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ABSTRACT 

 

Volatility is a measurement of the risk of financial products. A 

stock will hit new highs and lows over time and if these highs 

and lows fluctuate wildly, then it is considered a high volatile 

stock. Such a stock is considered riskier than a stock whose 

volatility is low. Although highly volatile stocks are riskier, the 

returns that they generate for investors can be quite high. Of 

course, with a riskier stock also comes the chance of losing 

money and yielding negative returns. In this project, we will use 

historic stock data to help us forecast volatility. Since the 

financial industry usually uses S&P 500 as the indicator of the 

market, we will use S&P 500 as a benchmark to compute the risk. 

We will also use artificial neural networks as a tool to predict 

volatilities for a specific time frame that will be set when we 

configure this neural network. There have been reports that 

neural networks with different numbers of layers and different 

numbers of hidden nodes may generate varying results. In fact, 

we may be able to find the best configuration of a neural network 

to compute volatilities. We will implement this system using the 

parallel approach. The system can be used as a tool for investors 

to allocating and hedging assets. 

 

Keywords: Artificial Neural Network, Volatility, Parallel 

Processing 

 

 

1.  INTRODUCTION 

 

The financial industry is an industry that requires multi-

disciplinary expertise. In order to be a good financial engineer, 

one should possess knowledge and skills in various areas, such 

as math, finance, economics, and computer science.  In addition, 

one will also utilize analytical skills and logical reasoning in 

order to find meaning in the data collected and to make 

conclusions.  For this project, we combine our skills in 

programming and our knowledge of finance in order to try to 

predict stock volatility.  We will analyze whether the results are 

accurate, and if our method of getting to such a conclusion was 

effective and efficient. 

 

The stock market can be very volatile and is sensitive to various 

factors and situations. For example, in cases where natural 

disasters, political turmoil, or economic and financial crises 

occur, financial assets tend to fluctuate very much.   

 

Volatility is a measurement of the risk of financial products. A 

stock will hit new highs and lows over time and if these highs 

and lows fluctuate wildly, then it is considered to be a high 

volatile stock. Such a stock is considered riskier than a stock 

whose volatility is low. High tech stocks usually have high 

volatility and is said to have a higher beta value, i.e., a beta value 

greater than 1. Although these stocks are riskier, the returns that 

they generate for investors, if positive, can be very high. On the 

other hand, a riskier stock means there’s a greater chance of 

yielding negative returns and losing money. Unlike high tech 

stocks, stocks like utilities are more stable in their stock prices, 

so they are considered to have low volatility, which means having 

a beta value that is less than 1. A beta value of 0 signifies a 

security that has no volatility; for example, cash has beta value 

of 0.  It is known that standard deviation alone cannot be used to 

measure volatility because, as illustrated by the history of the 

stock market, the market is not normally distributed and in 

reality, is skewed. Thus, historic stock data may in fact help us to 

measure volatility. In this paper, we will use historic data to help 

us to compute the volatility. We will use artificial neural 

networks as a tool to predict volatilities for a specific time frame 

that will be set when we configure this neural network. As a side 

note, there have been reports that neural networks with different 

layers and different nodes may generate varying results. In fact, 

we will vary the number of nodes to find the best configuration 

of the neural network, if one such configuration exists, for 

computing volatilities. We will implement this system using a 

parallel approach. The system can be used as a tool for investors 

to allocating and hedging assets. 

 

Neural networks are popular in financial and economic 

computations. For example, Li and Liu used the LM BP 

algorithm to predict the Shanghai stock market [3]. Wang 

developed an HLP method that is able to get stock high/low 

points with differing frequency and amplitude. The extracted 

data are then fed into a neural network to forecast the stock 

direction and price [8]. Tirados and Jenq used neural networks to 

predict GDP with ten leading economic indicators as the input 

[7]. Lin and Feng combined neural networks and pattern 

matching techniques to analyze and to forecast oil stock price [4]. 

Zhou and Zhang used financial indicators such as moving 

averages, volumes, relative strength index, etc. on neural 

networks to predict future stock prices [9]. 

 

Additionally, Amornwattana et. al[1] proposed a hybrid artificial 

neural network (ANN) model for forecasting volatility to do 

options trading. Hajizadeh et al. [2] proposed a hybrid model 

with ANN to forecast the volatility of the S&P 500 index. 

