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ABSTRACT 
Axiomatic Design (AD) is a methodology that utilizes customer 
needs as input and produces functional requirements, design 
parameters, and process variables through the use of matrix 
methods.  AD is based on two design axioms; the independence 
and the information axiom.  These two design axioms and the 
AD approach in general seem to be well-suited for the design 
and analysis of large-scale computer and communication 
infrastructure systems.  This paper describes the application of 
concepts from AD for utilization in disaster tolerant computing 
and communication systems.  
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1. INTRODUCTION 
 

Disaster Tolerance is the characteristic attributed to a 
system that can withstand a catastrophic failure and still 
function with some degree of normality [1,14].  We differentiate 
between the terms “fault tolerance” and “disaster tolerance”.  
Fault tolerant system design has been studied for the last few 
decades and is usually intended to tolerate natural failures due 
to hardware wear and tear, software design errors, and 
unintentional user errors.  Typical strategies to provide fault 
tolerance at the physical level include the incorporation of 
redundant system components and a voting mechanism [2].  
Other methods include the use of error-checking and correcting 
methods, hot-swap support, and special “watchdog” types of 
software.   

There exists a fairly substantial commercial market 
for disaster tolerant and disaster recovery techniques and 
mechanisms for the IT industry such as that in [12].  These 
methods typically employ remote data storage centers and 
associated policies.  In our work, we take a much broader view 
of disaster tolerance and we examine the problem from a design 
and retrofit perspective.  Based on this viewpoint, we define 
disaster tolerance as follows: 

 
 Disaster tolerance is a superset of fault tolerance in 
that: 

 
(a) a disaster may be caused by natural failures  as 

well as intentional malicious and planned sabotage 
of the system;  

(b) natural laws of low probability of simultaneous 
occurrence of multiple failures are not applicable;  

(c) failures could escalate into a wide catastrophic 
system failure.  

  
We are most interested in very large systems such as a 

large distributed computing network that would preclude the use 
of physical component redundancy due to prohibitive cost.  As 
an example, a single network router may have a degree of fault 
tolerance by the incorporation of redundant output line drivers; 
however, a data network that is distributed over a large 
geographical area is likely to be impossible to replicate fully 
and thus redundancy is not a singularly valid method for 
incorporation of disaster tolerance.  Even if such a 
geographically wide-spread system were replicated, 
communications channels for synchronization and disaster 
detection would also be required, possibly with inherent 
redundancy, to achieve any degree of disaster tolerance. 

We differentiate between disaster tolerant systems 
and disaster recovery systems.  Disaster recovery is the ability 
to resume normal operations after a disaster has occurred while 
disaster tolerance is the ability to continue operations in an 
uninterrupted manner despite the presence of a disaster.  This 
implies that the main difference between disaster recovery 
versus tolerance is one measured in terms of the delay that 
occurs after a disaster and before normal operations resume.   

Whether a typical implementation is a disaster 
recovery or tolerance method depends upon the application.  In 
past work in fault tolerance several approaches have been 
employed including redundancy [5,6], module replacement [7], 
error correction and detection [8], rollback [9], and self-repair 
[10,11].   

Two basic approaches to fault recovery are termed 
forward and backward recovery.  In the case of forward 
recovery real-time performance can be achieved.  We propose 
to generalize and augment these approaches for large-scale 
system disaster recovery and to apply either forward or 
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backward recovery methods where appropriate and, also, to 
implement these mechanisms in systems that are already in 
existence but have poor or no recovery ability at the present 
time. 

The use of these concepts is generalized for disaster 
tolerant systems. This new area of disaster tolerance has several 
features and characteristics that differentiate it from classical 
fault tolerant results.  Some of the chief differences are: 

 
• The granularity of the underlying fault resulting in a 

system disaster, 
• un-natural laws or causes of fault occurrence resulting 

in a disaster, 
• and, the widely distributed and enormous size of the 

systems undergoing a disaster. 
 

