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ABSTRACT

By taking advantage of niche sharing scheme,we propose a
novel co-evolutionary particle swarm optimization algorithm
(NCPSO) to solve permutation flow shop scheduling problem.
As the core of this algorithm, niche sharing scheme maximizes
the diversity of population and hence improves the quality of
individuals. To evaluate the performance of the proposed
algorithm, we have use eight Taillard instances with different
sizes to extensive experiment and results clearly shown that the
solutions found by NCPSO algorithm outperform those by
Particle Swarm Optimization (PSO), Genetic Algorithm (GA)
and Cooperative Particle Swarm Optimization (CPSO).

Keywords: Co-evolutionary approach, Particle swarm
optimization, Niche Sharing Scheme, Flow Shop Scheduling
Problem.

1. INTRODUCTION

Since its invention, intelligent optimization algorithm, which is
also referred to as evolutionary algorithm, has played an
increasingly important role in a wide range of fields, including
genetic algorithm, ant colony algorithm, etc... Evolutionary
algorithm, as indicated by its name, is inspired and developed
by evolution and behavior of animals, namely bionics and has
been widely used to deal with the optimization problem in both
continuous and discrete domains.

Flow shop scheduling problem (FSSP), which is a complex
combinatorial optimization problem with a strong engineering
background at present represents approximately a quarter of
manufacturing systems and information service facilities in use.
As for the permutation FSSP, the goal is to find a job
permutation of all the jobs to be processed on several machines
so that a specific performance measure is minimized. Thus far,
two of the most common measures are the minimization of
makespan and total flow time, which have been proved to be
NP-complete by Garey et al. [1].

Johnson [2] first proposes an optimization algorithm to
minimize makespan for 2-machine FSSP with n jobs to
schedule. From then on, various methods have been developed
so as to solve FSSP; however, some of them are only able to

cope with small- and moderate-sized problems. Hence, a great
deal of effort has been dedicated to obtaining satisfactory
solutions to complex FSSP. At the very beginning, the heuristic
methods concentrate on settling the makespan minimization
problem containing Palmer’s slope index [3], CDS [4], Gupta’s
[5] heuristic and NEH [6]. Unfortunately, there is one common
shortcoming with the heuristic methods: the pre-defined rules
the heuristic methods depend on might not be applicable to
some practical problems. As a result, evolution-based
algorithms, such as tabu search method[7], simulated annealing
algorithm [8], genetic algorithm[9][10], ant colony
optimization (ACO) [11] and particle swarm optimization
algorithm[12][13][14], have been proposed as a replacement of
the heuristic methods to handle the scheduling problems. Yi
Zhang et al. [15] propose an HGA (hybrid genetic algorithm)
for permutation FSSP with a minimization in total flow time.
G.I. Zobolas et al. [16] proposed a hybrid metaheuristic for the
minimization of makespan in permutation flow shop
scheduling problems. A genetic algorithm for solution
evolution and a variable neighborhood search (VNS) to
improve the population. The hybridization of a GA with VNS,
combining the advantages of these two individual components,
is the key innovative aspect of the approach, in which
comprises three components: an initial population generation
method based on a greedy randomized constructive heuristic.
Li and Pan [17] presented a novel hybrid algorithm (TABC)
that combines the artificial bee colony (ABC) and tabu search
(TS) to solve the hybrid flow shop (HFS) scheduling problem
with limited buffers. The objective is to minimize the
maximum completion time.

