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1. INTRODUCTION

Quantitative graph analysis by using structural indices
has been intricate in a sense that it often remains un-
clear which structural graph measures is the most suit-
able one, see [1, 12, 13]. In general, quantitative graph
analysis deals with quantifying structural information of
networks by using a measurement approach [5]. As spe-
cial problem thereof is to characterize a graph quantita-
tively, that means to determine a measure that captures
structural features of a network meaningfully. Various
classical structural graph measures have been used to
tackle this problem [13]. A fruitful approach by using
information-theoretic [21] and statistical methods is to
quantify the structural information content of a graph
[1, 8, 18].

In this note, we sketch some classical informa-
tion measures. Also, we briefly address the problem
what kind of measures capture structural information
uniquely. This relates to determine the discrimination
power (or also called uniqueness) of a graph measure,
that is, how is the ability of the measures to discriminate
non-isomorphic graphs structurally.

2. GRAPH ENTROPY MEASURES FOR
NETWORKS

2.1. Classical Measures

Many classical information indices for characterizing
graphs are based on grouping the elements given by an
arbitrary graph invariant according to a certain equiv-
alence criterion [1, 18]. Typical graph invariants are
vertices, edges, vertex degrees and distances in a graph.
As a result, we derive probability values for each group
(partition) and finally the structural information content

of a network. The structural information content of a
graph is the entropy of the underlying graph topology.

Let G = (V,E) be a graph, let X be a graph in-
variant and α is assumed to be an equivalence criterion.
By applying α, distributions of X may be obtained and
thus partitions Xi with cardinality |Xi|. According to
the scientific literature, the following general graph en-
tropy measures have been developed [1]:

I(G,α) := |X| log(|X|)−
k∑
i=1

|Xi| log(|Xi|), (1)

and

Ī(G,α) := −
k∑
i=1

Pi log(Pi)

= −
k∑
i=1

|Xi|
|X|

log

(
|Xi|
|X|

)
. (2)

k is the number of partitions. Concrete information mea-
sures for graphs have been also developed [1, 18]:

Īorb(G) := −
k∑
i=1

|Ni|
|V |

log

(
|Ni|
|V |

)
, (3)

is called the topological information content of G, see
[18, 19]. Here, |Ni| denotes the number of topologically
equivalent vertices in the i-th vertex orbit of G. k stands
for the number of different orbits. A similarly defined
measure that is based on determining the edge orbits of
G is due to Trucco [26]:

E Īorb(G) := −
k∑
i=1

|NE
i |
|E|

log

(
|NE

i |
|E|

)
. (4)
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|NE
i | denotes the number of edges belonging to the i-th

edge orbit [1] of G.
Mowshowitz [18] further developed an important in-

formation measure using chromatic decompositions of
graphs:

Icr(G) := min
V̂

{
−

h∑
i=1

ni(V̂ )

|V |
log

(
ni(V̂ )

|V |

)}
, (5)

where V̂ = {Vi|1 ≤ i ≤ h}. |Vi| = ni(V̂ ) denotes
an arbitrary chromatic decomposition of a graph G, h =
χ(G) is the chromatic number of G. Finally, Bonchev
[1] generalized these classical partition-based measures
by introducing weighted probability distributions. For
example, he derived the so-called magnitude-based in-
formation index [1],

ĪD(G) := − 1

|V |
log

(
1

|V |

)

−
ρ(G)∑
i=1

2ki
|V |2

log

(
2ki
|V |2

)
. (6)

Here, we assume that the distance of a value i in the
distance matrix appears 2ki times. ρ(G) is the diameter
of a graph G.

2.2. Complexity Measures based on Information
Functionals

Dehmer developed an approach to derive information
measures for graphs which are based on using so-called
information functionals, see [4, 8]. An information
functional is a mapping that captures structural infor-
mation of a graph, see [4, 8]. Instead of determining
probability values for each obtained partition (see pre-
vious section), one defines a probability value to each
vertex in the graph. We derive

pf (vi) :=
f(vi)∑|V |
j=1 f(vj)

, ∀ vi ∈ V. (7)

f represents an arbitrary information functional. In fact,
these values are vertex probabilities as

pf (v1) + pf (v2) + . . .+ pf (v|V |) = 1. (8)

By employing the obtained vertex probabilities, the en-
tropy of the underlying graph topology of G has been
defined as [4, 8]:

If?(G) := −
|V |∑
i=1

pf (vi) log (pf (vi)) , (9)

= −
|V |∑
i=1

f(vi)∑|V |
j=1 f(vj)

log

(
f(vi)∑|V |
j=1 f(vj)

)
.