Because of these different characteristics and 
properties, classical fault detection and recovery techniques are, 
in general, not applicable to disaster tolerance.  In classical fault 
tolerance, a great deal of effort is expended for fine-grained 
random error detection.  In the large-scale systems in which we 
are interested, such errors are manifested as erasures and thus 
may not qualify or cause widespread system failure.  
Furthermore, the incorporation of redundancy in large systems 
must be cleverly managed so that we do not create 100% (or 
more) overhead that would be impractical to implement.   

Finally, there is a tight relationship with system 
security and availability of the system.  These properties are 
generally not considered in classical fault tolerant design 
approaches and we believe that consideration of these aspects 
will lead to fundamentally new and different methods for the 
design and implementation of new systems. Furthermore, many 
existing large-scale systems present in the infrastructure would 
be impractical to redesign and deploy, thus it is necessary to 
determine new techniques to incorporate disaster tolerance as an 
augmentation of existing systems. 

Furthermore, many existing large-scale systems 
present in the infrastructure would be impractical to redesign 
and deploy, thus it is necessary to determine new techniques to 
incorporate disaster tolerance as an augmentation of existing 
systems. 
 

2. AXIOMATIC DESIGN BACKGROUND 
 

 Axiomatic Design (AD) is a new rigorous systematic 
paradigm developed for the purpose of transforming a set of 
customer needs, that are often loosely or ill-defined into 
functional requirements, process variables, and design 
parameters [3,4].  This technique is named for its use of two 
fundamental design axioms: 
 
 1) Independence: This axiom maintains and promotes 
the independence of various functional requirements, such that 
specific design parameters may be modified to satisfy a 
particular requirement without affecting other functional 
requirements. 
 2) Information: This axiom states that the information 
content of alternative designs should be minimized, thus 
maximizing the success of the design. 
 

By avoiding complex functional requirements and 
focusing on simplified requirements with minimal information, 
the realization of a design adhering to the requirement is easier 
to achieve. 

 The AD process adheres to the two axioms through a 
rigorous dependence matrix formulation that uncouples 
(promotes independence) among the requirements.  While this 
approach is suggested for use in the design of disaster tolerant 
systems, we also believe these principles can be adapted for 
modeling and simulation of the extremely large systems of 
interest, in terms of disaster tolerance.   
 As an example, system-wide simulation in the 
presence (or absence) of an event that potentially could cause a 
disaster is impractical due to the complexity of the system.  By 
using the AD approach to determine uncoupled (or independent) 
subsystems, the subsystems can be independently modeled; both 
with and without the presence of a potentially disaster-causing 
event, and the law of superposition can then be used to infer 
overall system response. 
 The ability to model large complex systems in a 
normal and disaster mode is crucial for defining disaster 
models. Disaster models are important elements needed for the 
design of disaster tolerant systems, since they will be 
purposefully injected into robust system models to gauge the 
degree of disaster tolerance present in the system. 
 Whether designing or simulating large systems, the 
“customer needs” that the system is intended to satisfy must be 
identified as a first step to develop a model.  Because models 
are used for both the synthesis and analysis of problems, we 
shall henceforth describe the AD approach with respect to large-
scale system modeling with the understanding that applicability 
is present for both engineering tasks.  In the AD approach, 
needs are mapped to functional requirements through the 
formulation of a dependency matrix.  In the case of large-scale 
system design, it is typical that customer needs are not 
rigorously defined and indeed it is the job of the systems 
engineer to transfer these needs to a technically detailed set of 
functional requirements.  In the case of simulation of an existing 
large-scale system, it is important to re-establish the customer 
needs from a technologically neutral point of view.  This neutral 
point of view is essential to ensure that the resulting model is 
not dependent upon the particular technology in use for the 
system implementation. 
 The identification of the customer needs is often 
difficult, but also insufficient for formulating a model of the 
system.  The development of technically detailed functional 
requirements is essential and it is in this phase of the system 
modeling process that we believe the AD approach is 
particularly advantageous for large-scale computer and 
communications systems; in adherence with the design axioms 
of independence and information. 
 

