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ABSTRACT 

The present day multimedia applications (MMAs) are 

driving the computing industry as every application being 

developed is using multimedia in one or the other way. 

Computer architects are building computer systems with 

powerful processors to handle the MMAs. There have 

been tremendous changes in the design of the processors 

to handle different types of MMAs. We see a lot of such 

application specific processors today in the industry; 

different architectures have been proposed for processing 

MMAs such as VLIW, superscalar (general-purpose 

processor enhanced with a multimedia extension such as 

MMX), vector architecture, SIMD architectures, and 

reconfigurable computing devices. Many of the General 

Purpose Processors (GPPs) require coprocessors to handle 

graphics and sound and usually those processors are either 

expensive or incompatible. Keeping these and the 

demands MMAs in mind designers have made changes to 

GPPs; many GPP Vendors have added instructions to their 

Instruction Set Architecture (ISA). All these processors 

use similar techniques to execute multimedia instructions.  

This survey paper investigates the enhancements made to 

the GPPS in their general Architecture as well as the ISA.  

We will present the many different techniques used by 

GPP designers to handle MMAs, the present day GPP 

available architectures, compare different techniques, and 

concludes this survey. 

 

Keywords: Multimedia Applications (MMAs), General-

purpose Processor (GPPs), Instruction Set Architecture 

(ISA), VLIW, Superscalar Processor, Vector Processor, 

SIMD Architectures. 

 

 

 

1. INTRODUCTION 

The mismatch between wide data paths and the 

relatively short data types found in multimedia 

applications has led the industry to embrace SIMD 

(single instruction, multiple data) style processing. 

Unlike traditional forms of SIMD computing in 

which multiple individual processors execute the 

same instruction, multimedia instructions are 

executed by a single processor and pack multiple 

short data elements into a single wide (64 or 128-bit) 

register, called Subword Level  Parallelism(SLP) or 

MicroSIMD [1]. Recently there have been 

tremendous changes to the system architecture itself 

to speedup the processor. Superscalar processors 

with dynamic out-of-order scheduling provide higher 

performance than VLIW processors and superscalar 

processors with in-order scheduling. Because 

superscalar architectures include complicated control 

logic for out-of-order execution, and because VLIW 

processors have to decode every instruction slot in 

parallel and need a register file with multiple read 

and write ports, they are more complex than single-

issue vector architectures. This paper investigates the 

enhancements made to the GPPS in their general 

Architecture as well as the ISA.  
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2. CHARACTERISTICS AND FUNCTIONS OF 

MULTIMEDIA APPLICATIONS THAT ARE 

CONSIDERED IN GPPS 

 

MMAs have many characteristics that make them 

unique from General-Purpose Applications (GPAs). 

The most important ones are the following: 

 

• Real-time response: MMAs such as video 

conferencing and electronic commerce often require 

real-time response. In addition, they require a certain 

quality of service. 

• Processing of streaming data: MMAs can 

keep their instruction code on-chip and commonly 

stream data in from off-chip. 

• Significant fine and coarse grained data 

parallelism: Typically, MMAs perform the same 

operations on different data item (e.g., pixels). In 

addition, many functions need to be performed on 

these data values. Since these operations and 

functions are largely independent, it is possible to 

exploit SIMD and Thread-Level Parallelism (TLP) 

[1]. 

• Considerable data reorganization: In 

addition to the SIMD nature of multimedia 

processing, most applications also need to be able to 

reorganize the individual data components efficiently 

to adjust for various data stream layouts. Therefore, 

MMAs are not well suited for traditional SIMD 

architectures where data reorganization can be 

expensive. 

• Small loops: MMAs spend nearly 95% of 

their execution time over the two innermost loops. 

These loops tend to have a large number of 

iterations, typically 10 or more, with some loops 

having hundreds or thousands of iterations. 

• High memory bandwidth requirement: The 

applications process large data sets, putting a severe 

burden on memory system.  

• Small data types: MMAs typically use small 

integer data types of 16 bits or less. Additionally, 

MMAs perform significantly more arithmetic 

operations than GPAs.  

