k-fold cross validation is used as an estimator of
the generalization performance that also measures the
fitness value. The termination criteria is defined using
both the maximum number of generations and the cri-
teria of no improvement of maximum fitness value of
the population. The algorithm is described below:

1. A population E0 of n predictors {G1, G2, ..., Gn}
is created. A predictor Gi is a subset of m gene
features {g1, g2, ..., gm} initially created randomly.
Evaluate the fitness values of all predictors. The
fitness value of a predictor is evaluated by the SVM
applied on the k-fold cross validation data set with
m gene features of that predictor.

2. Until termination criteria not satisfied do the fol-
lowing:

3. For each predictor Gi ∈ Ek, create a new predictor
G′

i

3.1. Delete p genes from Gi, whose error bound
values or derivative of error bound values are
minimum and selected in a few previous gen-
erations as briefly described above. For de-
tails, see [5].

3.2. Add the same number of p genes from a ran-
dom subset of data except those are in Gi in
population Ek whose error bound values are
minimum or derivative of error bound values
are maximum with the rest of the genes in Gk

after deletion and frequently selected in the
previous generations.

3.3. Compute the fitness function for the new pre-
dictor G′

i using SVMs.

4. Create a new population Ek+1 by replacing all new
G′

i.

5. Replace some worse predictors of the new popula-
tion Ek+1 based on classification accuracy by some
best predictors from the previous generation. To
do this, merge the features of some best predictors
from the previous generation and then randomly
split features of the merged features set into the
same number of predictors. Then select some pre-
dictors for the new G′

i.

This procedure will be performed for a set of SVM hy-
perparameters and the best hyperparameters for each
predictor will be obtained. Different combinations of
genes with the same high accuracy rate can be evalu-
ated in evolutionary computations through generation
of individuals of a population. From this procedure we
will get n′ feature sets according to the best high clas-
sification accuracies where n′ ≤ n. From the n′ sets
we will choose Nbest features according to occurrence
frequency and classification accuracy rate. The hyper-
parameters for the final learning machine (SVM) will
be selected by averaging the best hyperparameters of
that n′ predictors. For details about the algorithm and
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principles behind these, see [5]. For multicategory mi-
croarray data, we apply one-versus-one MC-SVM clas-
sifier and one-versus-rest MC-SVM classifier to evalu-
ate the fitness function in the evolutionary method and
Tm of an MC-SVM is evaluated by averaging the bound
values of all binary SVMs used to construct the MC-
SVM. We call the proposed evolutionary methods as
evolutionary one-versus-one MC-SVM and evolution-
ary one-versus-rest MC-SVM throughout the paper.

3 Computational Experiments

3.1 Data Analysis

In our experiments, we use 6 cancer-related human
gene expression datasets that are described in Ta-
ble 1. The dataset are available on http://www-
gems-system.org for non-commercial use. The studied
datasets were produced primarily by oligonucleotide-
based technology. Specifically, all datasets except for
SRBCT, RNA were hybridized to high-density oligonu-
cleotide Affymetrix arrays HG-U95 or Hu6800, and
expression values (average difference units) were com-
puted using Affymetrix GENECHIP analysis software.
The SRBCT dataset was obtained by using two-color
cDNA platform with consecutive image analysis per-
formed by DeArray Software and filtering for a minimal
level of expression. The datasets have 3-5 distinct di-
agnostic categories, 50-203 patient samples, and 2308-
12600 variables (gene features) after preprocessing (de-
tails in [4]). We rescale gene expression values of these
datasets linearly into the range [-1,1].

3.2 Parameter Setting

The number of predictors is set to 50. The size of each
predictor and the numbers of deletions and additions
of genes are set experimentally (usually half of the pre-
dictor is deleted and added in our experiments). In
each generation, at best 10 worst predictors in the new
population is replaced with the 10 best predictors of
the previous population according to step 5 of the al-
gorithm. To evaluate the performance of the proposed
method we use 5-fold cross-validation on each dataset.
The stopping condition of the algorithm is to use 100
generations. The SVM parameters are as: trade-off
parameter C = [2−2, 2−1, . . . , 29, 210], and RBF kernel
parameter γ = [2−5, 2−4, . . . , 23, 24].

3.3 Experimental Results

To compare the performance of evolutionary one-
versus-one and one-versus-rest MC-SVMs, we first
choose the linear kernel. For linear kernel, we per-
formed experiments on Opper-Winther bound, Zhou-
Tuck bound, and radius-margin bound but reported
the results in the tables of the bounds that show the
best performance. The results of evolutionary one-
versus-one MC-SVM and evolutionary one-versus-rest
MC-SVM with some other existing methods such as