3. AD APPROACHES FOR DISASTER TOLERANCE 
 

 Our methodology utilizes system models to simulate 
large systems in normal operating modes and in disaster modes.  
The ideas of AD will be used to divide the simulations into 
suitable independent sub-system simulations that can be linearly 
combined to infer the entire system simulation result.  The 
behavior of a system undergoing a disaster will be abstracted 
into a simple disaster model using catastrophe theory or cellular 
automata abstractions that can be easily injected into a system 
model, much in the same way that traditional fault modeling of 
integrated circuits is performed. 
 Once appropriate disaster models are identified, 
modifications to the disaster-free system design are identified 
that allow the system to operate in a disaster tolerant or disaster 
recovery mode.  The disaster models will then be injected into 
these augmented system models and simulated again for the 
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purposes of validating or gauging the effectiveness of the 
disaster tolerant system. 
 Our overall approach involves three aspects:  
 

1) modeling large-scale systems both in the  
     presence and absence of a disaster 
2) formulating system enhancements that allow  
     for disaster tolerance and/or recovery 
3) validating the effectiveness of the system  
     enhancements in terms of tolerance and/or  
     recovery in the presence of a disaster 
  
The block diagram in Figure 1.0 illustrates the various 

phases of our research approach to disaster tolerance and 
recovery. 
  

 

 
Figure 1.0: Block Diagram of Disaster Tolerance Research 

Approach 
 
 A key issue is the methodology used for modeling 
large-scale systems.  Because the systems of interest are so 
large, we formulate abstract models that can be used to simulate 
only the characteristics of interest.  Furthermore we decompose 
the system model into independent sub-models that may be 
simulated separately and combined using superposition to 
achieve the entire system response.  We use ideas from the 
axiomatic design process to determine the appropriate 
decoupling of the system model into independent sub-
components. 
 Initially, systems are modeled both in the presence of 
a disaster and in a disaster-free state.  Based on the comparison 
of these two simulation responses, we will characterize an 
independent disaster model that may be injected into other 
system models to simulate behavior in the presence of a 
disaster.   
 Next, robustness features are added to the critical 
elements of the system model to allow for proper operation in 
the presence of a disaster (i.e. add disaster tolerance) or to allow 
for graceful recovery to proper operation in the presence of a 
disaster.  After these modifications are made to the system 

model, we verify the disaster tolerance or recovery through the 
injection of various disaster models into the modified system 
model and use simulation to determine behavior in the presence 
of a disaster. 
 The AD approach is critical in this application since 
the systems we model are very large and have many 
interdependencies that may not be obvious.  By formulating the 
design matrix, different subsystems may be parameterized and 
simulated separately.  In the terminology of AD, the design 
process is envisioned as being composed of mappings among 
different domains.  Initially, customer needs are formulated in 
the “customer domain” which are then mapped to the 
“functional domain”, followed by a mapping to the “physical 
domain”, and ultimately a mapping to the “process domain”.  
These design domains can vary depending on the system of 
interest.  For disaster tolerance, our initial domain is the 
“robustness domain” where needs for disaster tolerance are 
specified.  This is followed by the same three domains as 
mentioned previously.  Figure 2.0 contains a diagram of these 
domains and their relationship for disaster tolerance. 
 
The domain in the top of Figure 2.0 represents the “desired 
characteristics” of the disaster tolerant system whereas the 
bottom domain is the design solution.  The two middle domains 
consist of formally specified functional requirements in order to 
achieve the desired characteristics and these requirements are 
mapped into the “physical domain” consisting of design 
parameters.  These mappings are performed in accordance with 
the two axioms of design independence and information 
minimization. 
 

 
Figure 2.0: AD Domains for Disaster Tolerant System 

Design 
 
 In the first stage of mapping from the robustness 
domain to the functional domain, care is taken to ensure the 
mapping is performed in a design-neutral manner so that the 
design solution space is not constrained early in the process.  
The disaster tolerant robustness requirements are typically 
loosely defined and the designer must transform these needs 
into a more rigorous form that contains range values and 
tolerances.  Also, aspects such as environmental influences and 
noise must also be incorporated at this time.  In formulating the 
functional requirements, the philosophy of AD is to ensure that 
such requirements are as independent as possible; that is, no 
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single functional requirement supersedes or influences another.  
At this stage of the design, the independence enforced is in 
terms of the functions not the physical parts of the system. 
 The next phase of the mapping involves transforming 
the functional requirements into design parameters.  
Conceptually, this is the portion of the design that transforms 
the “what it does” (or functionality), to the “how it does” (or 
implementation).  In AD theory, this mapping can be 
formulated as a matrix equation that maps the set of functional 
requirements, {FR}, to the corresponding design parameters, 
{DP}.  The linear transformation matrix is referred to as the 
design matrix, A.  This relationship is given in the following 
equation. 
 