Over the recent years, there have been a number of reported
works focusing on the modification PSO and other
optimization algorithms to solve continuous optimization
problems. Nevertheless, they do not work anymore when used
to solve FSSP, and thus far only few algorithms are available
for FSSP. Changsheng Zhang et al. [18] propose a hybrid
alternate two phase particle swarm optimization (PSO)
algorithm called ATPPSO to address FSSP, by taking
advantage of the PSO with genetic operators and annealing
strategy to minimize makespan. Jindong Zhang et al. [19]
propose a circular discrete particle swarm optimization
algorithm CDPSO instead for FSSP. However, these
algorithms have the problem of premature convergence, which
is as a consequence of easy trap into a local optimum. In
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general, niche technology is used in cooperation with other
algorithms. Jun Zhang et al. [20] propose a novel adaptive
sequential niche particle swarm optimization (ASNPSO)
algorithm. By taking advantage of the dynamic niche sharing
technique, Xiyu Liu et al. [21] presents a new variation of
traditional PSO algorithm. T. Radha Ramanan et al.[22] with
the objective of optimizing the makespan of an FSSP uses a
particle swarm optimization (PSO) approach. Variable
neighborhood search (VNS) is employed to overcome the early
convergence of the PSO and helps in global search. The
shortest maximum completion time was taken as the goal,
process industrial production scheduling algorithms based on
particle swarm optimization (PSO) was proposed in paper [23],
the specific production tasks of propylene oxide (PO) and
polyvinyl chloride (PVC) of a chlor-alkali enterprises was
taken as the research background, four production scheduling
tasks of two products was realized. Gonzalez [24] et al
proposed effective neighborhood structures for this problem,
including feasibility and non-improving conditions, as well as
procedures for fast estimation of the neighbor’s quality. These
neighborhoods are embedded into a scatter search algorithm
which uses tabu search and path relinking in its core. Lei and
Guo [25] formulated the problem as a mixed integer linear
programming model and develop an effective parallel
neighborhood search algorithm. Two-string representation and
three neighborhood structures are applied to generate new
solutions.

In this paper, we propose a new intelligent optimization
algorithm, which is also called co-evolution particle swarm
optimization algorithm, based on niche particle swarm
optimization (NCPSO). Taking into account co-evolution
particle swarm optimization algorithm, a new swarm with
niche sharing scheme is designed to cooperate with other
swarms. In this niche evolutionary environment, crossover and
mutation operations are involved to search optimal solution. In
addition, five other swarms are designed to assist each other
during the process of best solution search. Therefore, NCPSO
algorithm is a paralleling co-evolutionary process.

The rest of the paper is organized as follows. In section 2, we
briefly describe the FSSP. Section 3 and section 4 introduce
particle swarm optimization, co-evolution algorithm and the
principle of NCPSO algorithm. We apply the proposed NCPSO
algorithm to the flow shop scheduling optimization in section 5.
Finally, we draw a conclusion in section 6.

2. FORMULATION OF FSSP

Let the 4-tuple <n, m, P, Obj> denote a FSSP, where n jobs J =
{J1, J2, . . . , Jn} are to be processed on m machines M = {M1,
M2, . . . , Mm}, P indicates that only permutation schedules are
considered and Obj is an objective function, describing the
performance measure by which the schedule is to be evaluated.
For instance, <n, m, P, Cmax> and <n, m, P, F> are two FSSPs
that minimize the makespan Cmax and minimize the total flow
time F, respectively.
In FSSP, each job Ji is passed on to m machines sequentially,
following the ordering mMMM ,,, 21  , so as to execute m
different operations on these machines. In other words, in
order to run the r -th operation for the job Ji, we forward Ji to
the r-th machine rM and then perform task on rM with

fixed processing time ( , )T r i , 1 r m  and 1 i k  .
Notice that all the jobs are processed according to the order of a
pre-defined schedule, which uniquely represents a permutation
of jobs. Moreover, at any time, one machine is only allowed to
process less than one job and also one job is only allowed to
perform on less than one machine. The maximum completion
time of the permutation schedule is given by

(1,1) (1,1)
(1, ) (1, 1) (1, )
( ,1) ( 1,1) ( ,1)
( , ) max( ( , 1), ( 1, )) ( , )

C T
C i C i T i
C r C r T r
C r i C r i C r i T r i


  
  
   

(1)

Where 1 r m  , 1 i k  , ( , )T r i stands for the

execution time of the r -th operation of the i -th job Ji on the
machine rM , ( , )C r i denotes the maximum running time

that Ji requires on rM . And C(m, n) represents makespan.

Each job has a specified processing order through all the
machines with the corresponding processing time on each
machine. This order is called machine sequence. The
scheduling problem is to find out the best operation sequences
on all machines in order to minimize the makespan. In this case,
the makespan implies the criterion to be optimized.