Monfared and Enke [5][6] also proposed a hybrid GJR-GARCH 

Neural Network model to enhance the performance of volatility 

forecasting using an adaptive neural network filter for cancelling 

noise in the data. Youngmin Kima and David Enke discussed 
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using neural networks to forecast volatility for an asset allocation 

strategy based on the target volatility [10]. Kim et. al[11] 

proposed a system for early warning of economic crisis. 

 

In this project, we would like to find the local minimum number 

of hidden nodes in a single hidden layer that would be able to 

achieve the best prediction in terms of accuracy. We will use only 

a single hidden layer in our neural network, as illustrated in 

Figure 1 below, because adding more layers becomes 

computationally expensive very quickly while only a relatively 

small amount of performance improvements would be seen. 

 

This proposed problem can benefit greatly from parallelism 

because most people usually try to find the number of hidden 

nodes to use through either trial-and-error or by simply using the 

same number of nodes in input layer.  Both of these methods can 

be very ineffective. Using parallelism, we are able to speed up 

the process of finding a local optimal number of hidden nodes for 

fairly accurate stock price predictions, as seen later in the results.  

Predicting stock price, in turn, helps show stock volatility, as the 

difference between the actual price and predicted price will give 

insight into how volatile the stock is.  This paper is organized in 

the following way: in the next section, we define some terms that 

we used in our project. Section 3 will describe the development 

of the system. We discuss the implementation results in section 

4.  Section 5 gives the conclusions. 

 

 
2.  TERMINOLGIES 

 

Below are various terms we will use, as well as their meaning 

and significance within the scope of this paper. 

  

MSE (mean squared error): This value is one of the criteria to 

stop the training of the neural network. MSE is defined as the 

sum of the square of errors of outputs divided by the total number 

of cases involved in the training. The error used here is defined 

as the difference between the actual (target) value and the 

predicted value generated from the artificial neural network 

(ANN). Note that there are other methods to compute the MSE, 

such as using validation data set to stop the training by checking 

if total number of accuracy is improved and if total accuracy 

hasn’t, then one can stop the training. We did not use this method 

to stop the training in this project. To stop training, we set a 

tolerable error and a maximum cycle, and the one that was 

reached first would stop the training. 

 

Accuracy: Because the predicted price and the actual price must 

change in the same direction to be considered a good prediction 

for the stock market (and can at least help us to make the decision 

to either buy, sell or hold), accuracy can be defined as the number 

of same directional changes of predictions divided by total 

number of testing cases. We called this the "hit ratio." Another 

way to define it is to say that a lower MSE means a higher 

accuracy because it shows how close the predicted value is from 

the target value for the values that change in the same direction. 

 

Speedup: This is defined as the ratio of sequential runtime 

divided by the parallel run time 

 

Efficiency: This is defined as the speed up factor divided by the 

number of threads used to execute the program. 

 

 

 

3.  SYSTEM DESIGN AND IMPLEMENTATION 

 

We implement the system using C/C++. There are 16 threads in 

the system that we used. The program can run multiple threads 

simultaneously. OpenMP is used to parallelize the program code. 

Since we’d like to find the local optimal hidden layer nodes, we 

structure our program so that we can use all threads as much as 

possible. 

 

The pseudo code of our program is outlined below. 

1. Process command line arguments and set 

corresponding variables of the program 

2. Read in data file and put the data cases into data array 

for future reference. 

3. Process the data by normalization so the data values 

will be converted from arbitrary values to values 

between -1 and +1 

4. Initialize ANNs // the number of ANNs to be trained 

and tested 

5. Parallel do the following using ANN with different 

hidden layer configuration { 

6.       While (MSE > tolerable error && cycle < 

maximum cycle) { 

7.             For all training data do { 

8.                   Forward-propagation 

9.                   Backward propagation of errors 

10.                   Update weights 

11.             } 

12.            Compute MSE 

13.        } 

14. // test this ANN 

15. Test run current ANN with test data 

16. Compute accuracy 

17. } 

 

The first approach was to parallelize the execution of training of 

all configured ANNs to run concurrently (line 6). This means that 

each n node ANN would be assigned to a specific thread run. 

This approach allowed one to learn the workload of each segment 

of the program code during different iterations of the program. It 

was obvious that assigning a different number of hidden nodes to 

an ANN required different efforts, i.e., for an ANN with small 

hidden layer nodes, one can accomplish the training and testing 

more quickly than for an ANN with a higher number of hidden 

…
 

Input layer Hidden 
layer 

Output 

layer 

Figure 1. Diagram of the ANN 
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nodes. Since we assigned a dedicated thread to work on an ANN, 

this approach gave the situation of an unbalanced workload 

among various threads.  This is because a thread working on an 

ANN with 1 hidden node, for example, will obviously finish 

faster than a thread working on an ANN with 9 hidden nodes. So 

even though there was some speedup with static scheduling, we 

felt that this could be improved. 

