

 Modeling and understanding time-evolving scenarios

Riccardo Melen, Fabio Sartori and Luca Grazioli
 Department of Informatics, Systems and Communication - University of Milano-Bicocca

Viale Sarca 336/14, Milan, 20126, Italy

ABSTRACT

In this paper, we consider the problem of modeling application
scenarios characterized by variability over time and involving
heterogeneous kinds of knowledge. The evolution of
distributed technologies creates new and challenging
possibilities of integrating different kinds of problem solving
methods, obtaining many benefits from the user point of view.
In particular, we propose here a multilayer modeling system
and adopt the Knowledge Artifact concept to tie together
statistical and Artificial Intelligence rule-based methods to
tackle problems in ubiquitous and distributed scenarios.

Keywords: Bayesian Network, Rule-Based Systems, Time-
Evolving Scenarios, Knowledge Artifacts, Shadow Facts.

1. INTRODUCTION
Rule-based systems are the technology of choice for solving a
wide variety of problems involving the understanding of
complex phenomena and the planning of the consequent
actions.
A generic rule-based system is made of an inference engine, a
knowledge base made of rules and a set of facts to be analyzed.
The set of rules embodies the knowledge available about the
particular scenario we want to model; therefore
“understanding” means the interpretation of a pattern of
events/facts obtained by matching the left part of some rules
contained in the knowledge base and deriving the appropriate
inferences.
In many cases the set of applicable rules is static, i.e. it does not
change in time. The applications of this simple, well-
established form of rule-based system are many: from medical
diagnosis to network fault management, from environment
monitoring to security risk analysis, we have thousands of
commercial applications of such kind of technology.
In this paper we are concerned with a more complex problem,
that of modeling time-varying scenarios.
In this case, the observed system and its reference environment
change in time, passing through a series of macroscopic states,
each one characterized by a specific set of relevant rules.
Moving from one state to another, the meaning and importance
of some events can change drastically, therefore the applicable
inferences, as described by the rule set, must change
accordingly.
The crucial point from the system point of view is the difficulty
for production rules to capture in a precise way the knowledge
involved in decision making processes which are variable in an
unpredictable way. The resulting rules set must be obtained as
the product of an intensive knowledge engineering activity,
being able to generate new portions of the knowledge base
effectively and efficiently with respect to the changes in the
application domain.

Some examples of these application scenarios can help in
clarifying the characteristics of the problems we intend to
tackle.
A first example is the evolution of the state of an elderly patient
affected by a neurologic degenerative disease. Quite often the
development of the disease does not proceed in a linear,
predictable way; instead long periods of stationary conditions
are followed by rapid changes, which lead to another, worse,
long lasting state. In this case, the interpretation of some events
(such as a fall, or a change in the normal order in which some
routine actions are taken) can differ substantially depending on
the macro-state of reference.
Another case would be an application analyzing urban traffic,
with the purpose to help a driver to take the best route to
destination. The scenario being analyzed changes significantly
with the hour of the day and the day of the week, as well as in
response to events modifying the available routes, such as an
accident or a street closure due to traffic works.
In these situations, an efficient response of the system is very
important, since the elaboration must be necessarily “real-
time”, and it is mandatory for the system to check continuously
the knowledge-base to understand if it is consistent or not. In
this paper we present an approach to the development of rule-
based systems which change their behavior dynamically
according to the change in number and value of the problem
variables. The approach is based on the notion of Knowledge
Artifact (KA), a conceptual and computational tool for the
acquisition and representation of heterogeneous knowledge
involved in complex domains.
For the sake of simplicity, in the rest of the paper we shall use
the term “state” when referring to the macroscopic states
described above, and the expression “evolving scenario” to
indicate the situation where a system and its reference
environment evolve across a sequence of states, that is the case
of interest for our study.

2. RELATED WORK
Our concept of state of an evolving scenario has some
similarities with the situations studied in [1]. The main
differences are that our scenarios develop on a longer time
scale, one state can turn gradually into another one and its
characterization may include components which are not
immediately measurable, such as the mental conditions of an
individual. However we employ some of the techniques
described in [1].
The use of ontologies in a layered modeling approach has been
discussed in [2]; in that paper, however, ontologies are
employed to reason about contexts in a deterministic way,
without modeling uncertainties and transitions across contexts.
One of the cornerstones of our work is the concept of
Knowledge Artifact.

