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ABSTRACT

The decision takers of the public transportation system, as part of
urban critical infrastructures, need to increase the system
resilience. For doing so, we identified analysis tools for
biological networks as an adequate basis for visual analytics in
that domain. In the paper at hand we therefore translate such
methods for transportation systems and show the benefits by
applying them on the Munich subway network. Here, visual
analytics is used to identify vulnerable stations from different
perspectives. The applied technique is presented step by step.
Furthermore, the key challenges in applying this technique on
transportation systems are identified. Finally, we propose the
implementation of the presented features in a management
cockpit to integrate the visual analytics mantra for an adequate
decision support on transportation systems.

Keywords: Public Transportation System, Transportation
Network Analysis, Munich Subway Network, Visual Analytics,
Management Cockpit.

1. INTRODUCTION

The analysis of complex networks is an ongoing research field
for various disciplines [1-3]. The concept of a complex network
is used as a simplified frame of a complex system (e.g. a public
transportation system). The nodes and the links of a network are
represented by the entities and their interrelations in a system [4].
However, finding suitable visualization techniques for the
structural information of complex networks is an open question

[5].

Several studies showed so far the applicability of visual analytics
in general [6-8] and to transportation systems in particular [9].
The paper at hand aims for developing a visual analytics
technique to detect multiple vulnerable areas in a transportation
network. This approach was already applied in bioinformatics to
biological network analysis [10,11], but should not stay limited
to this field of application.

Transportation networks are often the target of disturbances and
attacks, which makes the knowledge about vulnerability and
resilience even more important. We therefore aim for applying
the biological network analysis to the field of transportation
networks in order to analyze and visualize critical spots.
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In section 2, relevant features for transportation networks are
identified. Methodological background, such as the visual
analytics process and applied network analysis measures for
transportation networks, is presented in section 3. In section 4,
the Munich subway network is used as an example to apply the
proposed visual analytics technique. Thereby, several visual
representations according to different measures are presented.
Section 5 presents the key challenges of this technique and a final
conclusion.

2. FROM BIOLOGICAL NETWORKS TO
TRANSPORTATION NETWORKS

To translate the analysis of biological networks to transportation
networks, we first have to define their main characteristics and
differences. Compared to biological networks, transportation
networks tend to be smaller. While biological networks can have
several million nodes, the world-wide air transportation network
has only 1.000 nodes and 35.000 links [12].

The example network in this paper, the Munich subway network
has 100 nodes and 198 links [13]. This leads to the fact that the
visualization of a transportation network is rather focused on
information visualization than on network drawing. The network
drawing is more oriented on the visual representation, while the
information visualization is more oriented on operating the
network hierarchies for various view perspectives and
interactions between its nodes.

Compared to biological networks, the visualization of
transportation networks tends to be more subjective. This holds
especially for the purpose of gaining information and knowledge
for decision making. Thereby, nodes and links in transportation
networks can be associated with costs and/or causalities.
Therefore, the loss or damage of just one can be very significant
in such networks [14].

While most biological networks are time independent, analyzing
a transportation network, e.g. in terms of passengers’ flow, train
traffic, financial revenues/losses, particular vulnerabilities, etc.,
is preferred to be studied on a time base. For example, the time
window when a node reaches its maximum value in terms of
passengers’ flow. Also, when studying for example the network
reliability, route alternatives, or the shortest path of a route, more
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information needs to be considered for transportation networks.
Besides the length of a link, e.g. also the availability of trains on
that link need to be considered [14]. When visualizing a
transportation network as a directed network, the weights can
store various information, e.g. the weights representing the
number of trains traveling from one station to another in a
subway network. These values are related to the degree of the
nodes. Therefore, when considering parts of network with only
one subway line, the number of trains varies in a small range,
while for the dense areas where the stations are crossed by more
than one subway line, the number of trains increase significantly
with the number of subway lines.

The connectivity of a transportation network is rather loose
compared to most biological networks. For most of the world-
wide subway networks it would be enough to identify and cut one
node, or one link, in order to disconnect the whole network [15].

3. BACKGROUND

Visualization, as a science, is mainly dealing with visualization
techniques for an efficient interaction. Branch of this science is
the information visualization. This one refers to the visualization
of abstract data with no explicit spatial references available [16].
In the last decade, an interdisciplinary version of visualization
arose: visual analytics. The reason is the strong need of
understanding, and also visualizing, huge amounts of data.
Visual analytics is an adapted version of information
visualization which combines advanced data analysis algorithms.
Therefore, it can be defined as “an integral approach to decision-
making, combining visualization, human factors and data
analysis” [17].