 

In order to parallelize even further, consider line 7, which trains 

the network by going through one data item at a time. Each time, 

it goes through the forward phase, backward phase and then 

modifies the weights after finding the gradients using the gradient 

descent method. This is the so-called stochastic method (also 

known as online method or incremental method in various 

internet literatures). So instead of updating the weights one at a 

time, the weights can be modified as a collection, i.e., compute 

the weight changes (the gradients of weight change based on the 

error that was back propagated from the output layer) of all data 

items and keep these weight changes in a temporary data 

structure. After processing all data items, the weights can be 

updated in parallel by adding up all the weight changes for each 

item together. This method is usually known as batch method. 

 

To further improve the performance, we changed the OpenMP 

scheduling type from static to dynamic and experimented with an 

increasing counter in the for loop (i.e. iterating from 0 to 

total_ann) and a decreasing counter in the for loop (iterating from 

total_ann to 0) and observed their effects on the execution time 

of the program. We found that for dynamic scheduling, using 

increasing or decreasing counters did not yield a significant 

difference in results.  However, the results discussed in the next 

section show that that reorganizing the program code from static 

to dynamic did affect and improve the performance of the system. 

 

 
 

4.  EXPERIMENTAL RESULTS 

 

In terms of the accuracy of results, we observed that the number 

of nodes that achieved the best hit ratio was five nodes in the 

hidden layer.  The number of nodes that achieved the best MSE 

was having only one node in the hidden layer.  However, we also 

observed that having four nodes in the hidden layer gave the 

second best hit ratio and second best MSE.  After running the 

program multiple times, we concluded that it’s not a simple task 

to find a universal “best” number of hidden nodes for accuracy 

that will be true for all stocks. 

 

The following table shows the speedup of running the program 

using different number of threads. The time is the total number 

of seconds from beginning to end of running the whole program, 

including the testing phase. It includes the sequential portion and 

parallel portion of this program.  

 

The table below, Figure 2, shows these speedup results when 

using dynamic scheduling of the program code. Although it is not 

linear, it does show some speed up.  

 

 

number of threads time speedup 

1 271.744 1 

2 166.021 1.636805 

4 105.95 2.564832 

8 72.7911 3.733204 

16 59.3806 4.576309 

Figure 2 

 

 

 

 

 

The corresponding efficiency of the results is drawn as the line 

chart in Figure 3. The results show that efficiency decreases when 

the number of threads are increased. 

 

 
Figure 3 

 
We also found that by changing the order of execution of the 

ANN, the results were affected. The following table, Figure 4,  

shows the speedup from running the program with static 

scheduling.  

 
number of threads speedup 

1 1 

2 1.353529353 

4 2.746868554 

8 4.459963154 

16 4.086538969 

Figure 4 

In general, we see that there is less speedup when using static 

scheduling. This is most likely is due to the workload imbalance 

that occurs with static scheduling.  This type of schedule will 

result in certain threads doing less work than other threads, as 

running the program with a lower number of hidden nodes will 

result in lesser work.  It is also interesting to note that when using 

static scheduling, running with 8 threads gave a better speedup 

than 16 threads.  We believe that this might have been the case 

because the overhead from thread creation far outweighed the 

benefits of using more threads.  

 

 

5.  CONCLUSIONS AND REMARKS 

 

The financial industry is an industry that requires multiple 

disciplines to work together. Skills including coding, math, 

psychology, politics may be necessary to ensure its success.  

 

In this project, we implemented a neural network that can predict 

the prices of stock, which then helps in determining volatility, 
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using the feedforward and backward propagation method to 

change weights of a neural network. OpenMP was used to 

implement the parallel program. There was speedup observed, 

although not linear, and efficiencies were also computed. Static 

and dynamic scheduling methods of OpenMP were implemented 

and the results from these two schedules were compared.  

 

It was found that increasing the number of hidden layer nodes did 

not imply better results. It would be interesting to further examine 

what happens when one adapts more layers in the computation. 

How many hidden nodes would be required in this case? And 

how would we decide the number of nodes in each hidden layer? 

 

In addition, further work could be done to figure out what other 

factor(s) should be fed in into the system so that we would have 

a better hit ratio and accuracy, with regards to determining the 

volatility of stock. 
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