62 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 13 - NUMBER 5 - YEAR 2015 ISSN: 1690-4524

In Computer Science, artifacts have been widely used in many
fields like Distributed Cognition [3], CSCW [4] and MAS
paradigm [5].
According to those definitions, artifacts are typically
considered passive entities in literature: they can support or
influence human and artificial agents reasoning, but they are
not part of it, i.e. they don't specify how a product can be
realized or a result can be achieved. In the Knowledge
Management research field, Knowledge Artifacts are
specializations of artifacts. According to Holsapple and Joshi
[6], ``A knowledge artifact is an object that conveys or holds
usable representations of knowledge.'' Salazar-Torres et al. [7]
argued that, according to this definition, KAs are artifacts
which represent ``[...] executable-encodings of knowledge,
which can be suitably embodied as computer programs, written
in programming languages such as C, Java, or declarative
modeling languages such as XML, OWL or SQL''.

Thus, Knowledge Management provides artifacts with the
capability to become active entities, through the possibility to
describe entire decision making processes, or parts of them. In
this sense, Knowledge Artifacts can be meant as guides to the
development of complete knowledge-based systems.

3. OUR APPROACH – PART I: THE PROBLEM
REQUIREMENTS

A direct solution to the problem of building a knowledge base
coping with an evolving scenario consists in defining one or
more state variables, whose values describe the present state,
and putting a check on the state in the left parts of all the rules.
In this way the knowledge base is partitioned into disjoint
subsets, each one valid for a specific state, and the system
tracks the scenario evolution by asserting the state variables.
Such an approach leads to an unwieldy number of rules and to
the risk of building an ambiguous/inconsistent knowledge base.
Even more serious, however, is the problem of representing
gradual changes: a set of “hard coded” descriptions of the
possible states is not sufficient to model the transition period
between contiguous states in the scenario evolution: as a matter
of fact, it is assumed that the analyzed scenario jumps abruptly
from one state to another, and this transition is reflected in the
model by the firing of the rules which assert the new value(s)
of the state variable(s).
In some applications this model is perfectly adequate to reflect
the reality. Consider for instance the application analyzing
urban traffic mentioned above: its reference environment
changes almost immediately when a street is closed due to
traffic works, and a sharp state transition is perfectly justified.
In many other cases, however, we need to track a more gradual
evolution. An example is the evolution of neurologic
degenerative diseases mentioned in the introduction: the
transition from a given state of cognitive impairment to a worse
condition may follow a non-linear pattern, where the patient
switches back and forth between two states for some time, or
shows initially the symptoms of the worse condition only with
respect to some specific tasks or abilities.
Another case is the change in traffic patterns with the hour of
the day: here we have a different kind of transition, because the
traffic flows typical of the morning rush hour transform
smoothly into the flows typical of the late morning, giving rise
to a sequence of intermediate states.
All these examples refer to cases where the various possible
states are known and can be modeled in advance, either by
defining heuristically a set of rules or by some automatic
knowledge base construction technique.

In other situations, however, only the present state is embodied
in the knowledge base as a set of rules, while we do not have a
precise formalization of the new states where the scenario
could evolve. This may be due either to a lack of knowledge
about the characteristics of the scenario which is being
considered, or to its intrinsic nature: as a matter of fact in some
cases it is not possible to identify a set of distinct macroscopic
states, because the scenario evolves across a continuum.
Examples of this kind arise, for instance, in marketing studies,
when we want to follow the evolution of the preferences of a
large number of potential customers.
In these cases, if we want to maintain the approach of using a
rule-based system, we would need a solution capable of
assessing the adequacy of the present set of rules, and
modifying it by generating new rules dynamically, while the
scenario evolves. However other technical solutions, for
instance based on statistical decision making, are possible and
may be preferable. Although this class of problems is outside
the scope of our research, we will note when the techniques we
have developed can be applied also to it.
To summarize the discussion, we attempt to classify the
evolving scenarios into some categories, and to select the
appropriate technical approach for each one.
Figure 1 depicts the various kinds of evolving scenarios we
have discussed up to this point, which we will call as follows:
sharp transition (“street closed”), morphing (from rush hour to
mid-morning traffic), bouncing (for instance the evolution of
the Alzheimer disease) and continuum (customer preferences).