  

A variety of multimedia processing algorithms are 

used in media processing environments for 

capturing, manipulating, storing, and transmitting 

multimedia objects such as text, handwritten data, 

2D/3D graphics, and audio objects. Multimedia 

standards such as MPEG-1, MPEG-2, MPEG-4, 

MPEG-7, JPEG2000, and H.263 put challenges on 

both hardware architectures and software algorithms 

for executing different multimedia processing jobs in 

real-time, because each media in a multimedia 

environment needs different algorithms, processes, 

and techniques.  

 

3. EARLIER GENERAL-PURPOSE 

PROCESSOR (GPPS) WITH MULTIMEDIA 

SUPPORT 

The real-time multimedia processing on PCs and 

workstations is still handled by dedicated multimedia 

processors. However, the advanced GPPs provide an 

efficient support for certain multimedia applications. 

These processors can provide software-only 

solutions for many multimedia functions, which may 

significantly reduce the cost of the system. Many 

microprocessor instruction sets include instructions 

for accelerating MMAs such as DVD 

playback,speech recognition and 3D graphics. The 

main differences among these processors are in the 

way they reconfigure the internal register file 

structure to accommodate SIMD operations, and the 

multimedia instructions they choose to add. 

 

Subword Level Parallelism: 

 

The goal in designing SIMD media ISA extensions 

for GPP has usually been to utilize Subword Level 

Parallelism (SLP) with existing hardware and 

without sacrificing the general-purpose nature of the 

processor [1]. SLP a very low-cost form of small-

scale SIMD parallelism in a word-oriented 

processor. A word-wide integer functional unit can 

be partitioned into parallel subword units, with small 

hardware overhead. As illustrated in Figure 1, a 64-

bit adder may be partitioned into four 16-bit adders. 

Such a partitionable adder allows four 16-bit 

additions, or a single 64-bit addition, to be 

performed in a single cycle. 

 

The overhead cost is very small, since the same 

datapaths are used in either case: two 64-bit registers 

read and one register write. A processor with two 64-

bit partitionable ALUs could support eight parallel 

16-bit operations with just a 6-ported (4 read and 2 

write ports) register file, while a processor with eight 

independent 16-bit functional units requires a 24-

ported register file. 

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 5 - NUMBER 6 65ISSN: 1690-4524



 

  

Multimedia kernels process small data types and the 

registers of GPPs satisfying these requirements. In 

particular, the double-precision FP registers can hold 

several of such elements [2]. The same operation is 

applied to the subwords at the same time. The SLP is 

a cost-effective solution to exploit the DLP present 

in MMAs. There is no need to replicate the 

functional units and the memory port can supply 

multiple elements at no cost. Earlier extensions 

supported only integer data types and were 

introduced in the mid-1990’s.3DNow was the first to 

support floating-point media instructions. It was 

followed by Streaming SIMD Extension (SSE) and 

SSE2-4 from Intel. Motorola’s AltiVec supports 

integer as well as floating-point media instructions. 

 

The main differences between these processors are in 

the way that they reconfigure the internal register file 

structure to accommodate SIMD operations, and the 

multimedia instructions they choose to add. 

Multimedia instruction sets can be broadly 

categorized according to the location and geometry 

of the register file upon which SIMD instructions 

operate. The alternatives are reusing the existing 

integer or floating point register files, or 

implementing an entirely separate one. The type of 

register file affects the width and therefore the 

number of packed elements that can be operated on 

simultaneously (vector length).  

 

Despite the similarities, each approach to subword 

extensions is unique. Key differences include the 

amount of additional hardware required, ranging 

from MAX-2, which reuses the integer registers and 

execution units and requires virtually no additional 

execution hardware, to AltiVec, which requires an 

entirely new execution unit. In Table 1, shown 

below, common and distinguishing features of 

available GPPs (SN and UN indicate N-bit signed 

and unsigned integer packed elements respectively) 

with multimedia instruction set extensions are 

summarized. 

