

GENERAL ARCHITECTURE AND INSTRUCTION SET

ENHANCEMENTS FOR MULTIMEDIA APPLICATIONS

Mansour ASSAF

Information Communications Technology (ICT)

University of Trinidad and Tobago

Arima, Trinidad and Tobago W. I.

and

Aparna RAJESH

Information Communications Technology (ICT)

University of Trinidad and Tobago

Arima, Trinidad and Tobago W. I.

ABSTRACT

The present day multimedia applications (MMAs) are

driving the computing industry as every application being

developed is using multimedia in one or the other way.

Computer architects are building computer systems with

powerful processors to handle the MMAs. There have

been tremendous changes in the design of the processors

to handle different types of MMAs. We see a lot of such

application specific processors today in the industry;

different architectures have been proposed for processing

MMAs such as VLIW, superscalar (general-purpose

processor enhanced with a multimedia extension such as

MMX), vector architecture, SIMD architectures, and

reconfigurable computing devices. Many of the General

Purpose Processors (GPPs) require coprocessors to handle

graphics and sound and usually those processors are either

expensive or incompatible. Keeping these and the

demands MMAs in mind designers have made changes to

GPPs; many GPP Vendors have added instructions to their

Instruction Set Architecture (ISA). All these processors

use similar techniques to execute multimedia instructions.

This survey paper investigates the enhancements made to

the GPPS in their general Architecture as well as the ISA.

We will present the many different techniques used by

GPP designers to handle MMAs, the present day GPP

available architectures, compare different techniques, and

concludes this survey.

Keywords: Multimedia Applications (MMAs), General-

purpose Processor (GPPs), Instruction Set Architecture

(ISA), VLIW, Superscalar Processor, Vector Processor,

SIMD Architectures.

1. INTRODUCTION

The mismatch between wide data paths and the

relatively short data types found in multimedia

applications has led the industry to embrace SIMD

(single instruction, multiple data) style processing.

Unlike traditional forms of SIMD computing in

which multiple individual processors execute the

same instruction, multimedia instructions are

executed by a single processor and pack multiple

short data elements into a single wide (64 or 128-bit)

register, called Subword Level Parallelism(SLP) or

MicroSIMD [1]. Recently there have been

tremendous changes to the system architecture itself

to speedup the processor. Superscalar processors

with dynamic out-of-order scheduling provide higher

performance than VLIW processors and superscalar

processors with in-order scheduling. Because

superscalar architectures include complicated control

logic for out-of-order execution, and because VLIW

processors have to decode every instruction slot in

parallel and need a register file with multiple read

and write ports, they are more complex than single-

issue vector architectures. This paper investigates the

enhancements made to the GPPS in their general

Architecture as well as the ISA.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 664 ISSN: 1690-4524

2. CHARACTERISTICS AND FUNCTIONS OF

MULTIMEDIA APPLICATIONS THAT ARE

CONSIDERED IN GPPS

MMAs have many characteristics that make them

unique from General-Purpose Applications (GPAs).

The most important ones are the following:

• Real-time response: MMAs such as video

conferencing and electronic commerce often require

real-time response. In addition, they require a certain

quality of service.

• Processing of streaming data: MMAs can

keep their instruction code on-chip and commonly

stream data in from off-chip.

• Significant fine and coarse grained data

parallelism: Typically, MMAs perform the same

operations on different data item (e.g., pixels). In

addition, many functions need to be performed on

these data values. Since these operations and

functions are largely independent, it is possible to

exploit SIMD and Thread-Level Parallelism (TLP)

[1].

• Considerable data reorganization: In

addition to the SIMD nature of multimedia

processing, most applications also need to be able to

reorganize the individual data components efficiently

to adjust for various data stream layouts. Therefore,

MMAs are not well suited for traditional SIMD

architectures where data reorganization can be

expensive.

• Small loops: MMAs spend nearly 95% of

their execution time over the two innermost loops.

These loops tend to have a large number of

iterations, typically 10 or more, with some loops

having hundreds or thousands of iterations.

• High memory bandwidth requirement: The

applications process large data sets, putting a severe

burden on memory system.

