

Diana EASTON

Systems Engineering

Southern Methodist University
Dallas, TX 75275, USA

and

Mitchell A. THORNTON, V. S. Sukumaran NAIR, Stephen A. SZYGENDA

Computer Science and Engineering

Southern Methodist University
Dallas, TX 75275, USA

ABSTRACT
Axiomatic Design (AD) is a methodology that utilizes customer
needs as input and produces functional requirements, design
parameters, and process variables through the use of matrix
methods. AD is based on two design axioms; the independence
and the information axiom. These two design axioms and the
AD approach in general seem to be well-suited for the design
and analysis of large-scale computer and communication
infrastructure systems. This paper describes the application of
concepts from AD for utilization in disaster tolerant computing
and communication systems.

Keywords: Disaster Tolerance, Axiomatic Design

1. INTRODUCTION

Disaster Tolerance is the characteristic attributed to a
system that can withstand a catastrophic failure and still
function with some degree of normality [1,14]. We differentiate
between the terms “fault tolerance” and “disaster tolerance”.
Fault tolerant system design has been studied for the last few
decades and is usually intended to tolerate natural failures due
to hardware wear and tear, software design errors, and
unintentional user errors. Typical strategies to provide fault
tolerance at the physical level include the incorporation of
redundant system components and a voting mechanism [2].
Other methods include the use of error-checking and correcting
methods, hot-swap support, and special “watchdog” types of
software.

There exists a fairly substantial commercial market
for disaster tolerant and disaster recovery techniques and
mechanisms for the IT industry such as that in [12]. These
methods typically employ remote data storage centers and
associated policies. In our work, we take a much broader view
of disaster tolerance and we examine the problem from a design
and retrofit perspective. Based on this viewpoint, we define
disaster tolerance as follows:

 Disaster tolerance is a superset of fault tolerance in
that:

(a) a disaster may be caused by natural failures as

well as intentional malicious and planned sabotage
of the system;

(b) natural laws of low probability of simultaneous
occurrence of multiple failures are not applicable;

(c) failures could escalate into a wide catastrophic
system failure.

We are most interested in very large systems such as a

large distributed computing network that would preclude the use
of physical component redundancy due to prohibitive cost. As
an example, a single network router may have a degree of fault
tolerance by the incorporation of redundant output line drivers;
however, a data network that is distributed over a large
geographical area is likely to be impossible to replicate fully
and thus redundancy is not a singularly valid method for
incorporation of disaster tolerance. Even if such a
geographically wide-spread system were replicated,
communications channels for synchronization and disaster
detection would also be required, possibly with inherent
redundancy, to achieve any degree of disaster tolerance.

We differentiate between disaster tolerant systems
and disaster recovery systems. Disaster recovery is the ability
to resume normal operations after a disaster has occurred while
disaster tolerance is the ability to continue operations in an
uninterrupted manner despite the presence of a disaster. This
implies that the main difference between disaster recovery
versus tolerance is one measured in terms of the delay that
occurs after a disaster and before normal operations resume.

Whether a typical implementation is a disaster
recovery or tolerance method depends upon the application. In
past work in fault tolerance several approaches have been
employed including redundancy [5,6], module replacement [7],
error correction and detection [8], rollback [9], and self-repair
[10,11].

Two basic approaches to fault recovery are termed
forward and backward recovery. In the case of forward
recovery real-time performance can be achieved. We propose
to generalize and augment these approaches for large-scale
system disaster recovery and to apply either forward or

A Methodology for Disaster Tolerance Utilizing the
Concepts of Axiomatic Design

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 4 49ISSN: 1690-4524

backward recovery methods where appropriate and, also, to
implement these mechanisms in systems that are already in
existence but have poor or no recovery ability at the present
time.

The use of these concepts is generalized for disaster
tolerant systems. This new area of disaster tolerance has several
features and characteristics that differentiate it from classical
fault tolerant results. Some of the chief differences are:

• The granularity of the underlying fault resulting in a

system disaster,
• un-natural laws or causes of fault occurrence resulting

in a disaster,
• and, the widely distributed and enormous size of the

systems undergoing a disaster.

Because of these different characteristics and
properties, classical fault detection and recovery techniques are,
in general, not applicable to disaster tolerance. In classical fault
tolerance, a great deal of effort is expended for fine-grained
random error detection. In the large-scale systems in which we
are interested, such errors are manifested as erasures and thus
may not qualify or cause widespread system failure.
Furthermore, the incorporation of redundancy in large systems
must be cleverly managed so that we do not create 100% (or
more) overhead that would be impractical to implement.