 

Creating and using instruction-level parallelism-

Superscalar execution 
 

Parallelism is simply the practice of doing multiple 

things at once.  Parallelism can happen on multiple 

levels, from executing multiple instructions at once, 

to executing multiple threads at once, to executing 

multiple programs at once. Instruction-level 

parallelism, or ILP, is parallelism at the lowest level.  

Machines that can exploit ILP are typically called 

multiple-issue, meaning they issue multiple 

instructions each clock cycle to the various 

functional units on the chip [1].  The functional units 

are the things that do the actual number crunching: 

floating-point functional units crunch fp ops, integer 

functional units crunch integer ops, etc.  The more 

functional units you have, the more instructions you 

can execute in parallel each cycle.  The number of 

instructions that can be crunched each clock cycle 

determines the number of executions slots per cycle, 

and the number of execution slots per cycle is often 

called the width of the machine.  For example, a 4-

wide machine (figure 2) would be able to execute 

four instructions each cycle, and thus it would have 

four execution slots per cycle. 

 

For a multiple-issue machine to be running at 

maximum efficiency, all of these execution slots 

must be kept full on every cycle. Empty slots are the 

enemy of performance--they mean wasted resources 

and wasted time.  In order to keep those slots full, 

you've got to schedule the instructions so that they 

don't conflict with each other.  It's not cool if one 

instruction has a resource tied up and you try to 

execute another instruction that needs that resource.  

That second instruction will just have to wait until 

the resource comes free, and that waiting wastes 

time.   

 

Dynamic Scheduling of Instructions 
 

Where and how that scheduling gets done is a major 

issue in CPU design. Earlier GPPs with MM 

extensions are the dynamically scheduled superscalar 

machines.  A dynamically scheduled superscalar 

CPU (figure 3) takes a sequential list of program 

instructions, decides which instructions can be 

executed on the same clock cycle, and sends them 

out to its functional units to be executed. It requires 

the CPU to do a lot of work.  The instruction 

scheduler takes up a lot of transistors, transistors that 

could possibly be put to use actually crunching 

numbers. 

 

The most important features of some GPPs with 

specialized media instruction set extensions are: 

 

• The processors issue and execute two or 

more multimedia instructions per cycle. 
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• These processors issue and execute 

instructions out-of-order. To do so, they require a 

substantial amount of hardware. 

• These hardware components occupy a large 

portion of the silicon area and contribute 

significantly to the power dissipation. 

•  These processors employ a dynamic branch 

prediction technique. 

 •  The cache mechanism is designed to exploit 

1D locality of consecutive addresses, but media 

applications require multidimensional locality of 

accesses. 

•  The word lengths of these processors are 32 

or 64 bits. But the word lengths needed for 

multimedia applications are typically 8 or 16 bits. 

• They implement in excess of 15 million 

transistors on a chip. 

 

Multimedia extensions have proven to provide 

significant performance benefits by exploiting the 

DLP present in multimedia codes. However, these 

GPPs equipped with multimedia extensions have the 

following limitations: 

 

• Memory misalignment problems: The nature 

of subword data introduces memory misalignment 

problems. Accessing data that is not aligned requires 

extra instructions. 

•  Mismatch between storage and 

computational formats: The computational format is 

usually larger than the storage format. 

•  Limitation on the amount of parallelism: 

The fixed size of the multimedia registers limits the 

amount of parallelism that can be exploited by a 

single instruction to at most 8 (VIS, MMX) or 16 

(SSE, AltiVec) parallel operations, while more 

parallelism is present in MMAs. 

•  Overhead instructions: Implementations of 

multimedia kernels with short-vector SIMD 

extensions require a significant amount of overhead 

for converting between different packed data types 

and for data alignment, increasing the instruction 

count. For VIS up to 41% of the total instruction 

count constitutes overhead. 

•  No strided memory accesses: Most GPPs 

can only perform stride-1 memory accesses. It is 

therefore, inefficient to access, for example, a 

column of a matrix. 

•  Scalability: The scalability of subword 

parallel processors cannot be achieved by simply 

increasing the machine word size. 

•  Suffer from a lack of compiler support. This 

limits developers to using in-line assembly macros 

and low-level library calls. 