• Small data types: MMAs typically use small

integer data types of 16 bits or less. Additionally,

MMAs perform significantly more arithmetic

operations than GPAs.

A variety of multimedia processing algorithms are

used in media processing environments for

capturing, manipulating, storing, and transmitting

multimedia objects such as text, handwritten data,

2D/3D graphics, and audio objects. Multimedia

standards such as MPEG-1, MPEG-2, MPEG-4,

MPEG-7, JPEG2000, and H.263 put challenges on

both hardware architectures and software algorithms

for executing different multimedia processing jobs in

real-time, because each media in a multimedia

environment needs different algorithms, processes,

and techniques.

3. EARLIER GENERAL-PURPOSE

PROCESSOR (GPPS) WITH MULTIMEDIA

SUPPORT

The real-time multimedia processing on PCs and

workstations is still handled by dedicated multimedia

processors. However, the advanced GPPs provide an

efficient support for certain multimedia applications.

These processors can provide software-only

solutions for many multimedia functions, which may

significantly reduce the cost of the system. Many

microprocessor instruction sets include instructions

for accelerating MMAs such as DVD

playback,speech recognition and 3D graphics. The

main differences among these processors are in the

way they reconfigure the internal register file

structure to accommodate SIMD operations, and the

multimedia instructions they choose to add.

Subword Level Parallelism:

The goal in designing SIMD media ISA extensions

for GPP has usually been to utilize Subword Level

Parallelism (SLP) with existing hardware and

without sacrificing the general-purpose nature of the

processor [1]. SLP a very low-cost form of small-

scale SIMD parallelism in a word-oriented

processor. A word-wide integer functional unit can

be partitioned into parallel subword units, with small

hardware overhead. As illustrated in Figure 1, a 64-

bit adder may be partitioned into four 16-bit adders.

Such a partitionable adder allows four 16-bit

additions, or a single 64-bit addition, to be

performed in a single cycle.

The overhead cost is very small, since the same

datapaths are used in either case: two 64-bit registers

read and one register write. A processor with two 64-

bit partitionable ALUs could support eight parallel

16-bit operations with just a 6-ported (4 read and 2

write ports) register file, while a processor with eight

independent 16-bit functional units requires a 24-

ported register file.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 6 65ISSN: 1690-4524

Multimedia kernels process small data types and the

registers of GPPs satisfying these requirements. In

particular, the double-precision FP registers can hold

several of such elements [2]. The same operation is

applied to the subwords at the same time. The SLP is

a cost-effective solution to exploit the DLP present

in MMAs. There is no need to replicate the

functional units and the memory port can supply

multiple elements at no cost. Earlier extensions

supported only integer data types and were

introduced in the mid-1990’s.3DNow was the first to

support floating-point media instructions. It was

followed by Streaming SIMD Extension (SSE) and

SSE2-4 from Intel. Motorola’s AltiVec supports

integer as well as floating-point media instructions.

The main differences between these processors are in

the way that they reconfigure the internal register file

structure to accommodate SIMD operations, and the

multimedia instructions they choose to add.

Multimedia instruction sets can be broadly

categorized according to the location and geometry

of the register file upon which SIMD instructions

operate. The alternatives are reusing the existing

integer or floating point register files, or

implementing an entirely separate one. The type of

register file affects the width and therefore the

number of packed elements that can be operated on

simultaneously (vector length).

Despite the similarities, each approach to subword

extensions is unique. Key differences include the

amount of additional hardware required, ranging

from MAX-2, which reuses the integer registers and

execution units and requires virtually no additional

execution hardware, to AltiVec, which requires an

entirely new execution unit. In Table 1, shown

below, common and distinguishing features of

available GPPs (SN and UN indicate N-bit signed

and unsigned integer packed elements respectively)

with multimedia instruction set extensions are

summarized.

Creating and using instruction-level parallelism-

Superscalar execution

Parallelism is simply the practice of doing multiple

things at once. Parallelism can happen on multiple

levels, from executing multiple instructions at once,

to executing multiple threads at once, to executing

multiple programs at once. Instruction-level

parallelism, or ILP, is parallelism at the lowest level.