The visual analytics process is described as an adaptive process
[9], where the user can be rather involved in the visual data
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exploratory loop, or to the automated data analysis loop. This
process is applied to assess transportation networks in Section 4.

The network analysis combined with visual analytics is a key
element for a proper understanding of a network. Classical
network topology parameters can offer important structural
information of the analyzed networks. These are recognized as
relevant for network vulnerability measures [18,19]. Topology
parameters, such as the number of nodes and links, diameter,
network connectivity, girth, nodes and links connectivity, and
cohesion, are compiled components for heuristic reliability
indexes [20]. These indexes offer a quicker and insightful
overview of the entire network vulnerability. This type of
analysis was already conducted on transportation networks [15].

Structural

measures, such as network entropies, can be

considered as reliable measures to determine the structural
properties of a network [21]. These measures capture the
information structure of the complete neighborhood and the
centrality properties of each node in the network [22]. Entropy
measures have been successfully applied on transportation

networks by using this information-theoretic method [23].

In this paper we refer to the recently introduced flow-weighted
efficiency measure [14]. This measure calculates the efficiency
of a transportation network by assessing two metrics weights: the
length of links and the train traffic on each link. The most
efficient nodes are here considered as being most vulnerable, as
losing their regular flow results in a serious disturbance regarding
the serviceability of the network [14]. We therefore propose
applying the visual analytics technique to the flow-weighted
efficiency measure. This enables the detection of network
vulnerabilities from different visual perspectives: modularity,
distances, train flow, and efficiency.
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Figure 1. A simple tree-like visual representation of the Munich subway network.
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Figure 2. A modular tree-like visual representation of the Munich subway network.

4. APPLICATION: MUNICH SUBWAY NETWORK

The visual analytics process is applied to the Munich subway
network. This is encoded as an adjacency matrix for a directed
network. The subway network consists of 100 stations as nodes,
and 198 connections between stations as links [13].

In this work, we consider the train traffic between every two
linked stations in both directions on a daily basis. The collected
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numbers are public and available at

http://www.mvv-

muenchen.de/. The selected schedule is based on the weekday
schedule for business days between Monday and Thursday.
However, results might differ for the other schedules available
on the network, Friday, Saturday, Sunday and Holidays [24].

For visualization, we follow the visual analytics mantra “Analyze
first, Show the Important, Zoom, filter and analyze further,
Details on demand ” [25].
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Figure 3. Top five shortest (real) distances of the Munich subway network highlighted in a tree-like visual representation.
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In this paper, the focus is on a simple representation of the
network. The nodes are the key of our visual analysis. The
selected visualization layout is Reingold Tilford’s [26] which is
a tree-like layout. For this layout, some cycles of the network
might be omitted. Figure 1 is a simple representation of the
network as directed graph with the selected visualization layout.
The plots in this paper are generated with the RStudio [27]
software and the igraph [28] package.

More insights on the placement of nodes according to the other
nodes can be seen from a modular perspective, which is
illustrated in Figure 2. A module contains a connected subgroup
of nodes of the network selected on different criteria. In this case,
the nodes are grouped based on the available connections
between them. Two different types of groups can be spotted. The
small ones highlight the linear paths of subway lines, while the
big ones highlight the presence of hub nodes. The latter are the
key nodes of the network. The big groups show their impact in
the network in terms of connectivity. Hub nodes like Innshbrucker
Ring, Kolumbusplatz, Hauptbahnhof (for the lines U1, U2, U7,
U8), Miinchener Freiheit and Implerstrale can be spotted in the
figure.

Another interesting analysis is the perspective of distances in the
network. Figure 3 shows the top five shortest distances
highlighted based on real life data [29]. The connections belong
to the following groups of nodes: Josephsplatz - Theresienstralie
0.513 km, Hauptbahnhof (for the lines U4, US) - Karisplatz
Stachus 0.521 km, Béhmerwaldplatz- Richard StrauR Strale
0.552 km, Silberhornstrafie — Untersbergstraf3e 0.553km, and
Giselastrae - Miinchener Freiheit 0.579 km.