Finally, there is a tight relationship with system
security and availability of the system. These properties are
generally not considered in classical fault tolerant design
approaches and we believe that consideration of these aspects
will lead to fundamentally new and different methods for the
design and implementation of new systems. Furthermore, many
existing large-scale systems present in the infrastructure would
be impractical to redesign and deploy, thus it is necessary to
determine new techniques to incorporate disaster tolerance as an
augmentation of existing systems.

Furthermore, many existing large-scale systems
present in the infrastructure would be impractical to redesign
and deploy, thus it is necessary to determine new techniques to
incorporate disaster tolerance as an augmentation of existing
systems.

2. AXIOMATIC DESIGN BACKGROUND

 Axiomatic Design (AD) is a new rigorous systematic
paradigm developed for the purpose of transforming a set of
customer needs, that are often loosely or ill-defined into
functional requirements, process variables, and design
parameters [3,4]. This technique is named for its use of two
fundamental design axioms:

 1) Independence: This axiom maintains and promotes
the independence of various functional requirements, such that
specific design parameters may be modified to satisfy a
particular requirement without affecting other functional
requirements.
 2) Information: This axiom states that the information
content of alternative designs should be minimized, thus
maximizing the success of the design.

By avoiding complex functional requirements and
focusing on simplified requirements with minimal information,
the realization of a design adhering to the requirement is easier
to achieve.

 The AD process adheres to the two axioms through a
rigorous dependence matrix formulation that uncouples
(promotes independence) among the requirements. While this
approach is suggested for use in the design of disaster tolerant
systems, we also believe these principles can be adapted for
modeling and simulation of the extremely large systems of
interest, in terms of disaster tolerance.
 As an example, system-wide simulation in the
presence (or absence) of an event that potentially could cause a
disaster is impractical due to the complexity of the system. By
using the AD approach to determine uncoupled (or independent)
subsystems, the subsystems can be independently modeled; both
with and without the presence of a potentially disaster-causing
event, and the law of superposition can then be used to infer
overall system response.
 The ability to model large complex systems in a
normal and disaster mode is crucial for defining disaster
models. Disaster models are important elements needed for the
design of disaster tolerant systems, since they will be
purposefully injected into robust system models to gauge the
degree of disaster tolerance present in the system.
 Whether designing or simulating large systems, the
“customer needs” that the system is intended to satisfy must be
identified as a first step to develop a model. Because models
are used for both the synthesis and analysis of problems, we
shall henceforth describe the AD approach with respect to large-
scale system modeling with the understanding that applicability
is present for both engineering tasks. In the AD approach,
needs are mapped to functional requirements through the
formulation of a dependency matrix. In the case of large-scale
system design, it is typical that customer needs are not
rigorously defined and indeed it is the job of the systems
engineer to transfer these needs to a technically detailed set of
functional requirements. In the case of simulation of an existing
large-scale system, it is important to re-establish the customer
needs from a technologically neutral point of view. This neutral
point of view is essential to ensure that the resulting model is
not dependent upon the particular technology in use for the
system implementation.
 The identification of the customer needs is often
difficult, but also insufficient for formulating a model of the
system. The development of technically detailed functional
requirements is essential and it is in this phase of the system
modeling process that we believe the AD approach is
particularly advantageous for large-scale computer and
communications systems; in adherence with the design axioms
of independence and information.

3. AD APPROACHES FOR DISASTER TOLERANCE

 Our methodology utilizes system models to simulate
large systems in normal operating modes and in disaster modes.
The ideas of AD will be used to divide the simulations into
suitable independent sub-system simulations that can be linearly
combined to infer the entire system simulation result. The
behavior of a system undergoing a disaster will be abstracted
into a simple disaster model using catastrophe theory or cellular
automata abstractions that can be easily injected into a system
model, much in the same way that traditional fault modeling of
integrated circuits is performed.
 Once appropriate disaster models are identified,
modifications to the disaster-free system design are identified
that allow the system to operate in a disaster tolerant or disaster
recovery mode. The disaster models will then be injected into
these augmented system models and simulated again for the

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 450 ISSN: 1690-4524

purposes of validating or gauging the effectiveness of the
disaster tolerant system.
 Our overall approach involves three aspects:

1) modeling large-scale systems both in the
 presence and absence of a disaster
2) formulating system enhancements that allow
 for disaster tolerance and/or recovery
3) validating the effectiveness of the system
 enhancements in terms of tolerance and/or
 recovery in the presence of a disaster

The block diagram in Figure 1.0 illustrates the various

phases of our research approach to disaster tolerance and
recovery.

