
Detection of Minimal Set of Trips Causing the Necessity to Use Extra
Vehicle for Vehicle Scheduling Problem

Kateřina PASTIRČÁKOVÁ
Jan Perner Transport Faculty, University of Pardubice

Pardubice, Czech republic

Jaromı́r ŠULC
Jan Perner Transport Faculty, University of Pardubice

Pardubice, Czech republic

ABSTRACT

Vehicle scheduling problem addresses the task of assigning ve-
hicles to cover all trips in a timetable. Minimum number m of
vehicles is determined by the number of trips in the peak hours
of demand (highest density of trips). In this paper, we propose
an approach to detect the minimal set of trips (critical trips), such
that omitting them allows to use only m − k vehicles. Results
of the algorithm can be used also for increasing the efficiency of
the vehicle scheduling problem, which leads to additional cost
savings for the transport company. The algorithm was used for
public transport vehicle scheduling in several cities within the
Czech Republic and the solution stepped up the efficiency by up
to 2%.

Keywords: vehicle scheduling, graph theory, shortest disjoint
paths

1 GENERAL PURPOSE OF CRITICAL TRIPS
IDENTIFICATION

Vehicle scheduling is a widely studied problem having many sub-
sequent questions and solutions found. As a vehicle is usually the
most expensive asset, transportation companies tend to minimize
the number of vehicles. The problem of minimizing the number
of vehicles needed to satisfy the timetable schedule can be solved
for example by vertex covering or graph coloring [1], maximum
flow [2] and many more.

We can optimize the costs even further within the vehicle
scheduling problem, minimizing not only the costs of used ve-
hicles, but also the costs of death trips, which can be solved by
means of linear programming [3], [4].

Outputs of both of these problems are blocks of trips to be
covered by the minimal number of vehicles m. If some of these
blocks are very small, containing for instance only 1 trip, it is
questionable whether it is cost effective to cover them by a ve-
hicle. Especially if the transport company is running short on
vehicles, cancellation or outsourcing of the minimal block can be
considered, as it will most likely be a cost effective solution. The
goal of this paper is to cover the timetable by m blocks, while
minimizing the size of the last block, or minimizing the overall
size of k blocks.

Therefore, we define an oriented graph in which the vertices
represent the trips and an edge of length 1 from vertex v to vertex
w exists if the trip w can be serviced after the trip v by the same
vehicle, i.e. if the time of death running from final station of trip
v to the first station of the trip w is shorter than the break time

between end of v and start of w. Figure 1 shows an example
graph containing 8 trips.

If we find m − 1, or m − k disjoint paths within this graph
with the maximum sum of lengths, then the trips which aren’t
included in any of the disjoint paths are the desired critical trips.
In the following section, we will transform this problem into the
minimum cost maximum flow problem.

As we show subsequently in section 3, a slight modification
of the following algorithm will also yield the block (or multiple
blocks) with minimal sum of lengths of trips, while covering the
timetable by m blocks in total.

t1

t2

t3

t4

t5

t6

t7

t8
time

Figure 1: Graph for searching the m− k longest disjoint paths

2 TRANSFORMATION INTO MINIMUM COST MAXIMUM
FLOW PROBLEM

As stated in previous section, for a given timetable there exist
several algorithms that can quickly find the minimal number m
of vehicles needed to cover all the trips within the timetable.
The minimum cost maximum flow algorithm which we describe
within this section constraints the maximal flow by m − k, i.e.
the desired number of vehicles to be used.

Within the flow network, we need to ensure that each trip is
covered by a vehicle at most once. Therefore each trip is repre-
sented as a triple of input vertex t, output vertex t′ and an edge
from t to t′ with capacity 1. Both vertices t, t′ and the edge [t, t′]
are uniquely identifying one specific trip, we refer to the trip it-
self also by t. Let us denote time(t), the starting time of the trip
t, and time(t′), the ending time of the trip t. For all trips t let us

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 16 - NUMBER 3 - YEAR 2018 1

assign the cost of edge [t, t′] equal to time(t′) − time(t) − 1.
Similarly to the previous graph, an edge of capacity 1 from out-
put vertex t′ to input vertex u exists if the trip u can be serviced
after the trip t by the same vehicle. The cost of such edge will
be the timespan time(u)− time(t′), i. e. the timespan between
end of trip t and start of trip u.