In Figure 4 the top ten most demanded nodes in terms of train
flow in the Munich subway network are highlighted for a
weekday schedule. For this analysis the total number of trains
stopped in a node per day are considered. The nodes with the
highest daily train flow are:

e Innsbrucker Ring with 759 trains/day,
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Figure 4. Top ten most demanded nodes in terms of train flow in the Munich subway network from Monday to Thursday highlighted in a
tree-like visualization.
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e  Giselastrale with 719 trains/day,

e ImplerstraBe with 719 trains/day,

Marienplatz with 719 trains/day,

Odeonsplatz (lines U3, U6) with 719 trains/day,
Sendlinger Tor (lines U3, U6) with 719 trains/day,
Universitat with 719 trains/day,

Goetheplatz with 717 trains/day,

Poccistrale with 717 trains/day,

Sendlinger Tor (lines U1, U2, U7, U8) with 712
trains/day.

In Figure 4 a very demanded route can be observed in the
network with eight consecutive nodes in the top ten selection.
The other two nodes highlighted represent central node hubs of
the network.

In the last visual perspective of Figure 5, the top results of the
flow-weighted efficiency measure [14] are highlighted. This
measure is a combined analysis from the shortest distance of any
pair of nodes in a network and the minimum number of trains
available on that route per day. Thus, the measure uses the exact
data processed for Figure 3 and Figure 4.

The top ten highlighted nodes and their values from Figure 5 are:
®  Giselastrale - 6.32,

Munchner Freiheit - 6.32,

Hauptbahnhof (lines U4, U5) - 5.86,

Karlsplatz Stachus - 5.86,

Implerstrale - 5.83,

Poccistralie - 5.83,

Marienplatz - 5.71,

Odeonsplatz (lines U3, U6) - 5.71,
e  Goetheplatz - 5.37,
e  Universitét - 4.91.
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Figure 5. Top ten most efficient nodes in terms of train flow and shortest (real) distances in the Munich subway network from Monday to
Thursday highlighted in a tree-like visualization.

For profound managerial decision making each analysis might
make sense and give additional insights into the network
structure. This shows that applying measures from biology
definitively makes sense for other fields of application, such as
transportation networks. However, the special architecture and
design of a transportation network demands for further
improvements of the measures. To this end, the flow-weighted
efficiency measure was found to be very helpful and allowing for
deeper insights [13].

A more convenient solution than working with heat maps is the
extraction of highlighted nodes. This would lead to a further step
via creating another network: the network of networks. In this
way, the last step of the visual analytics mantra “Details at
demand” can be applied. More precisely, the network analysis
measures presented in the previous section could now be applied
on the exact parts of the network on which decisions must be
focused. However, the procedure stays unchanged and follows
the approach presented here.

5. CONCLUSION

The paper at hand might be seen as one more proof that the
application of visual analytics is favorable for several disciplines
and might support managerial decision making in various fields.
As critical infrastructures in general, and the rail-bound public
transport in special, are essential for the functioning of a society
and are therefore often target of disturbances and attacks. We
analyzed the systems wvulnerability and identified the most
important spots that need special treatment in terms of safety and
security, as well as recovery after interruptions. Thereby, we
showed that the combination of two different measures from
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biology can be used to gain deeper insights into the serviceability
of the system.

However, there are several challenges in applying the visual
analytics process on transportation networks. Concerning the
analysis, it is an open gap to find the most suitable tools for the
structural interpretation of the networks. The same holds for
visualization techniques for this type of networks. The solutions
are rather subjective.

However, assessing multiple values of weights for links and the
physical position of each node in relation to the others will
improve the analysis of transportation networks. In this sense, the
analysis will be more realistic when measuring classical
topological measures, e.g. diameter, shortest path, or average
path length. A physical position of the nodes can control the
overlapping problem when plotting.

This type of analyzes can also be performed on a time base, being
an extension from static networks to dynamic networks.
Therefore, the most vulnerable spots of the transportation
networks can be assessed for different time schedules.

In conclusion, visual analytics can be successfully applied to
describe and visualize network structures and their
vulnerabilities. However, decision makers do not have modelers
available all the time. Therefore, we propose the automated
analysis via the implementation of several measures for special
types of networks, such as transportation networks, in a
management cockpit. This integration of visual analytics into a
novel decision support tool would allow for fast and detailed
analyzes in such special fields. The integration into a
management cockpit will be presented in a follow-up
publication.
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