
Parallel Prediction of Stock Volatility

Priscilla JENQ

 School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213, USA

and

John JENQ

Computer Science Department

Montclair State University

Montclair, NJ 07043, USA

ABSTRACT

Volatility is a measurement of the risk of financial products. A

stock will hit new highs and lows over time and if these highs

and lows fluctuate wildly, then it is considered a high volatile

stock. Such a stock is considered riskier than a stock whose

volatility is low. Although highly volatile stocks are riskier, the

returns that they generate for investors can be quite high. Of

course, with a riskier stock also comes the chance of losing

money and yielding negative returns. In this project, we will use

historic stock data to help us forecast volatility. Since the

financial industry usually uses S&P 500 as the indicator of the

market, we will use S&P 500 as a benchmark to compute the risk.

We will also use artificial neural networks as a tool to predict

volatilities for a specific time frame that will be set when we

configure this neural network. There have been reports that

neural networks with different numbers of layers and different

numbers of hidden nodes may generate varying results. In fact,

we may be able to find the best configuration of a neural network

to compute volatilities. We will implement this system using the

parallel approach. The system can be used as a tool for investors

to allocating and hedging assets.

Keywords: Artificial Neural Network, Volatility, Parallel

Processing

1. INTRODUCTION

The financial industry is an industry that requires multi-

disciplinary expertise. In order to be a good financial engineer,

one should possess knowledge and skills in various areas, such

as math, finance, economics, and computer science. In addition,

one will also utilize analytical skills and logical reasoning in

order to find meaning in the data collected and to make

conclusions. For this project, we combine our skills in

programming and our knowledge of finance in order to try to

predict stock volatility. We will analyze whether the results are

accurate, and if our method of getting to such a conclusion was

effective and efficient.

The stock market can be very volatile and is sensitive to various

factors and situations. For example, in cases where natural

disasters, political turmoil, or economic and financial crises

occur, financial assets tend to fluctuate very much.

Volatility is a measurement of the risk of financial products. A

stock will hit new highs and lows over time and if these highs

and lows fluctuate wildly, then it is considered to be a high

volatile stock. Such a stock is considered riskier than a stock

whose volatility is low. High tech stocks usually have high

volatility and is said to have a higher beta value, i.e., a beta value

greater than 1. Although these stocks are riskier, the returns that

they generate for investors, if positive, can be very high. On the

other hand, a riskier stock means there’s a greater chance of

yielding negative returns and losing money. Unlike high tech

stocks, stocks like utilities are more stable in their stock prices,

so they are considered to have low volatility, which means having

a beta value that is less than 1. A beta value of 0 signifies a

security that has no volatility; for example, cash has beta value

of 0. It is known that standard deviation alone cannot be used to

measure volatility because, as illustrated by the history of the

stock market, the market is not normally distributed and in

reality, is skewed. Thus, historic stock data may in fact help us to

measure volatility. In this paper, we will use historic data to help

us to compute the volatility. We will use artificial neural

networks as a tool to predict volatilities for a specific time frame

that will be set when we configure this neural network. As a side

note, there have been reports that neural networks with different

layers and different nodes may generate varying results. In fact,

we will vary the number of nodes to find the best configuration

of the neural network, if one such configuration exists, for

computing volatilities. We will implement this system using a

parallel approach. The system can be used as a tool for investors

to allocating and hedging assets.

Neural networks are popular in financial and economic

computations. For example, Li and Liu used the LM BP

algorithm to predict the Shanghai stock market [3]. Wang

developed an HLP method that is able to get stock high/low

points with differing frequency and amplitude. The extracted

data are then fed into a neural network to forecast the stock

direction and price [8]. Tirados and Jenq used neural networks to

predict GDP with ten leading economic indicators as the input

[7]. Lin and Feng combined neural networks and pattern

matching techniques to analyze and to forecast oil stock price [4].

Zhou and Zhang used financial indicators such as moving

averages, volumes, relative strength index, etc. on neural

networks to predict future stock prices [9].

Additionally, Amornwattana et. al[1] proposed a hybrid artificial

neural network (ANN) model for forecasting volatility to do

options trading. Hajizadeh et al. [2] proposed a hybrid model

with ANN to forecast the volatility of the S&P 500 index.

Monfared and Enke [5][6] also proposed a hybrid GJR-GARCH

Neural Network model to enhance the performance of volatility

forecasting using an adaptive neural network filter for cancelling

noise in the data. Youngmin Kima and David Enke discussed

70 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 15 - NUMBER 5 - YEAR 2017 ISSN: 1690-4524

using neural networks to forecast volatility for an asset allocation

strategy based on the target volatility [10]. Kim et. al[11]

proposed a system for early warning of economic crisis.

In this project, we would like to find the local minimum number

of hidden nodes in a single hidden layer that would be able to

achieve the best prediction in terms of accuracy. We will use only

a single hidden layer in our neural network, as illustrated in

Figure 1 below, because adding more layers becomes

computationally expensive very quickly while only a relatively

small amount of performance improvements would be seen.