Machines that can exploit ILP are typically called

multiple-issue, meaning they issue multiple

instructions each clock cycle to the various

functional units on the chip [1]. The functional units

are the things that do the actual number crunching:

floating-point functional units crunch fp ops, integer

functional units crunch integer ops, etc. The more

functional units you have, the more instructions you

can execute in parallel each cycle. The number of

instructions that can be crunched each clock cycle

determines the number of executions slots per cycle,

and the number of execution slots per cycle is often

called the width of the machine. For example, a 4-

wide machine (figure 2) would be able to execute

four instructions each cycle, and thus it would have

four execution slots per cycle.

For a multiple-issue machine to be running at

maximum efficiency, all of these execution slots

must be kept full on every cycle. Empty slots are the

enemy of performance--they mean wasted resources

and wasted time. In order to keep those slots full,

you've got to schedule the instructions so that they

don't conflict with each other. It's not cool if one

instruction has a resource tied up and you try to

execute another instruction that needs that resource.

That second instruction will just have to wait until

the resource comes free, and that waiting wastes

time.

Dynamic Scheduling of Instructions

Where and how that scheduling gets done is a major

issue in CPU design. Earlier GPPs with MM

extensions are the dynamically scheduled superscalar

machines. A dynamically scheduled superscalar

CPU (figure 3) takes a sequential list of program

instructions, decides which instructions can be

executed on the same clock cycle, and sends them

out to its functional units to be executed. It requires

the CPU to do a lot of work. The instruction

scheduler takes up a lot of transistors, transistors that

could possibly be put to use actually crunching

numbers.

The most important features of some GPPs with

specialized media instruction set extensions are:

• The processors issue and execute two or

more multimedia instructions per cycle.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 666 ISSN: 1690-4524

• These processors issue and execute

instructions out-of-order. To do so, they require a

substantial amount of hardware.

• These hardware components occupy a large

portion of the silicon area and contribute

significantly to the power dissipation.

• These processors employ a dynamic branch

prediction technique.

 • The cache mechanism is designed to exploit

1D locality of consecutive addresses, but media

applications require multidimensional locality of

accesses.

• The word lengths of these processors are 32

or 64 bits. But the word lengths needed for

multimedia applications are typically 8 or 16 bits.

• They implement in excess of 15 million

transistors on a chip.

Multimedia extensions have proven to provide

significant performance benefits by exploiting the

DLP present in multimedia codes. However, these

GPPs equipped with multimedia extensions have the

following limitations:

• Memory misalignment problems: The nature

of subword data introduces memory misalignment

problems. Accessing data that is not aligned requires

extra instructions.

• Mismatch between storage and

computational formats: The computational format is

usually larger than the storage format.

• Limitation on the amount of parallelism:

The fixed size of the multimedia registers limits the

amount of parallelism that can be exploited by a

single instruction to at most 8 (VIS, MMX) or 16

(SSE, AltiVec) parallel operations, while more

parallelism is present in MMAs.

• Overhead instructions: Implementations of

multimedia kernels with short-vector SIMD

extensions require a significant amount of overhead

for converting between different packed data types

and for data alignment, increasing the instruction

count. For VIS up to 41% of the total instruction

count constitutes overhead.

• No strided memory accesses: Most GPPs

can only perform stride-1 memory accesses. It is

therefore, inefficient to access, for example, a

column of a matrix.

• Scalability: The scalability of subword

parallel processors cannot be achieved by simply

increasing the machine word size.

• Suffer from a lack of compiler support. This

limits developers to using in-line assembly macros

and low-level library calls.

4. NEW MEDIA PROCESSING

ARCHITECTURES

We will present some of the new GPP architectures

that overcome many of the limitations of the earlier

GPPs. Motivations for the new architectures are:

• VLSI technology is increasing the number of

transistors available on a single die.

• Compiler technology is very advanced now,

however, it still has some limitations

• Multithreading is becoming more pervasive.

• "Media-rich" means parallelism.

• Modularity and scalability will become

increasingly important.

• JIT compilation will eventually predominate,

and binary compatibility will be a thing of the past.

• Convergence will involve integrating

multiple IP blocks onto one chip.