We define a sink n such that time(n) > time(t′) ∀ trip t.
Then for each trip t we create an edge from t′ to n with ca-
pacity 1 and cost time(n) − time(t′). Similarly, we define
a source s such that time(s) < time(t) ∀ trip t. Then for
each trip t we create edges from s to t with capacity 1 and cost
time(t) − time(s). To be able to limit the overall capacity of
such network, we further define a supersource r which is con-
nected by an edge to the source s, cost of the edge being zero,
and the capacity c being a variable dependent on the desired num-
ber of vehicles to be used by the transportation company, i.e.
c := m − k. After solving the minimum cost maximum flow
problem for this network [5], the trips whose edges were not in-
cluded in the solution are the minimum number of critical trips.
Minimality of the number of critical trips can be easily proven by
contradiction, as each trip included in the maximum flow mini-
mum cost solution lowers the overall cost by one.

For illustration of the network described above we show in
figure 2 the simplified version of the network containing 4 trips.
To simplify and shorten the labels of edges, we denote time(t)−
time(s) only as t−s, and similarly time(t′)− time(t)−1 only
as t′ − t− 1.

Conclusion of minimum-cost flow approach
The algorithm described within this section yields the set of crit-
ical trips. However, there is a necessary prerequisite of solving
the standard vehicle scheduling problem and finding the minimal
number m of vehicles necessary. Furthermore, the planners have
to decide upfront what the desired number of vehicles m − k to
be used within the vehicle scheduling is, or they have to run the
algorithm for multiple different values of k. Such an approach
is usable but certainly would not be a best practice. In the next
section we modify the problem to obtain a more elegant solu-
tion, which gives us the overall picture for all vehicle fleet sizes
at once.

3 TRANSFORMATION INTO SHORTEST DISJOINT PATH
PROBLEM

In the previous section, the capacities of all edges within the net-
work were set to 1, except for the artificially added edge from
supersource to source, which sets the maximum capacity of the
network. However, by transforming the problem into the shortest
disjoint paths problem, there will be no necessity for the super-
source, all the capacities can also be dismissed and we keep only
the costs of the edges.

Similarly as in the previous section, we define a graph G
within which each trip is represented as a triple of input vertex
t, output vertex t′ and an edge from t to t′ with cost equal to
time(t′)− time(t)− 1. An edge from output vertex t′ to input
vertex u exists if the trip u can be serviced after the trip t, having
the cost of time(u)− time(t′).

We define a sink n such that time(n) > time(t′) ∀ trip t.
Then for each trip t we create an edge from t′ to n with cost
time(n) − time(t′). Similarly, we define a source s such that
time(s) < time(t) ∀ trip t. Then for each trip t we create edges
from s to t with cost time(t) − time(s). Figure 3 shows graph
G containing 4 trips.

Having graph G, we solve the shortest disjoint path problem

by Bhandari algorithm [6], which iteratively finds the i overall
shortest disjoint paths for each i ≤ m, i.e. the i longest blocks
covering the highest possible number of trips by i vehicles. Pro-
viding such results to the planners, they can quickly decide which
number of shortest blocks to get rid of, i. e. how many vehicles
it is cost effective to use. In the following pseudocode, let us
outline the Bhandari algorithm steps.

G1 := G;
i := 0;
while exists a vertex in G not included in i shortest disjoint

paths do
i := i+ 1;
Within the graph Gi find shortest path pi from s to k,

using any algorithm allowing for the negative edge
costs;

Form graph Gi+1 from Gi by turning all the edges of
the path pi in the opposite direction and assign them
inverse costs;

The i shortest disjoint paths are formed by the paths
p1, p2, . . . pi, where all the pairs of edge and inverse
edge cancel themselves out and are not included in the
final i disjoint paths;

end
Algorithm 1: Bhandari algorithm for shortest disjoint paths
finding

Even though the algorithm contains a while cycle, from the
vehicle scheduling problem we know that there will be exactly
m iterations, because with m disjoint paths we can cover all the
trips. Proof of correctness of the algorithm is similar to the proof
from previous section.

As a result of the algorithm above, we obtain for each i < m
the i shortest disjoint paths from source to sink. These paths
represent i blocks with the highest overall number of trips. Based
on the number of trips not included in the blocks, the planners
decide which number of vehicles i to use.

We do not have to stick only to the originally identified critical
trips, as the originally identified critical trips can be interchange-
able with some of the trips which are covered by the blocks. For
each block and for each critical trip c, if the critical trip can be
swapped with exactly one trip t within the block, we add the trip
t into a critical trip set Sc. From each Sc we select mutually
distinct trips x, which we remove from the vehicle scheduling.