 

4. NEW MEDIA PROCESSING 

ARCHITECTURES 

We will present some of the new GPP architectures 

that overcome many of the limitations of the earlier 

GPPs. Motivations for the new architectures are: 

 

• VLSI technology is increasing the number of 

transistors available on a single die.  

• Compiler technology is very advanced now, 

however, it still has some limitations 

• Multithreading is becoming more pervasive. 

• "Media-rich" means parallelism.  

• Modularity and scalability will become 

increasingly important.  

• JIT compilation will eventually predominate, 

and binary compatibility will be a thing of the past.  

• Convergence will involve integrating 

multiple IP blocks onto one chip.  

 

IA-64 ISA –Intel Architecture [8] and MAJC –

Microprocessor Architecture for Java Computing: 

 

Both MAJC and IA-64 are both multiple-issue 

VLIW processors (figure 4). A VLIW processor [3] 

lets the compiler do all the work of instruction 

reordering; all it worries about is executing whatever 

the compiler gives it as fast as possible.  More 

specifically, a VLIW compiler, groups instructions 

into fixed-length packets and those packets are 

what's fed to the CPU.        

 

One of the problems with this approach is that it can 

lead to significant code bloat.  In a traditional VLIW 

architecture, the instruction packets are a fixed 

length, usually between 112 and 168 bits.  This 

means that if you can't find enough instructions that 

you can execute in parallel to fill up the packet, you 

have to insert NOPS (no ops) into the packet to fill 

up the empty spots.   

 

The MAJC architecture [6] specifies that the number 

of functional units in a processor unit is exactly 4.  

All MAJC processor units will be 4-wide, with four 

execution slots per cycle.  IA-64, on the other hand, 

allows an arbitrary number of functional units in an 
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implementation.  Allowing up to n-way ILP is Intel's 

idea of scalability.  Sun decided against allowing n-

wide implementations because they didn't feel it 

made the best use of transistor resources.  As 

mentioned earlier, compiler constraints make ILP 

beyond four-way a matter of diminishing returns.  

One difference between MAJC and a more 

traditional VLIW machine is that MAJC allows for 

variable-length instruction packets.  This decreases 

code bloat, and thus saves on memory. In the MAJC 

Architecture The hardware level at which 

instruction-level parallelism operates is the level of 

the processor unit (figure 5).      

 

The MAJC processor unit consists of four functional 

units, each of which has its own set of registers.  

These functional units are what do the actual number 

crunching.  Unlike a traditional architecture, and 

unlike IA-64, each MAJC functional unit is data-

type agnostic.  That means that there are no floating-

point units, no integer units, no address generation 

units, etc.; any functional unit can operate on any 

type of data.  MAJC also has data-type agnostic 

registers.  There are no int, fp, or SIMD registers.  

Any MAJC register can hold any type of data.  Once 

again, this makes the most efficient use of space, 

because fp- or integer-intensive apps can use all of 

the registers on the chip, instead of limiting 

themselves to some subset of available registers. By 

way of contrast, Intel's IA-64 has dedicated fp and 

int units and registers.   

 

MAJC and IA-64 each take a different approach to 

handling pipeline interlocks.  A good VLIW 

machine handles all scheduling in software (via the 

compiler), including interlocks.  MAJC is just such a 

machine, and it requires that the compiler know how 

many cycles every instruction will take to execute so 

that it can schedule them optimally.  The compiler 

will be tied to a specific MAJC implementation.  So 

a binary compiled on one MAJC implementation 

wouldn't run on another, because the instruction 

latencies might differ. 

 

This is where JIT comes in.  Just-in-time compilation 

would eliminate such binary compatibility problems 

by compiling the code right before it's run.  It is in 

dealing with interlocks that IA-64 slips a little from 

the VLIW schedule-it-all-in-software ideal.  IA-64 

requires the specific implementation to take care of 

interlocks, using some dynamic scheduling 

technique like score boarding.  This adds to the 

complexity of the hardware implementation, but it 

allows for binary compatibility across 

implementations.   

 

It is in explicit architectural support for thread-level 

parallelism that IA-64 and MAJC really part ways.  