MC-SVM [4] and ESVM [1] are shown in Table 2. We
show the results of MC-SVMs and ESVM from [4] and
[1], respectively, in Table 2. From experimental results,
we see that evolutionary MC-SVMs with linear kernel
obtain better results than the other existing methods,
and the evolutionary one-versus-one MC-SVM shows
slightly better results than the evolutionary one-versus-
rest MC-SVM. Table 3 shows the results of evolution-
ary one-versus-one MC-SVM with linear kernel where
gene features are selected using derivative of the bound
values. In this experiment, we also include the deriva-
tive of weight vector for feature selection. From the
results we see that bound values are more stable than
their derivatives for feature selection. The computa-
tional costs of derivatives are computationally more
expensive than the cost of bounds themselves except
the cost of the derivative of weight vector. The deriva-
tive of weight vector can perform better among the
derivatives of error bounds but it is not as good as
error bounds. The RBF kernel shows better general-
ization performance for some complex problems. We
also compute the experimental results of RBF kernel on
evolutionary one-versus-one and one-versus-rest MC-
SVMs. The Opper-Winther bound and radius-margin
bound are investigated for RBF kernel. Table 4 shows
the comparison of evolutionary one-versus-one and one-
versus-rest MC-SVMs using linear and RBF kernels
with the same number of genes in each dataset. From
the results we see that RBF kernel shows good results
in the evolutionary one-versus-rest MC-SVM; however,
the same results are obtained using linear kernel in the
evolutionary one-versus-one MC-SVMs. The compari-
son of linear and nonlinear kernels reveals the necessity
of using linear kernel in some situations. In the case
of clinical applications such as diagnosis of disease as
well as prediction of clinical outcomes in response to
treatment, a small number of genes that can separate
datasets into classes linearly with highest classification
accuracies are more desirable. By our experiments, we
see that a small number of genes can linearly separate
datasets into classes with highest classification accu-
racies. Experiments with different error-bounds also
present that the evolutionary one-versus-one MC-SVM
shows slightly better results than the evolutionary one-
versus-rest MC-SVM.

4 Conclusion

In this paper, we compare the performance of one-
versus-one and one-versus-rest MC-SVMs in the evo-
lutionary algorithm where feature selection and recom-
bination are based on the generalization error bound
of SVMs. To evaluate the performance, we apply sev-
eral error-bounds on each multiclass SVM-based evo-
lutionary method. From experimental results, we see
that a small number of genes can linearly separate
datasets into classes with highest classification accura-
cies. We also find that the evolutionary one-versus-one
MC-SVM shows slightly better results than the evolu-
tionary one-versus-rest MC-SVM.
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Dataset Diagnostic Task #Samples #Genes #Classes
Leukemia1 Accute myelogenous leukemia (AML), acute lympboblastic 72 5327 3

leukemia (ALL) B-cell, and ALL T-cell
Leukemia2 AML, ALL, and mixed-lineage leukemia (MLL) 72 11225 3
SRBCT Small, round blue cell tumors of childhood 83 2308 4

Brain Tumor1 Five human brain tumor types 90 5920 5
Brain Tumor2 Four malignant glioma types 50 10367 4
Lung Cancer Four lung cancer types and normal tissues 203 12600 5

Table 1: Features of microarray datasets.

Dataset MC-SVM [4] ESVM [1] Evolutionary one-versus-one MC-SVM Evolutionary one-versus-rest MC-SVM
(RBF Kernel) (RBF Kernel) (Linear Kernel) (Linear Kernel)
Ac. Rate (%) Ac. Rate (%) #Genes Ac. Rate (%) #Genes Bounds Ac. Rate (%) #Genes Bounds

Leukemia1 97.50 100.0 3.4 100.0 3 OW/ZT/RM 100.0 3 OW/ZT/RM

Leukemia2 97.32 100.0 3.5 100.0 3 OW/ZT/RM 100.0 3 OW/ZT/RM

SRBCT 100.0 98.75 6.2 100.0 4 OW/ZT/RM 100.0 4 OW/ZT

Brain Tumor1 91.67 96.67 6.1 98.89 8 RM 97.78 8 ZT

Brain Tumor2 77.83 100.0 4 100.0 5 OW/ZT/RM 100.0 5 OW/RM

Lung Cancer 96.55 95.75 6.9 99.48 10 OW 98.99 10 RM

Table 2: Mean accuracy (Ac.) rate of the evolutionary one-versus-one MC-SVM and evolutionary one-versus-rest MC-
SVM, MC-SVM with all gene features in the dataset, and ESVM. The results of MC-SVM using a nested stratified
10-CV are obtained from [4] and the results of ESVM using 10-CV are obtained from [1]. The results of the evolutionary
MC-SVMs are shown using 5-CV. Here ‘OW’, ‘ZT’, and ‘RM’ represent the Opper-Winther bound, Zhou-Tuck bound,
and radius-margin bound, respectively.

Dataset #Genes Zeor-order Criteria First-order Criteria
(Selected) Ac. Rate (%) Bounds Ac. Rate (%) Bound Derivatives

Leukemia1 3 100.0 OW/ZT/RM 100.0 ∇||w||2
Leukemia2 3 100.0 OW/ZT/RM 100.0 ∇||w||2/∇OW/∇ZT
SRBCT 4 100.0 OW/ZT/RM 100.0 ∇OW

Brain Tumor1 6 97.84 OW 93.39 ∇||w||2
Brain Tumor2 5 100.0 OW/ZT/RM 100.0 ∇||w||2/∇ZT

Table 3: Mean accuracy (Ac.) rate of the zero-order (using error bound values) and first-order (using derivatives of
error bounds) criteria in the evolutionary one-versus-one MC-SVM method.

Dataset #Genes Evolutionary one-versus-one MC-SVM Evolutionary one-versus-rest MC-SVM
RBF Kernel Linear Kernel RBF Kernel Linear Kernel

Ac. Rate (%) Bounds Ac. Rate (%) Bounds Ac. Rate (%) Bounds Ac. Rate (%) Bounds
Brain Tumor1 6 96.73 OW 97.84 OW 97.84 OW 91.35 ZT
Brain Tumor2 4 98.18 RM 98.18 RM 98.18 OW 94.18 OW

Table 4: Mean accuracy (Ac.) rate of the evolutionary one-versus-one MC-SVM and evolutionary one-versus-rest SVM
using RBF kernel. The results of the evolutionary MC-SVMs are shown using 5-CV.
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