As we identified the critical trips to be excluded from the ve-
hicle scheduling problem, we consecutively have to decide what
will happen with them. There are following possibilities:

• Trip cancellation

• Rescheduling of the trip to a different time frame

• Outsourcing

• Covering of the trip by a backup vehicle and a temp crew

In figure 4 you can see the 2 critical trips identified in 2 blocks
within the actual vehicle scheduling data of public transport com-
pany of a Czech city Liberec.

Modification to obtain critical trips of minimal sum of lengths
A public transportation company which operates both high fre-
quency short trips within a city and lower frequency suburban
transport, where much longer trips occur, might question whether
all the trips are interchangeable. In the previous algorithm we

2 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 16 - NUMBER 3 - YEAR 2018 ISSN: 1690-4524

s n

r

t1 t′1

t2 t′2

t3 t′3

t4 t′4

c = m− k

t′1−t1−1

cost = t1 − s

capac. = 1

time

Figure 2: Network for minimum cost maximum flow problem

s n

t1 t′1

t2 t′2

t3 t′3

t4 t′4

t′1−t1−1

cost = t1 − s

cost = n− t′4

cost = t3 − t′1

time

Figure 3: Graph for the shortest disjoint path problem

Figure 4: Critical trips identified on real data

consider all trips equal, while it may be useful to be able to in-
terchange multiple shorter trips instead of one long trip as criti-
cal ones to be excluded from vehicle scheduling, or vice versa.
Therefore we slightly modify the algorithm to obtain critical
trips of minimal length. To achieve it, we only need to mod-
ify the costs of trips in the following way. In both of the pre-
vious algorithms, for each trip t the cost of edge [t, t′] equals
to time(t′) − time(t) − 1. If we set the costs of edges [t, t′]
to 0, then the identified critical trips will be of minimal overall
length, as each minute of a trip is discounted. Then, both within
the minimum cost maximum flow problem and shortest disjoint
path problem the solution will yield the blocks with longest trips,
while leaving out the critical trips with lowest overall sum of run-
ning times. Proof would be similar to the one already shown, by

dispute.
Further modifications of the graph are possible, we can mod-

ify the costs of edges [t, t′] to any interpolated value between 0
and time(t′) − time(t) − 1, which then optimizes for certain
combination of minimal number of trips and shortest time of the
critical trips.

Conclusion of shortest disjoint path finding
In this section we provided an elegant solution to the original
problem. By providing the solutions for each possible size of ve-
hicle fleet we give the planners full information based on which
they can decide how many vehicles it is reasonable and cost ef-
fective to use. The complexity of the algorithm is similar to the
complexity of m iterations of shortest path algorithm.

4 CONCLUSION

In this paper we provided an algorithm which identifies critical
trips of either minimal number of trips or minimal overall length.
There are then several possibilities for the planner to handle the
critical trips:

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 16 - NUMBER 3 - YEAR 2018 3

• Trip cancellation

• Rescheduling of the trip to a different time frame

• Outsourcing

• Covering of the trip by a backup vehicle and a temp crew

The advantages of finding and handling the critical trips are:

• Lowering the number of vehicles and crew members needed
to cover the timetable

• Increasing the efficiency of the used vehicles and crew, as
there is an amount of work which would have been oth-
erwise covered by unused vehicles, which gets distributed
amongst the lower number of used vehicles and crew

• Decreasing the amount of drivers necessary for duty roster-
ing

• Knowledge of critical trips can be used for optimizing the
iterative process of timetabling → vehicle scheduling →
timetabling for higher efficiency and lower operating costs

REFERENCES

[1] Paluch S: Graph Theory Approach to Bus Scheduling Prob-
lem, Studies of the faculty of management science and infor-
matics, Vol. 9, pp. 53–57 (2001)

[2] Saha L: An algorithm for bus scheduling problems. Opera-
tional Research Quarterly, 21 (4): 463–474 (1972)

[3] Silva P, Wren A, Kwan S, Gualda F: Bus scheduling based on
an arc generation - network flow approach. Technical report,
University of Leeds - School of Computer Studies (1999)

[4] Oukil A, Amor B, Desrosiers J, Gueddari E: Stabilized col-
umn generation for highly degenerate multiple-depot vehicle
scheduling problems. Computers and Operations Research,
34: 817—834 (2007)

[5] Goldberg A, Tarjan R: Finding minimum-cost circulations
by canceling negative cycles. Journal of the ACM. 36 (4):
873-–886 (1989)

[6] Bhandari R: Survivable networks: algorithms for diverse
routing. 477. Springer. p. 46. ISBN 0-7923-8381-8 (1999)

4 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 16 - NUMBER 3 - YEAR 2018 ISSN: 1690-4524

	SA786SY18.pdf

