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Abstract 
The Variational Monte Carlo method is used to evaluate the energy of the ground state of the helium 
atom. The relativistic effect is taken into account. Trial wave functions depending on the variational 
parameters are constructed for this purpose. Energies as well as standard deviations are plotted versus 
the variational parameters. The experimental data are presented for comparison.  
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1.  Introduction 
The term Monte Carlo refers to group 
of methods in which physical or 
mathematical problems are simulated 
by using random numbers. Quantum 
Monte Carlo (QMC) techniques 
provide a practical method for solving 
the many-body Schrödinger equation 
[1-4]. 
    It is commonly used in physics to 
simulate complex systems that are of 
random nature in statistical physics. 
There are many versions of the QMC 
methods which are used to solve the 
Schrödinger equation for the ground 
state energy of a quantum particle. 
Among them, there are the diffusion 
Monte Carlo method [5], Green’s 
function Monte Carlo [6] and fixed-
phase Monte Carlo method [7] which 
is used for wave equations that 
consider a magnetic field. 
    The simplest of QMC methods is the 
variational Monte Carlo (VMC) 
technique which has become a 
powerful tool in Quantum Chemistry 
calculations [8-10]. It is used to 
evaluating a high-dimensional integral 
by sampling the integrand using a set 
of randomly generated points.  It can 
be shown that the integral converges 

faster by using VMC technique than 
more conventional techniques based on 
sampling the integrand on a regular 
grid for problems involving more than 
a few dimensions. Moreover, the 
statistical error in the estimate of the 
integral decreases as the square root of 
the number of points is sampled, 
irrespective of the dimensionality of 
the problem.  The major advantage of 
this method is the possibility to freely 
choose the analytical form of the trial 
wave function which may contain 
highly sophisticated terms, in such a 
way that electron correlation is 
explicitly taken into account. This is an 
important valid feature for QMC 
methods, which are therefore 
extremely useful to study physical 
cases where the electron correlation 
plays a crucial role. 
 
2. Variational Monte Carlo 
Calculations 
The Variational Mont Carlo method 
[11] is based on a combination of two 
ideas namely the variational principal 
and Monte Carlo evaluation of 
integrals using importance sampling 
based on the Metropolis algorithm. It is 
used to compute quantum expectation 
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values of an operator. In particular, if 
the operator is the Hamiltonian, its 
expectation value is the varitional 
energy VMCE ,  

 
     = ∫  ∗( )    ( )  ∫  ∗( )  ( )           (2.1) 

 
where, Ψ (R) is a trial wave function 
and " " is the N3  dimensional vector 
of electron coordinates. According to 
the Varitional principal, the 
expectation value of the Hamiltonian is 
an upper bound to the exact ground 
state energy    , that is,     ≥   . 
    To evaluate the integral in Eq. (2.1) 
we construct first a trial wave function Ψ  ( ) depending on variational 
parameter  = (  ,  , … … … …  ) 
and then varies the parameters to 
obtain the minimum energy.  
    Variational Monte Carlo 
calculations determine      by 
writing it as 
 
     = ∫ ( )  ( ) ( )          (2.2) 
 
where  ( ) = |  ( )| ∫|  ( )|    
 
is positive everywhere and interpreted 
as a probability distribution and    =      ( )  ( )   is the local energy 

function. The value of    is evaluated 
using a series of points,     
proportional to  ( ). At each of these 

points the "Local energy ",
     ( )  ( ) , is 

evaluated. After a sufficient number of 
evaluations the VMC estimate of      
will be: 
     =  〈  〉    
        =       →     →     ∑ ∑           (2.3) 

 
where   is the ensemble size of 
random numbers {  ,  , … … . . ,  } and  is the 
number of ensembles. These 

ensembles so generated must reflect 
the distribution function itself. A given 
ensemble is chosen according to the 
Metropolis algorithm [12]. This 
method uses an acceptance and 
rejection process of random numbers 
that have a frequency probability 
distribution like Ψ . The acceptance 
and rejection method is performed by 
obtaining a random number from the 
probability distribution,  ( ) , then 
testing its value to determine if it will 
be acceptable for use in approximation 
of the local energy. Random numbers 
may be generated using a variety of 
methods [13]. Finally, it is important to 
calculate the standard deviation of the 
energy                                                                                 

               
  =  〈   〉 − 〈  〉  ( − 1)  

 
3. The Statement of the Problem 
For nucleus with charge Z and infinite 
mass the Hamiltonian in atomic units 
(a. u) reads [14]:    
 
            =   +                          (3.1) 
where, 
 H =    ∑ (          , +        ) − ∑ (        , ) +       ,           

and 
    = −     (   +    ).  
 
Here    and   denote the relative 
coordinates of the two electrons with 
respect to the nucleus and                           = |  −   |.               
     