(10)

An example of such information functional is f(vi) :=
σ(vi). σ(vi) is the eccentricity of vi ∈ V . More recent
work relates to examine the degree-powers, see [3]. If
f?(vi) := dki , k > 0, we yield

If (G, k) = −
|V |∑
i=1

dki∑|V |
j=1 d

k
j

log

(
dki∑|V |
j=1 d

k
j

)
. (11)

We see If?(G, k = 1) is a special case that yields to

If (G) := If?(G, k = 1) (12)

= −
|V |∑
i=1

di∑|V |
j=1 dj

log

(
di∑|V |
j=1 dj

)
.

Here, f(vi) := di. Note that Cao et al. [3] proved ex-
tremal properties of this graph entropy measure. But
most of the results obtained in [3] have been obtained
for k = 1. The case k > 1 has been more intricate, see
[3].

Other information functionals have been developed
too, see [4, 8]. We emphasize that the resulting measures
have been used in chemical and biological network anal-
ysis [10, 11].

3. DISCRIMINATION POWER OF GRAPH
MEASURES

The discrimination power or uniqueness of graph mea-
sures relates to the ability to discriminate the structure
of non-isomorphic graphs. Following Todeschini et al.
[24], the degeneracy of a graph measure is an unde-
sired aspect as from a theoretical point of view, non-
isomorphic graphs should be distinguished by the mea-
sure. With other words it does not make sense that a
particular graph measure maps non-isomorphic graphs
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to the same measured value. The situation may be differ-
ent when it comes to special classification in structural
chemistry or data mining problems, see [23, 25].

Now we briefly survey the main results in this area.
Classical work in this area is due to Bonchev et al. [2]
and Konstantinova [16, 17] who determined the degen-
eracy of information-theoretic graph measures by using
sets of special chemical structures. The indices were
simple information-theoretic indices based on distances
in graphs [1, 17].

However, these sets are quite small and, therefore,
they are not suitable to perform any statistical analy-
sis on a large scale. Also, it is difficult to generalize
these results as (small) special graph classes were used
only. Dehmer et al. [8, 7] tackled the problem differ-
ently by performing a compelling analysis on exhaus-
tively generated networks. For instance, the generated
all connected and non-isomorphic graphs from 5 to 10
vertices. Note that by considering the graphs having 10
vertices each we deal already with almost 12 million
graphs. In order to perform this analysis, they calcu-
lated various known structural indices on exhaustively
generated trees and graphs and found that most of the
measures are not unique at all [8, 7]. That means their
discrimination power is very low and they are not suit-
able to discriminate graphs practically [8, 7]. As a fur-
ther result, a special information-theoretic quantity was
found to be highly discriminating on exhaustively gen-
erated graphs [8, 7]. Thus it represents a highly discrim-
inating graph invariant which can be useful for structure
searching and graph isomorphism testing.

4. MEASURES FOR COMPARATIVE GRAPH
ANALYSIS

Besides graph characterization by using information-
theoretic measures (see preceding sections), compara-
tive graph analysis has been an important problem. It
relates to compare graphs by using graph distance or
similarity measures [9, 14, 15, 22, 27].

Here, we want to sketch an approach for defining
comparative graph measures by using real similarity and
distance measure for real numbers namely s : G×G −→
R and d : G × G −→ R. G is a class of graphs. By
employing graph measures like I : G −→ R, we get
comparative graph measures such as

d(G1, G2) := |M(G1)−M(G2)|. (13)

Also, by using the real distance measure [20]

d(x, y) = 1− e−(x−yσ )
2

, (14)

we obtain [6]

dI(G,H) := d(I(G), I(H)) = 1− e−
(
I(G)−I(H)

σ

)2

.
(15)

It can be easily verified that d(x, x) = 0, d(x, y) ≥ 0,
and d(x, y) = d(y, x) holds. Properties of this mea-
sure have been investigated in [6]. Moreover it has been
demonstrated that this measure also has useful proper-
ties when applying it to structural data sets [6].

5. SUMMARY AND CONCLUSION

We sketched classical and recent information indices
for performing quantitative network analysis. Also,
we discussed the problem of measuring the discrim-
ination power of structural graph measures. Further
we sketched an approach to come up with comparative
graph measures by employing graph measures. This
class of measures will be investigated in depth as future
work.

We hope that the problems we have tackled here are
stimulating for those who deal with structural network
analysis and who want to apply this apparatus interdis-
ciplinarily.
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