Figure 1: several kinds of evolving environments

Note that this classification is somewhat simplified: for
instance the traffic understanding application that we have
hypothesized must face a scenario which exhibits both sharp
transitions and morphing.

4. OUR APPROACH – PART II: THE LAYERED
MODEL

The basic principle on which our approach rests is a two-
layered approach to scenario modeling. The present state of the
scenario is represented by the knowledge base of a standard
rule-based system, while the set of all possible states is
modeled by a higher level abstraction, namely by an ontology.
With this approach we can distinguish clearly between the
active set of rules which applies to the ongoing flow of events,
providing a semantic interpretation of the current state and
determining the reactive actions to be taken, and an (implicit)
representation of all the possible rules which make sense, given
a coherent view of the objects and relations which are
admissible within the scenario evolutions.
While the separation of two different modeling layers is a quite
natural way to deal with evolving environments such as those
represented in Figure 1, it is important to stress that the
interaction of the two layers can follow different mechanisms.
The upper layer can be considered just as an offline tool,
producing several “fixed” scenario representations, which are
fed into the rule-based system when some specific event
occurs. In our approach, instead, both levels cooperate in real
time: the upper layer has the task of maintaining and updating

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 13 - NUMBER 5 - YEAR 2015 63

the “running” knowledge base employed by the lower layer.
This can also be done gradually, in order to track morphing
transitions such as the one in Figure 1b.
In the next section we will describe how the upper layer
evaluates the adequacy of the current knowledge base and how
the updating can be performed in the various transition
scenarios. Let us conclude the present discussion with a review
of the motivations justifying our layered approach.
A first kind of motivations regards two modeling issues: timing
and handling of unexpected events.
The two layers respond to the modifications of the scenario
according to two different time scales: the lower layer responds
to single events occurring on a short time scale, while the upper
layer tracks the long term evolutions, and typically responds to
longer sequences of events, bearing some statistical
significance. This separation allows dealing properly with the
timing requirements, trading off precision with timeliness in
the upper layer transitions and introducing, if necessary, real
time capabilities at the lower layer (we will elaborate on this
point later on).
The rule-based system implementing the lower layer of the
model is designed to work, in line of principle, in an open
world (this expression should be interpreted here in a sense
close to [8] and is quite different from the Open World
Assumption in formal logic): this means that events that do not
cause any rule to fire are simply discarded after a while,
without any modification to the subsequent operations at the
lower layer. On the other side, the upper layer assumes a more
complete view of the world, and considers all the possible
events, i.e. all the events allowed by the underlying ontology:
for instance, the occurrence of very unlikely sequences of
events can be seen as an indication of the lack of adequacy of
the running knowledge base.
Another kind of motivations is related to knowledge
engineering issues. As a first observation, providing a high
level of abstraction in the form of an ontology allows a human
expert to perform a simpler verification of its correctness with
respect to the specific domain of application. A second
advantage regards the formal consistency of the running
knowledge base, which is easily verifiable at the runtime.
Finally we have the motivations related to implementation and
performance. We are especially interested in distributed
deployments of our architecture. For instance, in the case of the
monitoring of elderly patients, it would be useful to implement
the lower layer on portable wireless devices, such as tablets and
smartphones, in order to provide a reaction to events which is
both faster and more reliable (there are no risks and delays
associated with temporary losses of connectivity); however the
upper layer processing, which can be more computationally
expensive and has less real time constraints, is more suited to a
centralized implementation.
Furthermore, the implementation of the lower layer as a
separate entity can be optimized in various ways: as an
example, time-consuming verifications of facts (e.g.
measurements of a physical quantity) can be postponed until all
the other left-side conditions of a rule are verified so that the
rule could fire: this optimization is supported for instance by
the “shadow facts” construct of Jess [9].
Figure 2 summarizes the observations we made about the
layered modeling, and sketches a possible supporting
architecture: note that we introduced specific functions which
monitor the adequacy of the running knowledge base and
manage the necessary updates. The precise nature of these
functions will be described in the next paragraph.