3. DEPICT OF PARTICLE SWARM OPTIMIZER AND
COOPERATIVE CO-EVOLUTION THEORY

3.1 Overview of PSO
Particle Swarm Optimization (PSO) is an evolutionary
computation technique proposed by Kennedy and Eberhart [26]
in the mid 1990s. Different from other algorithms, PSO is
simple and easy to implement because no operators such as
crossover and mutation exist. It was enlightened by the natural
biologic phenomenon that a flock of birds attempt to find food
through its own position as well as experience gained from
others. More specifically, PSO is such an evolutionary
computation technique that it works based on individual
improvement plus population cooperation and competition.
PSO regards the population and each individual in the
population as swarm and particle, respectively. Regarding the
status of a particle over the search space, it is generally
characterized with its position and velocity, which are adjusted
according to the flying experience of the particle as well as of
its companions. Let 1 2( , , , )i i i idX x x x  and

1 2( , , , )i i i idV v v v  , respectively, denote the position and
the velocity of the i-th particle in an d-dimensional search
space. Also, let 1 2( , , , )i i i idP p p p  and

1 2( , , , )g g g gdP p p p  , respectively, stand for the best

previously visited position of the i-th particle and the best
individual of the whole swarm. The fitness value of each
particle is evaluated according to the objective function. During
the iterations, the velocity and position are repeatedly updated
based on.

11 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))id id id id gd idv k v k cr p k x k cr p k x k      (2)
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( 1) ( ) ( 1),( 1,2, , ; 1,2, , )id id idx k x k v k i md d       (3)

where k is the iteration number, the variables 1 2,c c are two

learning factors, usually 221  cc , defining the moving

range for a particle and 1r , 2r are two numbers randomly taken
from the uniform distribution with the support (0, 1), that is,

1r ~U (0,1) and 2r ~U (0,1).

3.2 Principle of Cooperative Co-evolution Theory
Co-evolution mechanism which was first introduced by
German mycologist, Anton de Bary in 1879 and is also referred
to as symbiosis includes three main categories: mutualism
(both species benefit by the relationship), commensalism (one
species benefits while the other species is not affected), and
parasitism (one species benefits and the other is harmed) [27].
Rong-Hwa Huang etc in paper [28] researched on the flow
shop with multiprocessor scheduling problem (FSMP), and
develops an improved particle swarm optimization heuristic to
solve it. Additionally, designs an integer programming model
to perform effectiveness and robustness testing on the proposed
heuristic.

By contrast, the latter as for cooperative co-evolution, in
natural ecosystems, almost all species own appetence to
interact with other species to improve the survival
cooperatively.

Consider a population with M particles, each of which is
represented by an n-dimensional vector. After dividing each
vector into  parts jS （j =1, , ）, then we obtain an

ecosystem with  sub-swarms {A1, A2, ,Aλ}. Assume that

jH and jgH are the current position and the previously best

position of the sub-swarm Aj respectively and also that j iS x ,

j iS p and j gS p are respectively the i -th particle’s current
position, i -th particle’s previously best position of parts jS of

sub-swarm jA and the previously best position of sub-swarm

jA . According to the cooperative method, j iH
( 1 gS p , , 1j gS p , j iS x , 1j gS p , , gS p ) represents

a new complete vector of each particle of sub-swarm jA . At

the same time, it reflects the cooperative method.

The best position of every sub-swarm of each particle is
updated based on
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Where,

),,,,,,(( 111 ggjijgjgji pSpSpSpSpSHfF   .

By contrast, using

sij

pSpSpSpSpSHfH ggjijgjgjijg



 

1,1,

)),,,,,,((minarg 111




(5)

The best position of every sub-swarm can be found..