This proposed problem can benefit greatly from parallelism

because most people usually try to find the number of hidden

nodes to use through either trial-and-error or by simply using the

same number of nodes in input layer. Both of these methods can

be very ineffective. Using parallelism, we are able to speed up

the process of finding a local optimal number of hidden nodes for

fairly accurate stock price predictions, as seen later in the results.

Predicting stock price, in turn, helps show stock volatility, as the

difference between the actual price and predicted price will give

insight into how volatile the stock is. This paper is organized in

the following way: in the next section, we define some terms that

we used in our project. Section 3 will describe the development

of the system. We discuss the implementation results in section

4. Section 5 gives the conclusions.

2. TERMINOLGIES

Below are various terms we will use, as well as their meaning

and significance within the scope of this paper.

MSE (mean squared error): This value is one of the criteria to

stop the training of the neural network. MSE is defined as the

sum of the square of errors of outputs divided by the total number

of cases involved in the training. The error used here is defined

as the difference between the actual (target) value and the

predicted value generated from the artificial neural network

(ANN). Note that there are other methods to compute the MSE,

such as using validation data set to stop the training by checking

if total number of accuracy is improved and if total accuracy

hasn’t, then one can stop the training. We did not use this method

to stop the training in this project. To stop training, we set a

tolerable error and a maximum cycle, and the one that was

reached first would stop the training.

Accuracy: Because the predicted price and the actual price must

change in the same direction to be considered a good prediction

for the stock market (and can at least help us to make the decision

to either buy, sell or hold), accuracy can be defined as the number

of same directional changes of predictions divided by total

number of testing cases. We called this the "hit ratio." Another

way to define it is to say that a lower MSE means a higher

accuracy because it shows how close the predicted value is from

the target value for the values that change in the same direction.

Speedup: This is defined as the ratio of sequential runtime

divided by the parallel run time

Efficiency: This is defined as the speed up factor divided by the

number of threads used to execute the program.

3. SYSTEM DESIGN AND IMPLEMENTATION

We implement the system using C/C++. There are 16 threads in

the system that we used. The program can run multiple threads

simultaneously. OpenMP is used to parallelize the program code.

Since we’d like to find the local optimal hidden layer nodes, we

structure our program so that we can use all threads as much as

possible.

The pseudo code of our program is outlined below.

1. Process command line arguments and set

corresponding variables of the program

2. Read in data file and put the data cases into data array

for future reference.

3. Process the data by normalization so the data values

will be converted from arbitrary values to values

between -1 and +1

4. Initialize ANNs // the number of ANNs to be trained

and tested

5. Parallel do the following using ANN with different

hidden layer configuration {

6. While (MSE > tolerable error && cycle <

maximum cycle) {

7. For all training data do {

8. Forward-propagation

9. Backward propagation of errors

10. Update weights

11. }

12. Compute MSE

13. }

14. // test this ANN

15. Test run current ANN with test data

16. Compute accuracy

17. }

The first approach was to parallelize the execution of training of

all configured ANNs to run concurrently (line 6). This means that

each n node ANN would be assigned to a specific thread run.

This approach allowed one to learn the workload of each segment

of the program code during different iterations of the program. It

was obvious that assigning a different number of hidden nodes to

an ANN required different efforts, i.e., for an ANN with small

hidden layer nodes, one can accomplish the training and testing

more quickly than for an ANN with a higher number of hidden

…

Input layer Hidden
layer

Output

layer

Figure 1. Diagram of the ANN

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 15 - NUMBER 5 - YEAR 2017 71

nodes. Since we assigned a dedicated thread to work on an ANN,

this approach gave the situation of an unbalanced workload

among various threads. This is because a thread working on an

ANN with 1 hidden node, for example, will obviously finish

faster than a thread working on an ANN with 9 hidden nodes. So

even though there was some speedup with static scheduling, we

felt that this could be improved.

In order to parallelize even further, consider line 7, which trains

the network by going through one data item at a time. Each time,

it goes through the forward phase, backward phase and then

modifies the weights after finding the gradients using the gradient

descent method. This is the so-called stochastic method (also

known as online method or incremental method in various

internet literatures). So instead of updating the weights one at a

time, the weights can be modified as a collection, i.e., compute

the weight changes (the gradients of weight change based on the

error that was back propagated from the output layer) of all data

items and keep these weight changes in a temporary data

structure. After processing all data items, the weights can be

updated in parallel by adding up all the weight changes for each

item together. This method is usually known as batch method.

To further improve the performance, we changed the OpenMP

scheduling type from static to dynamic and experimented with an

increasing counter in the for loop (i.e. iterating from 0 to

total_ann) and a decreasing counter in the for loop (iterating from

total_ann to 0) and observed their effects on the execution time

of the program. We found that for dynamic scheduling, using

increasing or decreasing counters did not yield a significant

difference in results. However, the results discussed in the next

section show that that reorganizing the program code from static

to dynamic did affect and improve the performance of the system.

4. EXPERIMENTAL RESULTS

In terms of the accuracy of results, we observed that the number

of nodes that achieved the best hit ratio was five nodes in the

hidden layer. The number of nodes that achieved the best MSE

was having only one node in the hidden layer. However, we also

observed that having four nodes in the hidden layer gave the

second best hit ratio and second best MSE. After running the

program multiple times, we concluded that it’s not a simple task

to find a universal “best” number of hidden nodes for accuracy

that will be true for all stocks.