5. OUR APPROACH PART III – TRACKING A
CHANGING SCENARIO

A Knowledge Artifact for Evolving Scenarios
The most specific characteristics of our approach regard the
methods we use for tracking the evolving scenarios.

Figure 2: implementation of a layered model

There are three main elements to be described: adequacy
verification, new rule production and knowledge base
management. The crucial aspect of them is that they must be
correlated in order to capture the scenario variability without
the risk of being inconsistent. To this aim, from the conceptual
point of view, we adopted the notion of Knowledge Artifact
(KA).
More specifically, in our framework (see Figure 3) the KA is
made of three main components:
• an ontology-based description of the possible entities and

of their possible relations in the considered scenario;
• a Bayesian Network, employed to select the causal

relations which are applicable in the present state of
scenario evolution;

• Production Rules, embodying the knowledge necessary to
implement the Knowledge Base rules.

Figure 3: graphical representation of KA elements.
Relationships among them are shown by means of gray scale
coloring

The role of ontology
With respect to the scenario in Figure 2, ontology is
responsible for identifying the system inputs, outputs and

64 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 13 - NUMBER 5 - YEAR 2015 ISSN: 1690-4524

partial outputs, as well as the relationship among them. In other
words, the ontology describes the structure of the application
domain and identifies which are the important elements to
consider for solving understanding problems.
The ontology role is to check that the domain representation in
terms of inputs, outputs and partial outputs is coherent: if new
elements must be added to the scenario, they are added at the
ontological layer. Moreover, the ontology allows deleting or
modifying inconsistent nodes or relationships, according to the
temporal evolution of the system.

Rule extraction and Knowledge Base management
A Bayesian Network is used for implementing the rule
extraction functional block in Figure 2: given an output or
partial output from the ontology, the related BN describes the
causal flow from inputs to outputs, moving through partial
outputs.
BN allows checking the state of the scenario from the
procedural point of view: if some modifications happen at the
ontological layer, the BN tries to forecast the consequences in
terms of new behaviors, i.e. new causal relationships to add.
Moreover, it is responsible for the verification of the correct
behavior of the system from the statistical point of view: it is
able to generate new sets of most probable rules to extend the
global system behavior according to the variations occurred at
the ontological level.
Finally, Production Rules allow defining the causal flow of a
given BN in terms of rule-based constructs. A rule is made of a
Left Hand Side (LHS) that is a logical clause involving one or
more facts from the knowledge base and a Right Hand Side
(RHS), which specifies actions to do in case the LHS is true.
These actions could be modifications of the knowledge base,
like insertion/deletion of new/obsolete facts or I/O operation, to
get/return input/output values from/to the user.
 A collection of rules is produced for each output of the system,
while partial outputs (i.e. results of a computation useful to
obtain an output, but not interesting for the user) are managed
in the same way: of course, partial output must be executed
before the outputs that they influence, following the causal
relationships introduced by the BN. In this way, the correct
division of the system into computational layers is defined.
The rule management functional block in Figure 2, handles the
insertion of the new rules in the running system and the
elimination of obsolete rules (those suited to a past state of the
environment, possibly conflicting with the new ones). In a non-
automatic implementation of the rule management a further
task which could be carried out is the modification of the set of
rules, performed by a human expert.

Adequacy verification
Dealing with time-evolving scenarios means that the set of
rules employed by the KBS (the running KB) may become
inadequate to our purpose due to a transition.
In the most straightforward solution to this problem, the
updating function can be accomplished by keeping the BN
working on the stream of events/facts which are being fed into
the KBS. In this way the BN is continuously re-computing the
set of most probable rules, and the rule management functional
block compares this set with the one being employed by the
KBS, and performs the necessary updates. Figure 4 depicts this
approach, taken in our case study (see below).