4. THE PROPOSED COOPERATIVE CO-EVOLUTION
PARTICLE SWARM OPTIMIZER

4.1 Introduction to sharing scheme
Sharing scheme is a widely used niche technique which
modifies fitness landscape by reducing the payoff in densely
populated regions [29]. Enrico Sciubba and Federico Zullo in
paper [30] consider a set of species feeding on the same energy
resources. The balance equations for the allocation of such
resources among the species result in a set of non linear
differential equations describing the dynamics of each
population. The paper address the important question of
optimal exploitation of the incoming energy resource at the
species- and ecological niche level: more specifically, after a
formal definition of the energy effectiveness of the conversion
for the overall system and for each species. For each individual,
its fitness value is modified associated with other individuals
using the sharing function.

4.2 Niche sharing scheme in NCPSO algorithm
Niche-based sharing scheme refers to that the fitness value of
each individual in a population is adjusted according to sharing
function, so at to reflect analogical degree between one
individual and another. After adjustment, the scheme proceeds
by choosing the adjusted fitness value, ensuring the diversity of
population during the evolution process. The afore-mentioned
sharing function defines analogical degree between two
individuals in the form of scientific value, denoted
as ( ( , ))i jS d x x . Here, ( , )i jd x x refers to a certain

relationship between two individuals ix and jx . The bigger

the value of sharing function is, the more analogical the
individuals in the population are. The sharing function
( ( , ))i jS d x x is given by:

1
1 1 2 2

1

2
1 1 2 2

2

1 2
1 1 2 2

1 2

( , )
1 ( , ) , ( , )

( , )
1 ( , ) , ( , )
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0
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S d x x
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others
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

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(6)
where 1( , )i jd x x denotes the Euclidean distance between the

encodings of the individuals ix and jx and 2 ( , )i jd x x
stands for the fitness distance between ix and jx .
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In order to measure the analogical degree of an individual in a
population, sharing degree, denoted as iS , is defined. In this

paper, we calculate iS by summing up all the sharing function
values between the individual and others. Mathematically,

iS is defined as follows:

1,

( ( , )), 1, 2, ,
M

i i j
j j i

S S d x x i M
 

   (7)

where M represents the population size.
Finally, using

' , 1, 2, ,i
i

i

ff i M
S

   (8)

We can obtain the new fitness values of all individuals.
The principal idea of the niche-based sharing scheme for
finding the optimal solution is to maximize the diversity within
a population through adjusting the fitness values of all.

4.3 Pseudo-code of NCPSO Algorithm
The pseudo-code of NCPSO algorithm - is given as follows:
Begin
i =1 //
the current generation
Initialize(pop)
//generate initial population
Generate pop0(pop0=pop) //
this population as the niche evolution population
F(pop0)
//calculate fitness value

1
bestF0 and 1

bestp0 =find(F(pop0))
//find the best solution and the individual
Generate Sub-swarm1, Sub-swarm2, Sub-swarm3. //the
process is shown in figure 1
F(Sub-swarm1),F(Sub-swarm2), F(Sub-swarm3)
//calculate fitness values of every Sub-swarm

1
best1F and 1

bestSub1 =find(F(Sub-swarm1))
//with the same way 1

best2F and 1
bestSub2 , 1

best3F and 1
bestSub3 are

obtained.
i=2
While i<MAX_GEN
Begin pop0 //niche
evolution environment
F’=N(F) //adjust the
original fitness values

//N()
is the function of niche based on sharing mechanism

current_genpop0 =Genetic Operation(pop0) //conduct

Genetic Operation via F’ and generate new population
i
bestF0 and i

bestp0 =find(F( ipop0 ) )
If i

bestF0 < 1
bestF0

1
bestp0 = i

bestp0
End
End pop0
Begin Sub-swarm1
Generate iSub-swarm1 //the process
is shown in figure 1