IA-64's idea of scalability is to keep adding 

functional units to a single core.  MAJC, on the other 

hand, limits the number of FUs to four and instead 

adds multiple cores to a single die.  Multiple 

processor units are organized on the same die in 

what Sun calls a processor cluster (figure 6). 

 

The processor cluster can contain any number of 

processor units; the above picture shows a cluster 

with four units, but you can have as many as you 

like.  In addition, you could mix processor units with 

other units like a GPU or some DSP processor. In 

addition to grouping the processor units physically, 

the processor cluster also provides a nice conceptual 

grouping for thinking about thread-level parallelism.  

MAJC also has a thread-level version of pipelining 

called Vertical multithreading.  Whenever a thread is 

executing and there's a cache miss, a MAJC 

processor unit switches to another thread and 

executes it while the original thread is waiting for the 

data to load from memory. Sun claims that vertical 

multithreading gives some outrageous performance 

improvements over more traditional VLIW 

machines.   

5. OTHER ARCHITECTURES 

New architectures have specially been proposed for 

processing MMAs. In has been proposed an ISA 

extension called Complex Streamed Instructions 

(CSI) for increasing parallelism by processing of two 

dimensional data streams.  

 

Matrix registers with accumulators are introduced in 

the Matrix Oriented Multimedia (MOM) ISA. The 

MOM architecture investigates combining traditional 

pipelined vector processing with subword 

processing. The MOM architecture relies on having 

a vector register file where every element contains 

subwords that are processed in parallel.  

 

Another related architecture for processing MMAs is 

the Imagine processor, which has load/store 

architecture for one-dimensional streams of data 

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 5 - NUMBER 668 ISSN: 1690-4524



 

  

records. Imagine is a stand-alone multimedia 

coprocessor. The focus of the Imagine project is to 

develop a programmable architecture that achieves 

the performance of special purpose hardware on 

graphics and image/signal processing. This is 

accomplished by exploiting stream-based 

computation at the application, compiler, and 

architectural level. The Imagine stream architecture 

is a novel architecture that executes stream-based 

programs. It provides high performance with 48 

floating-point arithmetic units and power-efficient 

register organization [4].  

 

6. RESULTS & DISCUSSIONS 

Multimedia processing is the technology for a wide 

variety of applications. It poses very high demands 

on devices for transmission, storage, and 

computation. GPPs equipped with multimedia 

extensions are suitable for GPAs, have overhead 

instructions but cannot exploit all DLP present in 

MMAs.  

 

With its data-type agnostic functional units, vertical 

multithreading, and Space-Time Computing,  MAJC 

goes one level up from EPIC(IA-64) in that it not 

only includes techniques for creating and using 

instruction-level parallelism, but it expands its bag of 

tricks to include techniques for creating and using 

thread-level. However both MAJC and IA_64 seem 

to be the optimistic approaches for the new GPPs to 

handle MMAs. 

 

Superscalar processors with dynamic out-of-order 

scheduling provide higher performance than VLIW 

and superscalar processors with in-order scheduling. 

 

7. CONCLUSIONS 

This paper investigates multimedia processors and 

the enhancements for improving the general-purpose 

processor architecture with multimedia extension.  

 

Based on the investigation of media processors, we 

find that the complexity and variety of techniques, 

the high computation, storage, multi-formats, and 

multi-standards associated with multimedia 

processing pose challenges, particularly from the 

points of scalability, high flexibility, high 

performance, resource utilization, dynamic 

adaptation capabilities, and real-time 

implementation. However, parallel media processors 

are expected to be best candidate for processing the 

next generation of multimedia applications, because 

they can provide both the performance and flexibility 

through specialized high-speed processing, and 

highly parallel programmable architectures. 
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Fig. 1  A 64-bit adder 

 

 

 

Fig. 2  4-wide machine 

 

Fig. 3  Dynamic superscalar instruction scheduling 

 

 

 

Fig. 4  VLIW instruction scheduling 
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Fig. 5  Processor unit 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6  Processor cluster 
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Table 1  Available GPPs with multimedia instruction set extensions 
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