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ABSTRACT

Unmanned aerial vehicles (UAVs), also known as drones have
many applications and they are a current trend across many in-
dustries. They can be used for delivery, sports, surveillance, pro-
fessional photography, cinematography, military combat, natural
disaster assistance, security, and the list grows every day. Pro-
gramming opens an avenue to automate many processes of daily
life and with the drone as aerial programmable eyes, security and
surveillance can become more efficient and cost effective. At
Barry University, parking is becoming an issue as the number
of people visiting the school greatly outnumbers the convenient
parking locations. This has caused a multitude of hazards in park-
ing lots due to people illegally parking, as well as unregistered
vehicles parking in reserved areas. In this paper, we explain how
automated drone surveillance is utilized to detect unauthorized
parking at Barry University. The automated process is incorpo-
rated into Java application and completed in three steps: collect-
ing visual data, processing data automatically, and sending auto-
mated responses and queues to the operator of the system.

Keywords: UAV, surveillance, image processing, ALPR, java
application.

1. INTRODUCTION

Technology continues to grow at an exponential pace. Vehi-
cle automation (both land and aerial) is now a reality, as auto-
mated aircraft technology has shrunk down to a civilian level,
and artificial intelligence is making leaps and bounds in mul-
tiple disciplines. Research involving unmanned aerial vehicles
(UAVs), also known as drones has vastly spread across sciences
both within academics and industries. From automatic fire for-
est monitoring [11], power line detection [13], to road segment
surveillance [5], the usage is expanding.

At Barry University parking is a big issue as the amount of peo-
ple visiting the school greatly outnumbers the available parking
locations that one would consider convenient. This has caused a
multitude of hazards in parking lots due to people illegally park-
ing, as well as unregistered vehicles parking in reserved parking
areas. The public safety department struggles to cover all of the
campuses numerous parking lots effectively and thus many peo-
ple get away with illegally parking, and worse unregistered ve-
hicles are going unnoticed due to the inefficiency of an officer
having to manually check all decals. Beyond this, malicious indi-
viduals can falsify a decal to make it appear as if they are indeed
registered and to gain access to parking areas without proper au-
thorization. In this paper, we discuss how drone surveillance can

be utilized for automatic parking enforcement. Providing such a
tool will not just speed up the process of enforcement but also
allow for better use of public safety personnel.

Development of Automatic License Plate Recognition (ALPR)
algorithms in the last decade or so, (see [1, 3, 9, 10, 12]) has
aided law enforcement on the road, at campus security, at airports,
casinos, etc. University of Kansas is one of the places that uses
ALPR for parking enforcement. Parking lots are monitored by a
public safety person driving around the campus in a vehicle that
has ALPR camera mounted on the roof. The camera takes pic-
tures of the cars, images are processed by ALPR, and tickets are
issued if necessary. PlateSmart (see [6], [8]), is developing soft-
ware using ALPR for parking management among other things.
The software works with almost any camera and provides alerts
of parking violations by email and text messages. However, nei-
ther one of these examples and none that we found is employing
drones for parking enforcement.

The paper is organized as follows. Section 2 gives an overview of
different technology and services that have been utilized. Section
3 talks about automation of drone’s flight path. Data obtained
and results are presented in Section 4 while Section 5 presents
difficulties encountered and future work.

2. TECHNOLOGY

We used DJI Phantom 3 Professional drone and utilized several
existing technology/services in order to create a system that au-
tomatically returns license plates of illegally parked cars. Tech-
nology/services used are Litchi application, openALPR, FFmpeg
and a driving record search.

Litchi, [4], is an Android/IOS application for DJI drones that in-
cludes numerous improvements over the official DJI Drone ap-
plication such as in-depth waypoint mission planning and object
tracking. The Litchi flight app allows us to easily program more
aspects of the flights because it can be run from a computer. The
DJI app is only available on mobile devices. From a computer we
can then collect all of the data we have gathered about a partic-
ular parking lot and build the routes on a large screen as well as
program all the commands we need to perfectly capture data in
a parking lot. Litchi works like an extension of the DJI app as it
still requires the DJI app to pull its user interface, and commands.
Litchi also facilitates the saving and naming of the various way-
point missions we create that we are then able to load into the
phone and fly through the app. Litchi stores these waypoint mis-
sions via our Litchi account.

OpenALPR, [7], is an open source Automatic License Plate
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Recognition library written in C++ with bindings in C#, Java,
Node.js, Go, and Python. In OpenAlpr, an input is an image
that is processed in stages and the output is a list of possible li-
cense plate strings. OpenALPR operates as a pipeline since the
stages are occurring in the following order: Detection, Binariza-
tion, Character analysis, Finding Plate Edges, Deskew, Character
Segmentation, OCR and Post Processing.