Sub1 =PS( iSub-swarm1 )
//conduct particle swarm’s updating equation with
equation(2),(3)

i
best1F and i

bestSub1 =find(F(Sub1))
If i

best1F < 1
bestF1

1
bestSub1 = i

bestSub1
End
If i

bestF0 < i
best1F

1
bestSub1 = i

bestp0
End
End Sub-swarm1
Begin Sub-swarm2

Generate iSub-swarm2 //the
process is shown in figure 1

S u b 2 =PSO( iSub-swarm2 )
//conduct particle swarm’s updating equation with
equation(2),(3)

i
best2F and i

bestSub2 =find(F(Sub2 ))
If i

best2F < 1
bestF2

1
bestSub2 = i

bestSub2
End
If i

bestF0 < i
best2F

1
bestSub2 = i

bestp0
End
End Sub-swarm2
Begin Sub-swarm3

Generate iSub-swarm3 //the
process is shown in figure 1

Sub3 =PSO( iSub-swarm3 )
//conduct particle swarm’s updating equation with
equation(2),(3)

i
best3F and i

bestSub3 =find(F(Sub3 ))
If i

best3F < 1
bestF3

1
bestSub3 = i

bestSub3
End
If i

bestF0 < i
best3F

1
bestSub3 = i

bestp0
End
End Sub-swarm3

iS =Min( i
bestF0 , i

best1F , i
best2F , i

best3F ) //find
the best solution
i=i+1
End
End

5. NCPSO ALGORITHM FOR FSSP

5.1 Encoding
Thus far, a large number of optimization algorithms have been
employed to solve the continuous problem. However, FSSP is a
combinatorial problem with solution being in discrete space, so
initial schemes are not applicable in the case of FSSP. This,
consequently, require us to propose an appropriate
representation for FSSP.

Till now, various encoding methods have been proposed, based
on permutation, job and precedence etc. In this paper, we
choose the operation permutation-based encoding method.
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Considering a FSSP with n jobs working on m machines, a n
dimensional space is taken as the search space and the position
of each particle is represented as a vector with n (real)
components. In order to be consistent with the operation
permutation sequence of FSSP, we first convert the n
components in each vector into n integers, ranging from 1 to n
according to a sort program. Each integer here represents the
name of a job. For a better understanding of the proposed
scheme, we here give an example. Assume that 5 machines are
scheduled to process 10 jobs. First, initial solution with real
numbers is generated randomly, Xi = [0.7373, 0.4799, 0.7806,
0.9984, 0.1751, 0.9657, 0.8703, 0.5454, 0.3095, 0.1750], and
then it is encoded into a set of integers(10, 5, 9, 2, 8, 1, 3, 7, 6,
4) by sorting the 10 real numbers in Xi in ascending order.
More specifically, 0.1750 is the smallest number among the ten
float numbers, so it is ranked 1 with the initial order 10. In the
same way, the rank values of the remaining numbers are
assigned.

We have conducted the experiments on the benchmark
problems proposed by Taillard (1993), with m = 5,10,20 and n
= 20,50,100,200. There are 10 instances for each problem size
and 110 problem instances in total.

5.2 Performance evaluation for NCPSO algorithm
optimizing FSSP
Using eight flow shop instances with different sizes, we in this
section compare NCPSO to PSO, GA and CPSO. The metric
measure used for comparison is defined as the average relative
percentage deviation (ARD) in makespan with respect to the
best known solutions by Taillard and is given by

1

( ) /
R

i b es t

i b e s t

C CARD R
C


  (9)

Where R the running time is iC denotes the makespan

obtained for the i -th running and bestC is the known
minimum makespan for the problem or the lowest known upper
bound for Taillard’s instances.

Through equation (9), the value of ARD is associated with the
difference between the solution searched by algorithm and the
best solution. The smaller the ARD is, the more efficient the
algorithm is. From Table 1, we observe that, for all, Taillard’s
instances, the ARD of solutions found by NCPSO algorithm
are consistently smaller than those resulting from PSO, GA and
CPSO. Therefore, NCPSO algorithm is more robust and
efficient than others.

5.3 Experimental results
To demonstrate the performance of NCPSO in flow shop, we
have used eight instances with different sizes (Taillard, 1990)
that were selected from practical data in the experiments.
Regarding the parameter setting, we have used R=10, the
population size, abbreviated as PS, PS = 50 and the maximum
generation GEN = 800 for the proposed method. The values of
parameters for GA and NCPSO are cP =0.8, mP =0.05. Also,

the learning factors 1c = 2c = 2 and the weight
parameterw =0.6 have been used for PSO, CPSO and NCPSO.
Table 2 lists the experimental results, and from this table we
have noticed that it is particularly challenging to deal with
some instances using simple methods.