{ } { }FR D= A P

3

3

 
 

 As an example, consider the simple case where we 
have identified 3 functional requirements and 3 design 
parameters.  In general, the design matrix has elements [aij]=A 
and the functional requirements are related to the design 
parameters as: 
 

1 11 1 12 2 13 3

2 21 1 22 2 23

3 31 1 32 2 33

FR a DP a DP a DP
FR a DP a DP a DP
FR a DP a DP a DP

= + +

= + +

= + +

 

 
 In order to satisfy the independence axiom, the design 
matrix A must be diagonal (all aij=0 unless i=j) or lower or 
upper triangular.  In a lower triangular matrix all aij=0 for i<j 
and an upper triangular matrix is one where all aij=0 for i>j.  
When the design matrix is diagonal, each FR is satisfied by an 
independent DP and the resulting design is referred to as an 
uncoupled design.  A triangular design matrix indicates that FRs 
are independent if, and only if, a proper sequence of DPs is 
determined.  Triangular design matrices represent decoupled 
designs.  Any other form of the design matrix is referred to as a 
coupled design.  It is thus a goal to specify the set of FRs and 
DPs such that an uncoupled or decoupled design matrix can be 
formulated. 
 From a mathematical point of view, it is possible to 
diagonalize a matrix through a coordinate transformation.  
Unfortunately, for the AD design matrices, such transformations 
can lead to DPs that have no real meaning and thus this purely 
mathematical approach is insufficient.  In order to determine a 
design hierarchy that adheres to the independence principle, the 
concept of zigzagging is employed.  Zigzagging refers to the 
idea of crossing through to different domains rather than 
attempting to perform hierarchical decomposition within a 
single domain.  It is often the case that high-level FRs cannot be 
decomposed into simpler independent FRs until decisions have 
been made regarding the DPs that will be used. 
 Another important concept with regard to the design 
matrix is considerations about its rank.  In an ideal design, there 
are an equal number of FRs and DPs leading to a square matrix.  
Furthermore if the matrix represents an uncoupled or decoupled 
design, the matrix is necessarily of full rank.  If the number of 
DPs is less than the FRs, the design is a coupled design.  
Alternatively, when the number of DPs is greater than the FRs, 
a redundant design results.  In this latter case, it is possible to 
achieve an uncoupled or a decoupled redundant design 
depending on which of the DPs are fixed and in the order in 
which they are fixed. 

 Given these basic ideas in AD, the problem typically 
becomes one of decoupling a coupled design.  In the context of 
modeling large-scale systems for disaster tolerance, it is 
generally easy to formulate a few high-level functional 
requirements, such as “in the event of a disaster, the system 
shall recover to be fully functional within five minutes”.  
However, these few high-level FRs and the usually enormous 
number of DPs associated with a large-scale system place us in 
the unenviable situation of a redundant design.  It is for this 
reason, that we are focusing on the hierarchical decomposition 
of the FRs through zigzagging so that an uncoupled system can 
be formulated.  Whether the ultimate goal is for disaster tolerant 
system design or simulation, this decomposition task appears to 
be crucial in order to independently design or model critical 
subsystems.  
 

4. CONCLUSION AND FUTURE EFFORT 
 We have described an approach for using ideas from 
the systems engineering design methodology known as 
axiomatic design for disaster tolerant, large-scale systems 
design and analysis.  We believe such an approach is 
advantageous since AD provides a technique for automatically 
determining subsystem independence and minimization of 
conflicting needs and requirements.  The enormously large scale 
of many critical infrastructure systems; particularly in 
communications and computing necessitate an approach for 
independent subsystem modeling and design in order for the 
problem to become feasible. 
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