    In the Hamiltonian given by Eq. (3.1) 
the term H  represents the Coulomb 
interactions between the particles 
whereas the term    is due to the 
relativistic correction to the kinetic 
energy and it represents the 
dependence of the mass of the electron 
on the velocity.              
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    The electronic eigenvalue is 
determined from the Schrödinger 
equation: 
 
   (  ,  ) =   (  ,  ),            (3.2) 
 
where,  (  ,  ) is the electronic 
wave function. Our goal, now, is to 
solve the six-dimensional partial 
differential equation (3.2) for the 
lowest energy eigenvalue.   
 
4. The Trial Wave Function 
The choice of trial wave function is 
critical in VMC calculations. How to 
choose it is however a highly non-
trivial task. All observables are 
evaluated with respect to the 
probability distribution 
  ( ) = |   ( )| ∫|   ( )|    

 
generated by the trial wave function. 
The trial wave function must 
approximate an exact eigenstate in 
order that accurate results are to be 
obtained. Improved trial wave function 
also improves the importance sampling 
and reducing the cost of obtaining a 
certain statistical accuracy. A good 
trial wave function should exhibit 
much of the same features as does the 
exact wave function. One possible 
guideline in choosing the trial wave 
function is the use of the constraints 
about the behavior of the wave 
function when the distance between 
one electron and the nucleus or two 
electron approaches zero. These 
constraints are called “cusp conditions” 
and are related to the derivative of the 
wave function.  
    Usually the correlated wave function,  , used in VMC is built as the product 
of a symmetric correlation factor,  , 
which includes the dynamic correlation 
among the electrons, times a model 
wave function,   , that provides the 
correct properties of the exact wave 

function such as spin and the angular 
momentum of the atom, and is anti 
symmetric in the electronic coordinates   =    . 
    With this type of wave function, and 
by using different correlation factor, 
the atoms He to Kr have been 
extensively studied [15-18].  The aim 
of this work is to extend this 
methodology to obtain ground state of 
helium atom. This will be done within 
the context of the accurate Born-
Oppenheimer approximation, which is 
based on the notion that the heavy 
nucleus move slowly compared to the  
much lighter electrons. 
  
5. The ground state of the helium 
atom 
For the ground state, the trial wave 
function used in this work is given by 
  
  (  ,   ) =  (  ) (  ) (   ),  (5.1) 
 
where  (  ) is the single-particle wave 
function for particle  , and  (   ) account for more complicated 
two-body correlations. For the helium 
atom, we have placed both electrons in 
the lowest hydrogenic orbit 1s to 
calculate the ground state. A simple 
choice for  (  )  is [19]: 
 

  (  ) =    (   ⁄ ),                      (5.2) 
 
with the variational parameter a  to be 
determined. The final factor in the trial 
wave function,   , expresses the 
correlation between the two electrons 
due to their coulomb repulsion. That is, 
we expect   to be small when    is 
small and to approach a large constant 
value as the electrons become well 
separated. A convenient and 
reasonable choice is 
  ( ) =       (    ) ,                    (5.3)  
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where   and   are additional positive 
variational parameters. The variational 
parameter   controls the distance over 
which the trial wave function heals to 
its uncorrelated value as the two 
electrons separate. Using the cusp 
conditions [20] we can easy verify that 
the variational parameters  ,  satisfy 
the transcendental equations:   
 

   = ℏ22mee2   and α =  ℏ     .  

 
    Thus, β  is the only variational 
parameter at our disposal. With the 
trial wave function specified by Eq. 
(5.1), explicit expression can be 
worked out for the local energy   ( ) 
in terms of the values and derivatives 
of        . 
 
 6. Results and Conclusion 
The Monte Carlo process described 
here has been employed for the ground 
state of the helium atom. 
    Figure-1 shows the variation of the 
ground state energy with respect to the 
variational parameter  .  
    In Fig-2 we present the variations of 
the standard deviation with respect to 
the variational parameter  .  
    Fig. 3 shows the trial wave function 
for the ground state   as a function of   ,   . 
     
    The calculated value of the ground 
state of the helium atom is given in 
Table-1, together with the standard 
deviation. The corresponding 
experimental energy of the helium 
atom is also given in this table for 
comparison. The experimental 
standard deviation is not allowed.   
 
 
 
 
 
 
 

Table-1 Energy of the ground state of 
helium in (a. u.) units together with the 
standard deviation and the 
experimental data   
 

   Calculated Experiment 
VMCE  -2.898324 -2.9037 

Standard 
deviation 

0.0032 NA 

  
It is clear that the obtained numerical 
result is in good agreement with the 
corresponding experimental value [21].  
   
    Calculations of the radial wave 
functions and the excited states of the 
helium atom by using the same 
technique of the variational Monte 
Carlo method gave results in good 
agreement with the corresponding 
experimental findings [22].   
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           Fig-1 The Ground State Energy versus the variational parameter β . 
 

 
 
          Fig-2 The standard deviation versus the variational parameter β . 
 

 
 

   
 

Fig. 3 The wave function for the ground state as a function of    ,   . 
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