The Detection phase only happens once for each input image and
this is the most processing-intensive phase. It uses the LBP (Lo-
cal Binary Patterns) algorithm to find possible license plate re-
gions in the picture. These regions consist of x and y coordinates
along with width and height information that is sent to the later
pipeline phases for further processing. The next phases are occur-
ring multiple times based on how many license plate regions were
identified on the image. The Binarization phase creates multiple
binarized images to give us the best possible chance of finding
all characters on the region because a single binarized image may
miss characters on the image that are too light or too dark. One of
the methods that are used in this phase is called the Wolf-Jolien
method fed with multiple parameters for better results and these
images are processed in the next phase called Character Analy-
sis. This phase attempts to find character sized areas in a single
license plate region. This analysis is done multiple times, start-
ing by finding smaller characters and gradually looking for bigger
ones. It is being done by finding all connected blobs in the license
plate region that are roughly the width and height of a license
plate character and have tops/bottoms that are in a straight line
with other blobs of similar width/height. If nothing is found in the
license plate region, the region will get discarded and no further
processing will take place. The next phase is Finding the Plate
Edges. The Detection phase is only responsible for identifying a
region where a possible license plate could reside and this phase
will try to find the exact edges (Top/Bottom/Left/Right) of the li-
cense plate. The algorithm will start by finding the hough lines
of the plate and computes the horizontal and vertical lines. In-
formation from the previous stages will be used to determine the
likeliest plate line edges and a number of configurable weights are
used to determine which edge makes the most sense. The Deskew
stage requires plate edges information in order to remap the plate
region to a standard size and orientation. This phase helps to give
a correctly oriented plate image without rotation or skew. The
next step is to isolate all the characters that make up the plate im-
age with a use of a vertical histogram to find gaps between the
plate characters, called Character Segmentation. This also cleans
up disqualifying character regions that are not good enough to
be recognized as characters, then the OCR phase analyzes all
newly calculated character regions separately. For each character
region, it computes all possible characters and their confidence
ratings. The final phase is the Post Processing phase where a
possible list of OCR characters and confidences are given and
organized in a topN fashion. This phase also disqualifies charac-
ters below a particular threshold given. Our work only modified
certain parameters to an extent to fine tune the algorithm to our
needs and full credit to the algorithm is given to the developers of
OpenALPR.

There are numerous fine tunings for the algorithm which we can
manipulate in a config file such as:

1. Calibrating your camera improves detection accuracy in
cases where vehicle plates are captured at a steep angle

2. Detection will ignore plates that are too large. This is a
good efficiency technique to use if the plates are going to be
a fixed distance away from the camera

3. The detection doesn’t necessarily need an extremely high
resolution image in order to detect plates. Using a smaller
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Figure 1: Undirected weighted graph. Nodes are the points
of release of a drone. The red route represents the shortest
path.

input image should still find the plates and will do it faster.
The algorithm resizes the images to a fixed resolution. We
used 1280 by 720, and got good results.

4. Whether we want to use masks. This can be expanded in
the future.

5. OpenALPR can scan the same image multiple times with
different randomization. Setting this to a value larger than
may increase accuracy, but will increase processing time
linearly (e.g., analysis count = 3 is 3x slower)

6. Detection strength/strictness of license plate before signal-
ing if license plate region exits.

FFmpeg, [2], is a cross-platform solution to record, convert and
stream audio and video. It is capable of splitting video output into
standalone pictures.

3. DRONE AUTOMATION

The first step in successfully automating drones routes was to ex-
tensively map out all the parking regions of the school. Since it is
legally required by Federal Aviation Administration (FAA) that
if the drone is deployed, we have to stay within the line of sight
of it, we designate a place (position), called a node, within each
parking lot as a release point of the drone. It is a place that is eas-
ily accessible and covers one or possibly even two parking lots.
Seven nodes were sufficient to cover all the parking lots at Barry
University. Walking distance between them represent weights of
the undirected graph. Edges are then formed based of nodes’ po-
sitions on the real map and their connectivity. Starting from node
1, which is closest to public safety office, and returning to the
same one, we brute-force to find the shortest path. The shortest
path calculated is 1-2-3-4-7-6-5-1 for a total distance of 10910 ft,
see Figure 3.

Routes are created by using our previously mapped out parking
lots and then programming waypoints set at GPS coordinates.
The methodology for creating a route is that the drone must effec-
tively capture all the parking spaces as well as potentially illegal
parking areas while avoiding obstructions. We take into consider-
ation that cars may be parked either facing forward or in reverse.
When the drone reaches the end of a particular line of cars within
a route, it is then given a command to either rotate and retrace
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the same route to cover the opposite row of cars or move onto the
next section of the parking lot. Routes between rows of cars must
be extremely precise as there are many hazards the drone can run
into, such as wind, trees, cars, people, and random hazards that
could change on a day to day basis. To handle these variables, ex-
tensive field testing was required. A projected path is created and
then tested in varying conditions. Whenever a potential danger is
noticed the path is modified accordingly.