In Table 2, the best solutions found by NCPSO are highlighted
using bold face and the solutions that are comparable to OS are
highlighted in italic. After comparing the data in this table, it is
easy to see that the proposed NCPSO algorithm outperforms
PSO and CPSO. For the instances with size 5×20, 5×50 and
5×100, the NCPSO algorithm finds not only the better
solutions, but also the optimal solutions in most cases. This
clearly indicates that NCPSO works quite well for the problems
with m=5.

Notice that, as Figure 2 shows, the solutions by genetic
algorithm (GA) are consistently worse than those by PSO,
CPSO and NCPSO algorithm, so we do not list its solutions in
table 2, taking into account space saving.

Figure 2 compares the solution searching process of different
algorithms for eight scheduling problems with distinct sizes.
As demonstrated by these figures, GA obviously achieves
inferior performance that other algorithms. In terms of
convergence speed, our method converges quicker than PSO,
GA and CPSO. Although the figures for ta001b0, ta033b0 and
ta063b0 show that CPSO algorithm is able to find the optimal
solutions, our NCPSO method requires less running time.
Moreover, we can see, from the figures for ta051b0 and
ta071b0, that NCPSO provides more powerful capability to
overcome the premature issue.

6. CONCLUSION

As it is well known, intelligent algorithm plays a significant
part in both continuous and discrete optimization problems. We
have proposed a cooperative co-evolution intelligent algorithm
to solve flow shop scheduling problem, based on niche
technology. Eight typical flow shop scheduling instances with
forty problems have been used to evaluate the performance of
our NCPSO algorithm in searching the best solution. As
demonstrated by extensive experimental results, the NCPSO
algorithm, when used to cope with flow shop scheduling
problem, is more efficient and effective than prior methods. .
Compared to PSO, GA and CPSO algorithms, the proposed
algorithm achieves improved convergence speed and also is
capable of finding the better solutions. As a direction for future
research, we employ sharing scheme of niche and crowding
scheme in different manners and meanwhile take into
consideration some other strategies to advance the algorithm
for improved performance. Another future work of ours is to
apply the proposed algorithm to more complex scheduling
problems, such as multi-objectives and multi-scheduling
problems with uncertainty.
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Fig 1. An example for the cooperative method
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Fig. 2. The optimal curves of PSO, GA, CPSO and NCPSO
algorithms for FSSP

TABLE I
COMPARISONS BETWEEN NCPSO, PSO AND GA IN THE

AVERAGE RELATIVE DEVIATION
Taillard
instance SIZE

PSOARD
GAARD CPSOARD NCPSOARD

ta001b0 5×20 1.205 3.6933 1.4867 0.939

ta011b0 10×20 2.4399 10.3034 2.3009 1.9848

ta021b0 20×20 2.4902 7.0091 2.6295 2.377

ta031b0 5×50 0.2937 2.7753 0.2423 0.1542

ta041b0 10×50 6.894 13.1795 4.4801 4.1057

ta051b0 20×50 8.3584 14.5351 3.6519 3.4805

ta061b0 5×100 0.6153 1.7987 0.0073 0

ta071b0 10×100 4.4714 8.8873 1.7608 1.227
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TABEL II
COMPARISON RESULTS OF THE PSO, CPSO AND NCPSO ALGORITHMS

Taillard
Problem size OS PSO CPSO NCPSO

min average std. min average std. min average std.
ta001b0

5×20

1278 1297 1297 0 1278 1293.2 10.139 1278 1289.6 8.4971
ta003b0 1081 1081 1109.8 23.5839 1081 1092 9.0277 1081 1083.6 3.5777
ta005b0 1235 1250 1250 0 1244 1247.6 3.2863 1235 1247 6.7082
ta007b0 1239 1251 1253.6 3.7148 1251 1255 3.8079 1251 1251 0
ta009b0 1230 1236 1248.8 7.3621 1230 1246.6 13.5167 1230 1244.8 13.0307
ta011b0