The outlined procedure has only one critical parameter, which
is the duration of the time window containing the events/facts
which are taken in account for the computations of the BN. A

large time windows causes a slow reaction by the system, but
the updating process cannot be led astray by unlikely and
isolated combinations of events, not indicating a state
transition.

Figure 4: a straightforward solution to the adequacy problem

Conversely, a narrow time window is less significant from a
statistical point of view, but allows a faster system reaction.
The correct duration of the time window can be established
with the help of a domain expert; quite obviously, shorter time
windows are suited to environments which exhibit sharp
transitions, larger windows are suited to morphing and
continuum transitions, while bouncing ones require a more
sophisticated approach (for instance handling different groups
of rules with different time windows).
Although the approach we have just discussed is perfectly
reasonable in several practical applications, it is ill-suited to
distributed implementations and real-time, data intensive
problems, because it requires a large quantity of data being
continuously sent from the distributed to the centralized level.
An alternative approach consists in separating the task to
realize that a transition is occurring (or is likely to occur) from
the computation of the new set of rules. In this way the
transition detection is performed by a dedicated functional
block (adequacy verification in Figure 2), offloading the BN
from a task which is not appropriate to it. The BN can then
intervene for the computation of a more adequate set of rules,
requiring the direct access to the monitored events for a much
shorter time span. Moreover, the process of rule extraction can
take advantage of the preliminary indications of the adequacy
verification function.
The crucial point in this approach is the implementation of the
verification function. A possibility we are investigating is
defining a very small set of rules (called monitoring rules),
executed on a separate system, which can be considered
reliable and timely indicators of an occurring transition. We
have been able to identify monitoring rules for some practical
problems, but the implementation of this alternative approach
to adequacy verification requires some further work.

Real Time behavior
As stated above, one of the advantages of a layered approach is
performance. More specifically, we want to obtain an
architecture which can react in real-time to the modifications of
the environment: technically, it must be possible to enforce
predefined deadlines for the firing of a rule after the occurrence
of relevant events.
Of course, this requirement is significant for the KBS while an
analogous requirement imposed to other parts of our system,
and in particular to the BN, would not make sense in practical
situations because the timing of the BN operations is
constrained by the need to collect statistically significant data.
The technology we employ for the implementation of the KBS,

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 13 - NUMBER 5 - YEAR 2015 65

based on the Jess platform, provides a very effective features
for the support of real time requirements, the shadow facts.
Shadow facts are Java Beans objects treated as facts in the
knowledge-base. If they change their value, the inference
engine is able to detect this change and execute again the KBS,
being sure that no inconsistency between outputs and inputs
will be generated.
This implies that the presence in the left side of a rule of a
shadow fact whose code embodies an update period of, say,
100 milliseconds, guarantees that such rule will be ready to fire
every 100 ms, possibly using new information about the
environment gathered by the shadow fact. This feature
therefore allows implementing real-time requirements directly
into the KB rules.

6. IMPLEMENTATION
This section describes our implementation of the mechanism to
generate, in real time, new rules according to the new
observations. The model is implemented in JAVA and includes
four main components responsible for the generation of new
rules:
• Monitoring agent (MA): a Thread whose task is to

understand when a rule update is necessary. When this
condition is expressed, it starts the updating procedure.

• Expert system manager (ESM): it is the component
responsible for the rule-based system’s management. It
communicates with a JESS engine and with the manager
of the “upper level”.

• Bayesian Network manager (BNM): the Bayesian
Network executor. It manages the net structure and its
update.

• JESS engine (JE): the manager of the JESS components.