To ensure that the visual data quality being captured was optimal
a lot of tweaking of the flight height and gimbal angle occurred.
The height setting and gimbal angle change on a per parking lot
basis. For example, one of the lots had a height of 6 meters with a
gimbal angle of 42.5 degrees. However, the height is not the only
factor in determining gimbal angle. Changes in parking lot eleva-
tion from one end to the other can also affect the desired gimbal
angle settings. Modification is needed to center the license plate
in the image so that the image processing algorithm works ef-
ficiently. Further, we automate the drones flight by mapping out
each parking lot on foot holding the drone in our hands. Using the
DJI flight app, we take snapshots of GPS coordinates. Recorded
GPS coordinates are used as waypoints which the drone follows
when collecting data. Once a route has been mapped out, we do
manual piloting tests using the specifications determined. Usu-
ally in manual pilot tests slight modifications to the GPS coordi-
nates are made and the actions generated at particular waypoints
are decided (actions such as turn x amount of degrees, tilt the
camera down or up, raise or lower flight altitude). During manual
testing we gradually raise the speed of the drone’s flight as tweaks
are made to the final path. Once all testing has finished we give
the drone the fastest possible speed that we deem safe for that
particular lot. Some lots being more open with less obstructions
allow the drone to fly faster, while others require a slower veloc-
ity for safety purposes. If tweaks are necessary, then the process
would begin again and another manual test would be conducted.
Once testing is finalized, we automate drone’s flight through the
Litchi app. Namely, we plug the acquired GPS coordinates to
build the necessary paths. Along the path Litchi app automati-
cally facilitates the application of various commands to the drone
such as, changing the gimbal angle, flight height, velocity, and
drone orientation. These parameters depend on the parking lot
and generally vary from parking lot to parking lot. The route is
programmed on the computer through the Litchi app. This pro-
cess is repeated for all the parking lots that will be captured by
the drone. See Figure 2 for visualization of a programmed path
on a parking lot.

Figure 2: Flight automation of a parking lot.

4. DATA AND RESULTS

A custom java application was created to connect several of
above mentioned solutions into a combined one. The applica-

tion first connects to the drone via USB connection and captures
4K footage. The 4K footage from the drone camera (max image
size 4000x3000, ISO range, 100-3200 video, 100-1600 photo,
lens: FOV 94 degrees 20mm (35mm format equivalent) f/2,8 fo-
cus at infinity, electronic shutter speed: 8-1/8000s, Sensor: 1/2.3“
CMOS effective pixels: 12.4M, total pixels: 12.76M) with a third
party application, called FFmpeg, is loaded in our java software
which directly splits the video footage from the drone into several
pictures. There are certain parameters that user can modify such
as number of pictures to be extracted every second and type of
image files that would be created. We ran multiple tests changing
the type of image files between PNG, BMP, and JPEG, as well
as the number of pictures to be extracted which varied between
1 and 3. We found out that three images per second and JPEG
encoding of images were giving us adequate results. In Table 1
we present a statistical representation of some of the different pa-
rameters given by the extracting utility on a 2:57 minutes long,
3840*2160 video resolution sample footage.

Table 1: Comparison between image types and image ex-
traction statistics

Whenever the image extraction is done, all the newly created im-
ages are analyzed one-by-one by the OpenALPR algorithm. For
every image processed, the algorithm creates a list of possible re-
sults, up to 10, with different confidence ratings, usually ranging
from 70% to 95%. For one image, we get a list of license plate
objects in the program. Each object contains a list of possible
OCR reading for the license plate. We can get up to 10 possible
results with a confidence rating in percentages, see Figure 3 and
Table 2.

Figure 3: Sample Image from parking lot trial

Even though the results are around 85% to 90%, these are often
invalid, having some of the very similar characters misread such
as 8 and B, 0 and O. To overcome this issue, a map data structure
is utilized and the license plate strings are used as keys to the map
and the values are the frequency of the same keys. The value is
incremented by one every time the same license plate string was
read. At the end, the most frequent results will be shown to the
user. The more image the program analyzes, the more accurate
the results will be.