10×20

1582 1618 1620.6 4.219 1613 1618.4 5.1769 1594 1613.4 15.0433
ta013b0 1496 1522 1534 7.6485 1520 1538.2 6.5422 1517 1528.6 9.8731
ta015b0 1419 1455 1463 8.9722 1433 1449.6 14.0996 1426 1442.6 12.5419
ta017b0 1484 1493 1509.6 13.6308 1496 1516.8 22.9808 1486 1509 12.2219
ta019b0 1593 1625 1633.6 5.1284 1620 1631.8 11.0544 1617 1623.6 7.3007
ta021b0

20×20

2297 2325 2354.2 21.5801 2330 2357.4 23.8181 2319 2351.6 25.9191
ta023b0 2326 2366 2387.6 18.7697 2343 2384.6 24.8254 2340 2373 22.6826
ta025b0 2291 2325 2338.8 12.0706 2319 2343.4 21.3846 2314 2331.4 15.5981
ta027b0 2273 2317 2329.8 10.2078 2310 2325.4 19.4499 2292 2319.6 9.3117
ta029b0 2237 2275 2304.4 23.1905 2287 2312.4 20.7075 2268 2288.2 15.1063
ta031b0

5×50

2724 2729 2732 5.6125 2724 2730.6 8.9426 2724 2728.2 6.3689
ta033b0 2621 2624 2642.4 16.5015 2621 2625.2 2.7749 2621 2622.6 1.3416
ta035b0 2863 2864 2880.6 12.9923 2863 2863.6 0.5477 2863 2863.2 0.4472
ta037b0 2725 2736 2756.6 18.3521 2725 2732.8 6.5803 2725 2732.4 12.2556
ta039b0 2552 2583 2592.4 11.9917 2564 2567.2 6.6106 2554 2559 4.5277
ta041b0

10×50

2991 3150 3197.2 34.2885 3100 3125 16.6733 3086 3113.8 20.4377
ta043b0 2839 3017 3054.6 21.7555 2937 2959.4 13.3154 2907 2945.4 24.5214
ta045b0 2976 3137 3174.6 29.2882 3055 3085.4 24.5723 3048 3066.4 17.3292
ta047b0 3093 3206 3261.4 49.3994 3144 3193.6 36.2119 3132 3170.6 25.8902
ta049b0 2897 3040 3085.2 35.8008 2931 2983.4 43.0209 2925 2968.8 24.9439
ta051b0

20×50

3850 4128 4171.8 35.8845 3956 3990.6 34.1151 3939 3984 26.4144
ta053b0 3640 3892 3927 22.3047 3774 3813.4 22.2441 3768 3803.6 17.8253
ta055b0 3610 3878 3958.2 69.5572 3737 3778.4 29.6951 3726 3766.2 39.99
ta057b0 3704 3986 4028 43.5833 3828 3864.2 24.6011 3816 3857 18.1364
ta059b0 3743 3948 3984.6 21.1967 3941 3977.6 28.6147 3909 3940.8 30.9063
ta061b0

5×100

5493 5495 5526.8 24.8032 5493 5493.4 0.8944 5493 5493 0
ta063b0 5175 5212 5224.8 15.2381 5175 5190.6 13.6675 5175 5188.6 16.8908
ta065b0 5250 5255 5277.6 22.4678 5255 5255 0 5250 5253.6 2.1909
ta067b0 5246 5277 5293 14.6458 5259 5260.4 1.5166 5246 5257.8 6.7231
ta069b0 5448 5488 5501.2 12.518 5454 5461.2 11.6106 5448 5458.8 5.6526
ta071b0

10×100

5770 5986 6028 24.8898 5826 5871.6 38.869 5800 5840.8 40.6719
ta073b0 5676 5843 5889.8 34.7448 5722 5759.8 37.2116 5679 5729 37.0338
ta075b0 5467 5752 5796.8 33.922 5539 5578 31.8892 5535 5566.6 20.1531
ta077b0 5595 5798 5821.6 17.0529 5654 5680.6 16.2033 5628 5667.2 12.3662
ta079b0 5871 6055 6103 46.114 5971 5980 8.124 5928 5970 23.622
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