The MA component is the place where the adequacy
verification algorithm can be implemented (see Figure 2).
Moreover, it is responsible for the management of the domain
ontology, managing the set of variables necessary to describe
the problem. This set can vary over time, both in the number of
variables involved and in their values, causing a transition from
a state Si to a new state Sj. When such a transition occurs, MA
starts the rule updating process.
The updating procedure is accomplished through an
asynchronous call to ESM: after this call ESM needs to have
the list of posterior probabilities updated to extract new rules;
for this reason it launches a synchronous call to the BNM
waiting for the complete list of posterior probabilities for each
node of the net. BNM computes an inference procedure for
each possibility, given the evidences of the system. That is the
heaviest operation from the computational point of view.
Once the new posterior probabilities are processed, ESM is
able to extract new rules. Only at this moment it interrupts JE,
storing the new rules in the knowledge base.
From the computational point of view, the three-tuple (MA,
BNM, ESM) constitutes the KA implementation in our case
study. According to the description above, the three
components are related one another, as introduced in Section 4.
The adoption of shadow facts in the communication between
MA and the Jess Engine allows capturing the real time
behavior of the framework: the state transition from Si to Sj
causes the variation of a shadow fact object value or the
instantiation/deletion of a new/existing shadow fact object.

7. CASE STUDY AND EXPERIMENTAL EVALUATION
The case study we present in this section is related to the
analysis of urban traffic. Nowadays, the need of having

recommendations about mobility in the urban context is greater
than ever, due to the ever-growing metropolitan areas, with
higher population density. To satisfy this need, the diffusion of
personal wireless devices, such as smartphones, allows
monitoring of different variables, like the traffic conditions,
itineraries calculus with distance and timing, and so on.
Our application scenario uses a set of information that ranges
from physical and psychological condition of the user to
weather condition, day of the week, traffic condition, and so
on. Each observation is collected from personal devices, like
smartphones and wearable devices.

Using these different kinds of information, we realized a
simulator composed by different kinds of agents, whose goal is
to reach the upper town of Bergamo from the lower town using
one of the three possibilities available (i.e. bus, funicular and
stairs).
The goal of the case study is to compare a new version of the
simulator, which makes use of the model introduced in this
paper with a previous version, where a “classical” Bayesian
inference procedure was adopted for taking the decision.
Each agent is equipped with a decision engine, realized
according to the model described so far, in particular the
adopted BN is depicted in Figure 5.

Figure 5: the case study BN nodes and relations

This structure shows a high level representation of the causal
model and it can be seen as the responsible for the generation
of rules used by the “running” knowledge base (the lower level
of the model). Every time an agent is created, the system
provides it with the decision engine described earlier in this
section (essentially a rule-based system exhaustive of all the
possible situations expected from the scenario). There are two
inputs used by each agent: the agent’s type is retrieved by the
attributes of the agent itself, and the queue status is provided by
the environment. The decision engine is now ready to be
executed given the inputs provided.
Please note that the rule-based systems produced are always
different from each other, generating, as a consequence,
heterogeneous agents.
Only the chosen alternative is used by the agent as output of the
decision engine, and it represents his choice in the
environment.
The details of the simulator are beyond the scope of this paper,
however it is important to know that every agent is introduced
in a controlled environment, and it has to take a decision about
which transport to take
The simulator creates three different types of agents: citizen
agent (this type of agent is characterized by a deep knowledge
of the territory and by a low tolerance to queue), nearby agents
(this second type of agent is characterized by a moderate
knowledge of the territory and a rather high tolerance to queue)
and tourist agents (with no knowledge of the territory and a

66 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 13 - NUMBER 5 - YEAR 2015 ISSN: 1690-4524

high tolerance to queue). Assuming the nodes “Agent type” and
“Queue status” as evidences, the BNM, as a first operation,
generates all the possible LHS configurations: in the example
there are 12 possible alternatives for each output node. After
this preliminary computation the BNM generates a posterior
distribution of probability for each configuration; for instance,
one possible posterior distribution of probability obtained after
the inference procedure is the following one:

Node: Vehicle
Configuration exploited:
...... Node: Queue Outcome: none
...... Node: Agent_Type Outcome: citizen
Posterior probability distribution:
--------- Outcome: funicolar Probability:
0.7275
--------- Outcome: bus Probability: 0.2515
--------- Outcome: stairs Probability:
0.021000000000000005

Once the 24 probability distributions have been obtained, the
ESM uses one of the three alternatives modeled to extract new
rules, and then stores them in the JE; for instance the rule
extracted by the previous distribution is the following, where
LHS and RHS are separated by the => symbol:

(defrule VEHICLEfunicolar13 (Queue none)
(Agent_Type citizen)
=>
(assert (Result_Vehicle (Vehicle
funicolar) (Reliability 0.7275))))

This is the complete sequence used for asserting the new rule in
the knowledge base. Note that the RHS of the rule reports also
a reliability value, retrieved from the posterior distribution of
probability. The reliability of the rule is the value used by the
model to understand when something is changing around the
user: if the same rule, in a further updating procedure, obtains a
different reliability value, the model realizes that something in
the reliability of the rule is changed (for instance, if the value
has grown, the given rule is more reliable). The new rule is
now ready to be executed. What we observed, after various
executions of the simulator, is quite interesting: compared to
the “classical” decision mechanism, this new version provides
different behaviors over the time.
The original simulator version did not show a plausible
behavior in all cases. Examining the queue composition of the
most critical transport vehicle (the funicular), we noticed that
the behaviors of citizens agents and nearby agents was often
too similar. This conduct wasn’t expected. Initially we thought
that the reason of this unexpected behavior was the BN’s
structure itself: a more complex BN, capable of modeling more
environment variables, would have been able to discern in a
better way the agents’ behaviors.
This conclusion is denied by the new version of the simulator.
Analyzing the new funicular queue composition plot (see
Figure 6) it’s clear how the agents’ behaviors are now very
separated and more adherent to reality. The reason of this
improvement is in the decision model itself: the rule execution,
instead of a simple Bayesian inference whose result is not
predictable, generates more characteristic agents, or rather
better distinguishable between each other.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have discussed the problem of modeling time

evolving scenarios. This is a very important research trend in
Computer Science, involving heterogeneous competencies.
Indeed, the continuous evolution of mobile devices and

Figure 6: a line chart representing the funicular queue
composition overtime.

applications offers new and stimulating challenges as well as
opens to new possibilities to tackle it, allowing integrating
easily and profitably different kinds of systems into unique
conceptual and computational frameworks, such as the
Knowledge Artifact concept in our approach.
This is the motivation of our work, to understand how
statistical and Artificial Intelligence methods like Bayesian
Networks and rule-based systems can be exploited to
automatically generate and use new knowledge when
necessary.
Future works will be mainly devoted to testing the applicability
of the framework to develop systems characterized by variable
conditions and parameters.

9. REFERENCES

[1] Ye, J., Dobson, S., & McKeever, S. (2012). Situation
identification techniques in pervasive computing: A
review. Pervasive and mobile computing, 8(1), 36-66.

[2] Gu, T., Pung, H. K., & Zhang, D. Q. (2005). A
service-­‐oriented middleware for building
context-­‐aware services. Journal of Network and
computer applications, 28(1), 1-18.

[3] Norman, D. A. 1991. Cognitive Artifacts. Design
Interaction, pp. 17-38

[4] Shmidt, K. and Simone, C. 2000. “Mind the gap”,
Towards a unified view of CSCW. COOP, pp 205-221.

[5] Omicini, A., Ricci, A., Viroli, M. 2008. Artifacts in the
A&A meta-model for multi-agent systems. Auton Agent
Multi-Agent Syst, 17:432-456.

[6] Holsapple, C., and Joshi, K. 2001. Organizational
Knowledge Resources. Decision Support Systems, vol.1,
pp. 39-54.

[7] Salazar-Torres, G., E. Colombo, F. S. C. da Silva, C. A.
Noriega, and S. Bandini. 2008. Design issues for
knowledge artifacts. Knowledge-Based Syst., vol. 21,
no. 8, pp. 856–867.

[8] Baresi, L., Di Nitto, E., & Ghezzi, C. (2006). Toward
open-world software: Issue and challenges. IEEE
Computer, 39(10), 36-43.

[9] Friedman-Hill, E. (2003). JESS in Action. Greenwich,
CT: Manning.

[10] Sartori, F., Manenti, L., & Grazioli, L. (2013). A
Conceptual and Computational Model for Knowledge-
based Agents in ANDROID. WOA@ AI* IA, 2013, 41-
46.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 13 - NUMBER 5 - YEAR 2015 67

	SA268SN15