Even tough we are getting 95% confidence results, the algorithm
is far from perfect and often gives unusable data, so we do the
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plate0 confidence
DNYM26 91.1562
DNYH26 90.7403
DNY26 85.8861

DNYN26 85.4879
DNYB26 85.0558
ONYM26 84.8133
0NYM26 84.5391
QNYM26 84.4453
ONYH26 84.3974
ONYH26 84.1232

Table 2: Top 10 results for plate0 with respect to confi-
dence interval. Processing Time is 48.2849ms.

following. The pattern matching feature runs the topN (parame-
ter a priori set - the max number of results) results against a Reg-
ular expression (regex) matcher (another parameter inside ope-
nALPR) to find results that match common license plate patterns.
The regex patterns are customizable and can be found in runtime-
data/postprocess/∗.patterns For example, using a pattern against
this Czech plate results in only one possible match (which is the
correct one), see Figure 4 and Table 3.

Figure 4: Sample image of a czech license plate

To visualize the output that the App produces see Figure 5. Af-
ter the evaluation is finished, a third party service is utilized to
check validity of the results and eliminate the invalid ones which
resulted in 100% accuracy.

Figure 5: Screenshot of the App

5. DISCUSSION AND FUTURE WORK

Using a drone to visually scout parking lots is much faster and
more effective across large areas, whilst obtaining accurate data.
The drone can be connected to most devices (phones, tablets,

plate0 confidence pattern match
4S5O233 90.947 0
4S5O23 87.8683 0

4S5O2S3 85.8861 0
4S5O23G 85.4879 0
4S5O23 85.1644 0

4S5O23S 84.5445 0
4S5O23B 83.7395 0
4S50233 83.0457 1
4S5O2B3 82.5635 0

4S5O2 82.0857 0
4S5O2G3 81.5684 0
4S5O2J3 81.0409 0
4S5O2S 80.2911 0

Table 3: Some of the 40 results for this plate, notice the pat-
tern matches 4S50233. The cz patterns are: cz #@#####
and cz #@@####.

computers) and have the visual data extracted quickly. Data is
loaded into a program which efficiently analyzes license plates to
detect unregistered vehicles, as well as illegally parked vehicles
while automatically reporting violations, giving real time image
captures of the 4K quality footage showing individual cars, and
running simultaneously with the drone’s surveillance routes.

Initially, we wanted the drone to take several pictures per second
using either the official DJI App or Litchi which extends capabil-
ities for drone automation. The most we could have achieved was
two images per second, which is not the best solution if we go at
faster speed. It turned out that Litchi was unable to take some of
the images and write it to the SD card. Error message was saying
”failed to take photos for unknown reasons”. Intuitively, the more
detailed the images were, the bigger the file sizes were and that
could have been the reason for failure of writing two images per
second to the card. Even purchasing higher performance SD card,
U3 UHS-II, did not help. After all, the solution was to record 4K
videos and extract images from it using a batch file on a computer.
Since Litchi is using GPS coordinates, based on how accurate the
host devices’ (android phone or tablet) GPS is, we have to ”warm
up” the GPS of the phone or tablet by enabling it via different
methods. One such method is going into Google maps, or we can
download an App that gives constant communication with GPS
satellites for accurate GPS calculations.

The more accurate the results we want when we read the images,
the more processing power is needed for the computer where re-
sults are evaluated. First, we wanted to create this project on an
android device and get the images from the drone during flight
and quickly evaluate the results and send the citation. It turned
out that the algorithm to be run at acceptable speeds requires a
powerful CPU, so low end devices are obsolete for this project.
Also, we were not able to avoid connecting to the drone directly
with a cable, since there was no method to get the images on the
devices. We could have taken screenshots with the android de-
vices, but the resolution would have not been adequate, and tak-
ing multiple screenshots per second on the device is difficult and
inefficient. Maybe in the future as more powerful mobile devices,
and better and more affordable drone technology is available, we
could implement this software to android itself, skipping another
device to carry.

Going further we can make improvements both in efficiency of
the application and services it can provide. More precisely, we
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can use image masks to make the areas of the images black that
we don’t want to get searched for. Since 90% of the time spent
on one image is to find license plates, and 10% to guess the char-
acters, we need to minimize the field to be searched. A good
approach and easy approach is to make several footage of the
same parking spot and get the average of coordinates of the li-
cense plates. Based on that we can create the black masks to skip
parts of the image.

Furthermore, the application will employ the university’s
database to cross reference the license plates and receive infor-
mation about the vehicles eligibility to park in the parking lot.
In addition, we can create a form that automatically populates a
citation for illegal parking based on school records or third party
services. We can attach a proof image that the car is parked il-
legally or without permit. A system can be set up to send text
messages to the owner of the car before finalizing the citation, if
the mobile number is available along with sending an email to the
owner. After some designated amount of time, a citation would
be finalized and put into a database, or simply could be printed
out from the software itself. Moreover, a weather forecasting sys-
tem could also be implemented to check for any rain, humidity,
and wind.
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