Figure 1.0: Block Diagram of Disaster Tolerance Research

Approach

 A key issue is the methodology used for modeling
large-scale systems. Because the systems of interest are so
large, we formulate abstract models that can be used to simulate
only the characteristics of interest. Furthermore we decompose
the system model into independent sub-models that may be
simulated separately and combined using superposition to
achieve the entire system response. We use ideas from the
axiomatic design process to determine the appropriate
decoupling of the system model into independent sub-
components.
 Initially, systems are modeled both in the presence of
a disaster and in a disaster-free state. Based on the comparison
of these two simulation responses, we will characterize an
independent disaster model that may be injected into other
system models to simulate behavior in the presence of a
disaster.
 Next, robustness features are added to the critical
elements of the system model to allow for proper operation in
the presence of a disaster (i.e. add disaster tolerance) or to allow
for graceful recovery to proper operation in the presence of a
disaster. After these modifications are made to the system

model, we verify the disaster tolerance or recovery through the
injection of various disaster models into the modified system
model and use simulation to determine behavior in the presence
of a disaster.
 The AD approach is critical in this application since
the systems we model are very large and have many
interdependencies that may not be obvious. By formulating the
design matrix, different subsystems may be parameterized and
simulated separately. In the terminology of AD, the design
process is envisioned as being composed of mappings among
different domains. Initially, customer needs are formulated in
the “customer domain” which are then mapped to the
“functional domain”, followed by a mapping to the “physical
domain”, and ultimately a mapping to the “process domain”.
These design domains can vary depending on the system of
interest. For disaster tolerance, our initial domain is the
“robustness domain” where needs for disaster tolerance are
specified. This is followed by the same three domains as
mentioned previously. Figure 2.0 contains a diagram of these
domains and their relationship for disaster tolerance.

The domain in the top of Figure 2.0 represents the “desired
characteristics” of the disaster tolerant system whereas the
bottom domain is the design solution. The two middle domains
consist of formally specified functional requirements in order to
achieve the desired characteristics and these requirements are
mapped into the “physical domain” consisting of design
parameters. These mappings are performed in accordance with
the two axioms of design independence and information
minimization.

Figure 2.0: AD Domains for Disaster Tolerant System

Design

 In the first stage of mapping from the robustness
domain to the functional domain, care is taken to ensure the
mapping is performed in a design-neutral manner so that the
design solution space is not constrained early in the process.
The disaster tolerant robustness requirements are typically
loosely defined and the designer must transform these needs
into a more rigorous form that contains range values and
tolerances. Also, aspects such as environmental influences and
noise must also be incorporated at this time. In formulating the
functional requirements, the philosophy of AD is to ensure that
such requirements are as independent as possible; that is, no

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 4 51ISSN: 1690-4524

single functional requirement supersedes or influences another.
At this stage of the design, the independence enforced is in
terms of the functions not the physical parts of the system.
 The next phase of the mapping involves transforming
the functional requirements into design parameters.
Conceptually, this is the portion of the design that transforms
the “what it does” (or functionality), to the “how it does” (or
implementation). In AD theory, this mapping can be
formulated as a matrix equation that maps the set of functional
requirements, {FR}, to the corresponding design parameters,
{DP}. The linear transformation matrix is referred to as the
design matrix, A. This relationship is given in the following
equation.

{ } { }FR D= A P

3

3

 As an example, consider the simple case where we
have identified 3 functional requirements and 3 design
parameters. In general, the design matrix has elements [aij]=A
and the functional requirements are related to the design
parameters as:

1 11 1 12 2 13 3

2 21 1 22 2 23

3 31 1 32 2 33

FR a DP a DP a DP
FR a DP a DP a DP
FR a DP a DP a DP

= + +

= + +

= + +

 In order to satisfy the independence axiom, the design
matrix A must be diagonal (all aij=0 unless i=j) or lower or
upper triangular. In a lower triangular matrix all aij=0 for i<j
and an upper triangular matrix is one where all aij=0 for i>j.
When the design matrix is diagonal, each FR is satisfied by an
independent DP and the resulting design is referred to as an
uncoupled design. A triangular design matrix indicates that FRs
are independent if, and only if, a proper sequence of DPs is
determined. Triangular design matrices represent decoupled
designs. Any other form of the design matrix is referred to as a
coupled design. It is thus a goal to specify the set of FRs and
DPs such that an uncoupled or decoupled design matrix can be
formulated.
 From a mathematical point of view, it is possible to
diagonalize a matrix through a coordinate transformation.
Unfortunately, for the AD design matrices, such transformations
can lead to DPs that have no real meaning and thus this purely
mathematical approach is insufficient. In order to determine a
design hierarchy that adheres to the independence principle, the
concept of zigzagging is employed. Zigzagging refers to the
idea of crossing through to different domains rather than
attempting to perform hierarchical decomposition within a
single domain. It is often the case that high-level FRs cannot be
decomposed into simpler independent FRs until decisions have
been made regarding the DPs that will be used.
 Another important concept with regard to the design
matrix is considerations about its rank. In an ideal design, there
are an equal number of FRs and DPs leading to a square matrix.
Furthermore if the matrix represents an uncoupled or decoupled
design, the matrix is necessarily of full rank. If the number of
DPs is less than the FRs, the design is a coupled design.
Alternatively, when the number of DPs is greater than the FRs,
a redundant design results. In this latter case, it is possible to
achieve an uncoupled or a decoupled redundant design
depending on which of the DPs are fixed and in the order in
which they are fixed.