IA-64 ISA –Intel Architecture [8] and MAJC –

Microprocessor Architecture for Java Computing:

Both MAJC and IA-64 are both multiple-issue

VLIW processors (figure 4). A VLIW processor [3]

lets the compiler do all the work of instruction

reordering; all it worries about is executing whatever

the compiler gives it as fast as possible. More

specifically, a VLIW compiler, groups instructions

into fixed-length packets and those packets are

what's fed to the CPU.

One of the problems with this approach is that it can

lead to significant code bloat. In a traditional VLIW

architecture, the instruction packets are a fixed

length, usually between 112 and 168 bits. This

means that if you can't find enough instructions that

you can execute in parallel to fill up the packet, you

have to insert NOPS (no ops) into the packet to fill

up the empty spots.

The MAJC architecture [6] specifies that the number

of functional units in a processor unit is exactly 4.

All MAJC processor units will be 4-wide, with four

execution slots per cycle. IA-64, on the other hand,

allows an arbitrary number of functional units in an

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 6 67ISSN: 1690-4524

implementation. Allowing up to n-way ILP is Intel's

idea of scalability. Sun decided against allowing n-

wide implementations because they didn't feel it

made the best use of transistor resources. As

mentioned earlier, compiler constraints make ILP

beyond four-way a matter of diminishing returns.

One difference between MAJC and a more

traditional VLIW machine is that MAJC allows for

variable-length instruction packets. This decreases

code bloat, and thus saves on memory. In the MAJC

Architecture The hardware level at which

instruction-level parallelism operates is the level of

the processor unit (figure 5).

The MAJC processor unit consists of four functional

units, each of which has its own set of registers.

These functional units are what do the actual number

crunching. Unlike a traditional architecture, and

unlike IA-64, each MAJC functional unit is data-

type agnostic. That means that there are no floating-

point units, no integer units, no address generation

units, etc.; any functional unit can operate on any

type of data. MAJC also has data-type agnostic

registers. There are no int, fp, or SIMD registers.

Any MAJC register can hold any type of data. Once

again, this makes the most efficient use of space,

because fp- or integer-intensive apps can use all of

the registers on the chip, instead of limiting

themselves to some subset of available registers. By

way of contrast, Intel's IA-64 has dedicated fp and

int units and registers.

MAJC and IA-64 each take a different approach to

handling pipeline interlocks. A good VLIW

machine handles all scheduling in software (via the

compiler), including interlocks. MAJC is just such a

machine, and it requires that the compiler know how

many cycles every instruction will take to execute so

that it can schedule them optimally. The compiler

will be tied to a specific MAJC implementation. So

a binary compiled on one MAJC implementation

wouldn't run on another, because the instruction

latencies might differ.

This is where JIT comes in. Just-in-time compilation

would eliminate such binary compatibility problems

by compiling the code right before it's run. It is in

dealing with interlocks that IA-64 slips a little from

the VLIW schedule-it-all-in-software ideal. IA-64

requires the specific implementation to take care of

interlocks, using some dynamic scheduling

technique like score boarding. This adds to the

complexity of the hardware implementation, but it

allows for binary compatibility across

implementations.

It is in explicit architectural support for thread-level

parallelism that IA-64 and MAJC really part ways.

IA-64's idea of scalability is to keep adding

functional units to a single core. MAJC, on the other

hand, limits the number of FUs to four and instead

adds multiple cores to a single die. Multiple

processor units are organized on the same die in

what Sun calls a processor cluster (figure 6).

The processor cluster can contain any number of

processor units; the above picture shows a cluster

with four units, but you can have as many as you

like. In addition, you could mix processor units with

other units like a GPU or some DSP processor. In

addition to grouping the processor units physically,

the processor cluster also provides a nice conceptual

grouping for thinking about thread-level parallelism.

MAJC also has a thread-level version of pipelining

called Vertical multithreading. Whenever a thread is

executing and there's a cache miss, a MAJC

processor unit switches to another thread and

executes it while the original thread is waiting for the

data to load from memory. Sun claims that vertical

multithreading gives some outrageous performance

improvements over more traditional VLIW

machines.

5. OTHER ARCHITECTURES

New architectures have specially been proposed for

processing MMAs. In has been proposed an ISA

extension called Complex Streamed Instructions

(CSI) for increasing parallelism by processing of two

dimensional data streams.