The following table shows the speedup of running the program

using different number of threads. The time is the total number

of seconds from beginning to end of running the whole program,

including the testing phase. It includes the sequential portion and

parallel portion of this program.

The table below, Figure 2, shows these speedup results when

using dynamic scheduling of the program code. Although it is not

linear, it does show some speed up.

number of threads time speedup

1 271.744 1

2 166.021 1.636805

4 105.95 2.564832

8 72.7911 3.733204

16 59.3806 4.576309

Figure 2

The corresponding efficiency of the results is drawn as the line

chart in Figure 3. The results show that efficiency decreases when

the number of threads are increased.

Figure 3

We also found that by changing the order of execution of the

ANN, the results were affected. The following table, Figure 4,

shows the speedup from running the program with static

scheduling.

number of threads speedup

1 1

2 1.353529353

4 2.746868554

8 4.459963154

16 4.086538969

Figure 4

In general, we see that there is less speedup when using static

scheduling. This is most likely is due to the workload imbalance

that occurs with static scheduling. This type of schedule will

result in certain threads doing less work than other threads, as

running the program with a lower number of hidden nodes will

result in lesser work. It is also interesting to note that when using

static scheduling, running with 8 threads gave a better speedup

than 16 threads. We believe that this might have been the case

because the overhead from thread creation far outweighed the

benefits of using more threads.

5. CONCLUSIONS AND REMARKS

The financial industry is an industry that requires multiple

disciplines to work together. Skills including coding, math,

psychology, politics may be necessary to ensure its success.

In this project, we implemented a neural network that can predict

the prices of stock, which then helps in determining volatility,

0

5

10

15

20

1 2 3 4 5

Thread Efficiency

Threads efficiency

72 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 15 - NUMBER 5 - YEAR 2017 ISSN: 1690-4524

using the feedforward and backward propagation method to

change weights of a neural network. OpenMP was used to

implement the parallel program. There was speedup observed,

although not linear, and efficiencies were also computed. Static

and dynamic scheduling methods of OpenMP were implemented

and the results from these two schedules were compared.

It was found that increasing the number of hidden layer nodes did

not imply better results. It would be interesting to further examine

what happens when one adapts more layers in the computation.

How many hidden nodes would be required in this case? And

how would we decide the number of nodes in each hidden layer?

In addition, further work could be done to figure out what other

factor(s) should be fed in into the system so that we would have

a better hit ratio and accuracy, with regards to determining the

volatility of stock.

6. REFERENCES

[1] Sunisa Amornwattana, David Enke, C.H. Dahli, “A hybrid

option pricing model using a neural network for estimating

volatility”, International Journal of General Systems,

2007, pp 558-573.

[2] E. Hajizadeh, A. Seifi, Fazel M.H. Azrandi, I.B. Turksen. “A

hybrid modelling approach for forecasting the volatility of

S&P 500 index return”, Expert Systems with Applications,

2012, 39: 431-436.

[3] Feng Li, and Cheng Liu, “Application Study of BP Neural

Network on Stock Market Prediction”, Ninth International

Conference on Hybrid Intelligent Systems, pp 174 – 178

[4] QianYu Lin, and ShaoRong Feng, “Stock market forecasting

research based on Neural Network and Pattern Matching”,

2010 International Conference on E-Business and E-

Government, pp 1940 – 1943

[5] Soheil Almasi Monfared, and David Enke, “Volatility

forecasting using a Hybrid GJR-GARCH neural network

model”, Procedia Computer Science, 2014, pp 246-253.

[6] Soheil Almasi Monfared, and Enke D. “Noise cancelling in

volatility forecasting using an adaptive neural network

model”, Procedia Computer Science, 2015, pp 80-84.

[7] Edward Tirados and John Jenq, (2009), "Analysis of Leading

Economic Indicator Data and Gross Domestic Product Data

Using Neural Network Methods", Journal of Systemic,

Cybernetics and Informatics, vol 7, no 4, 2009, pp 51-56

[8] Lei Wang, and Qiang Wang, “Stock market prediction using

artificial neural networks based on HLP”, Third

International Conference on Intelligent Human-Machine

Systems and Cybernetics, 2011 pp 116 -119

[9] Yixin Zhou, and Jie Zhang, “mStock data analysis based on

BP neural network”, Second International Conference on

Communication Software and Networks, 2011 pp 396 –

399

[10]Youngmin Kima and David Enke, “Using Neural Networks

to Forecast Volatility for an Asset Allocation Strategy Based

on the Target Volatility”, Procedia Computer Science 95

(2016) pp 281 – 286

[11]Kim TY, Oh KJ, Sohn I, Hwang C. “Usefulness of artificial

neural networks for early warning system of economic

crisis”, Expert Systems with Applications, 2004, 26(4), pp

583-590

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 15 - NUMBER 5 - YEAR 2017 73

	SA689HJ17.pdf