 Given these basic ideas in AD, the problem typically
becomes one of decoupling a coupled design. In the context of
modeling large-scale systems for disaster tolerance, it is
generally easy to formulate a few high-level functional
requirements, such as “in the event of a disaster, the system
shall recover to be fully functional within five minutes”.
However, these few high-level FRs and the usually enormous
number of DPs associated with a large-scale system place us in
the unenviable situation of a redundant design. It is for this
reason, that we are focusing on the hierarchical decomposition
of the FRs through zigzagging so that an uncoupled system can
be formulated. Whether the ultimate goal is for disaster tolerant
system design or simulation, this decomposition task appears to
be crucial in order to independently design or model critical
subsystems.

4. CONCLUSION AND FUTURE EFFORT
 We have described an approach for using ideas from
the systems engineering design methodology known as
axiomatic design for disaster tolerant, large-scale systems
design and analysis. We believe such an approach is
advantageous since AD provides a technique for automatically
determining subsystem independence and minimization of
conflicting needs and requirements. The enormously large scale
of many critical infrastructure systems; particularly in
communications and computing necessitate an approach for
independent subsystem modeling and design in order for the
problem to become feasible.

5. REFERENCES

[1] S.A. Szygenda and M.A. Thornton, Disaster Tolerant

Computing and Communications, In Proceedings of the
International Conference on Cybernetics and Information
Technologies, Systems and Applications (CITSA 2005),
and International Conference on Information Systems
Analysis and Synthesis (ISAS), July 14-17, 2005, pp. 171-
173.

[2] D.K. Pradam, Ed., Fault-Tolerant Computing – Theory
and Techniques, Prentice-Hall, 1986.

[3] N. P. Suh, The Principles of Design, Oxford University
Press, Oxford Series on Advanced Manufacturing, New
York, New York, ISBN 0-19-504345-6, Oxford Series on
Advanced Manufacturing, February 1990.

[4] N. P. Suh, Axiomatic Design: Advances and Applications,
Oxford University Press, Oxford Series on Advanced
Manufacturing, New York, New York, ISBN 0-19-
513466-4, May 2001.

[5] J.C. Tryon, Quadded Logic, in Redundancy Techniques for
Computing Systems, W.C. Mann and R.C. Wilcox, Ed.,
Washington DC: Spartan, 1962, pp. 205-228.

[6] R.E. Lyions and W. Vanderkulk, The use of triple modular
redundancy to improve computer reliability, IBM J. Res.
Develop., vol. 7, pp. 200-209, 1962.

[7] T. Bloom, Dynamic Module Replacement in a Distributed
Programming System, Ph.D. dissertation, Massachusetts
Institute of Technology, 1983.

[8] E.R. Berlekamp, Algebraic Coding Theory, McGraw-
Hill, New York, 1968.

[9] R.E. Ahmed, R.C. Frazier, et al., Cache-aided Rollback
Error Recovery (CARER) Algorithms for Shared-Memory
Multiprocessor Systems, in Proc. of Int. Symp. on Fault
Tol. Comp. Sys., 1990, pp. 82-88.

[10] S.A. Szygenda and M.J. Flynn, Failure Analysis of a
Memory Organization for Utilization in a Self-Repair

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 452 ISSN: 1690-4524

Memory System, IEEE Trans. on Reliability, R-20(2), May
1971, pp. 64-70.

[11] S.A. Szygenda and M.J. Flynn, Coding Techniques for
Failure Recovery in a Distributive Modular Memory
Organization, in Proc. of American Federation of
Information Processing Societies, 1971, pp. 459-566.

[12] F. Chang, M. Ji, S.-T. Leung, J. MacCormick, S. Perl, and
L. Zhang, Myriad: Cost-effective Disaster Tolerance,
Proceedings of the USENIX Conference on File and
Storage Technologies, January 2002.

[14] M. A. Harper, C. M. Lawler, and M. A. Thornton, IT
Application Downtime, Executive Visibility and Disaster
Tolerant Computing, In Proceedings of the International
Conference on Cybernetics and Information Technologies,
Systems and Applications (CITSA 2005), and International
Conference on Information Systems Analysis and Synthesis
(ISAS), July 14-17, 2005, pp. 165-170.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 4 53ISSN: 1690-4524

	S683SZB