Matrix registers with accumulators are introduced in

the Matrix Oriented Multimedia (MOM) ISA. The

MOM architecture investigates combining traditional

pipelined vector processing with subword

processing. The MOM architecture relies on having

a vector register file where every element contains

subwords that are processed in parallel.

Another related architecture for processing MMAs is

the Imagine processor, which has load/store

architecture for one-dimensional streams of data

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 668 ISSN: 1690-4524

records. Imagine is a stand-alone multimedia

coprocessor. The focus of the Imagine project is to

develop a programmable architecture that achieves

the performance of special purpose hardware on

graphics and image/signal processing. This is

accomplished by exploiting stream-based

computation at the application, compiler, and

architectural level. The Imagine stream architecture

is a novel architecture that executes stream-based

programs. It provides high performance with 48

floating-point arithmetic units and power-efficient

register organization [4].

6. RESULTS & DISCUSSIONS

Multimedia processing is the technology for a wide

variety of applications. It poses very high demands

on devices for transmission, storage, and

computation. GPPs equipped with multimedia

extensions are suitable for GPAs, have overhead

instructions but cannot exploit all DLP present in

MMAs.

With its data-type agnostic functional units, vertical

multithreading, and Space-Time Computing, MAJC

goes one level up from EPIC(IA-64) in that it not

only includes techniques for creating and using

instruction-level parallelism, but it expands its bag of

tricks to include techniques for creating and using

thread-level. However both MAJC and IA_64 seem

to be the optimistic approaches for the new GPPs to

handle MMAs.

Superscalar processors with dynamic out-of-order

scheduling provide higher performance than VLIW

and superscalar processors with in-order scheduling.

7. CONCLUSIONS

This paper investigates multimedia processors and

the enhancements for improving the general-purpose

processor architecture with multimedia extension.

Based on the investigation of media processors, we

find that the complexity and variety of techniques,

the high computation, storage, multi-formats, and

multi-standards associated with multimedia

processing pose challenges, particularly from the

points of scalability, high flexibility, high

performance, resource utilization, dynamic

adaptation capabilities, and real-time

implementation. However, parallel media processors

are expected to be best candidate for processing the

next generation of multimedia applications, because

they can provide both the performance and flexibility

through specialized high-speed processing, and

highly parallel programmable architectures.

8. REFERENCES

[1] D. Talla, L. K. John, and D. Burger, 2003,

“Bottlenecks in Multimedia Processing with SIMD Style

Extensions and Architectural Enhancements”, IEEE

Transactions on Computers, VOL. 52, NO. 8.

[2] Y. Chia-Lin, B. Sano, and A. R. Lebeck, 2000,

“Exploiting Parallelism in Geometry Processing with

General Purpose Processors and Floating-point SIMD

Instructions”, IEEE Transactions on Computers, VOL.

49, No. 9.

[3] M. F. Jacome, and G. De Veciana, 2000, “Design

Challenges for New Application-Specific Processors”,

IEEE Design & Test of Computers.

[4] A. Krikelis, Multimedia Processing Architectures,

Aspex Microsystems Ltd. Brunel University Uxbridge,

Middlesex, UK.

[5] N. Slingerland, and A. J. Smith, 2002, “Measuring the

Performance of Multimedia Instruction Sets &

Performance Analysis of Instruction Set Architecture

Extensions for Multimedia”, IEEE Computer Society.

[6] www.sun.com

[7] M. Schlansker, and B. Rau, 2000, “EPIC: Explicitly

Parallel Instruction Computing”, IEEE Computer.

[8] www.intel.com

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 6 69ISSN: 1690-4524

FIGURES AND TABLES

Fig. 1 A 64-bit adder

Fig. 2 4-wide machine

Fig. 3 Dynamic superscalar instruction scheduling

Fig. 4 VLIW instruction scheduling

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 670 ISSN: 1690-4524

Fig. 5 Processor unit

Fig. 6 Processor cluster

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 6 71ISSN: 1690-4524

Table 1 Available GPPs with multimedia instruction set extensions

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 672 ISSN: 1690-4524

	S191BUB

