
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ABSTRACT 

In problem solving, there is a search for the appropriate 
solution.  A state space is a problem domain consisting of 
the start state, the goal state and the operations that will 
necessitate the various moves from the start state to the goal 
state.   Each move operation takes one away from the start 
state and closer to the goal state. In this work we have 
attempted implementing this concept in adversarial problem 
solving, which is a more complex problem space. We noted 
that real world adversarial problems vary in their types and 
complexities, and therefore solving an adversarial problem 
would depend on the nature of the adversarial problem 
itself. Specifically, we examined a real world case, “the 
prisoner’s dilemma” which is a critical, mutually 
independent, decision making adversarial problem. We 
combined the idea of the Thagard’s Theory of Explanatory 
Coherence (TEC) with Bayes’ theorem of conditional 
probability to construct the model of an opponent that 
includes the opponent’s model of the agent. A further 
conversion of the model into a series of state space 
structures led us into the use of breadth-first search strategy 
to arrive at our decision goal. 
 
Keywords: State-Space-Search, Adversarial Problems, 
Evaluation Function, Explanatory Coherence, Heuristics 

 
1.0  INTRODUCTION 

 
State Space Search is a process used in the field of 

Computer Science Artificial Intelligence (AI), in which 
successive configurations or states of an instance are considered, 
with the aim of finding a goal state with a desired property [1]. 

A state contains all of the information necessary to 
predict the effects of an action and to determine if it is a goal 
state [2]. State-Space searching assumes that: 

 The agent has a perfect knowledge of the 
state space and can observe what it is in 
(i.e., there is full observability); 

 The agent has a set of actions that have 
known deterministic effects; 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Some states are goal states, the agent wants 
to reach one of these goal states, and the 
agent can recognize a goal state; and 

 A solution is a sequence of actions that will 
get the agent from the current state to a goal 
state. 

The concept of State Space Search is widely used in 
Artificial Intelligence. The idea is that a problem can be solved 
by examining the steps that can lead to a goal state 
(solution).This may involve several searches from the initial state 
to the goal state within an optimal time [3]. 

A possible solution is to find a method to measure the 
“goodness” of a state, (that is, to determine how close a given 
state is to the goal state). If this can be evaluated correctly, then 
we look at the list of states, to determine which to use next to 
generate new state. We could pick the state closer to the goal, 
instead of picking at random. The advantage here is that it helps 
to determine the optimal path to the goal. 

Most times, such measurement of a state’s goodness is 
estimated. If the estimate is wrong, more time and effort could be 
spent on the search without obtaining an optimal solution. The 
better the ability to estimate goodness, the better the chance for 
optimality. For a single agent in a relatively non-hostile world, 
the search for the path from some single state to some goal state 
is not especially difficult. But the real world involves multiple 
agents each trying to achieve a goal of its own. This paper 
models this kind of competitive behaviour by defining possible 
paths that can lead to an optimal solution. Thus, the question in a 
competitive or adversarial situation is no longer “what is the 
optimal path to the goal?”  But is instead “what is my path to the 
goal when someone else is trying to stop me?” 
 The fundamental change in the nature of the question 
results in a change state-space search in adversarial situations is 
conducted, thus giving rise to “adversarial or game search”(Since 
it is frequently used to build intelligent game-playing programs). 
This kind of search is frequently called “game search”. 
 The principle of game search is to first generate the 
state space some levels deep, where each level correspond to one 
player’s move (or more accurately, the set of all nodes that the 
player could possibly make at that point). After generating the 
state space for that number of level, the nodes at the bottom level 
are evaluated for goodness. In the context of game playing, those 
nodes are often called “boards” each one representing one 
possible legal arrangement of game pieces on the game board. 
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 In adversarial search, the estimate of the goodness of a 
board is a little bit different from that of non-adversarial search.  
Since the opponent is a threat, an estimation function is set up so 
that it returns a spectrum of values, similar to non-adversarial 
search, but now the two extremes are boards. We apply our 
estimation function to those lowest level boards, and propagate 
the numerical value upward to help us determine which is the 
best move to make [3]. 
 

2.0 THE STATE SPACE CONCEPT AND 
CONFIGURATION 

In the state space representation of a problem, nodes 
of a graph correspond to partial problem solution states and arcs 
represent steps in a problem- solving process. 
 An initial state, corresponding to the given information 
in a problem instance, forms the root of the graph. The graph also 
defines a goal condition, which is the solution to a problem 
instance. State space search characterizes problem solving as the 
process of finding a solution path from the start state to a goal 
state. 

 Arcs of the state space correspond to steps in a solution 
process and path through the space represent solutions in varying 
stages of completion. Paths are searched, beginning at the start 
state and continuing through the graph until either the goal 
description is satisfied or they are abandoned. The actual 
generation of new states along the path is done by applying 
operators, such as “legal moves” in a game or expert system, to 
existing states on a path.  A state space is represented by a 
tuple [N, A, S, GD], where:  
N is the set of nodes or states of the graph. These correspond to 
the states in a problem-solving process,  
A is the set of Arcs (or links) between nodes. These correspond 
to steps in a problem-solving process.  
S, is a nonempty subset of N, contains the start state(s) of the 
problem. 
GD, a nonempty subset of N, contains the goal state(s) of the 
problem. The states in GD are described using either: 

1. A measurable property of the state encountered in 
the search or 

2. A property in the path through this graph from a 
node in S to a node in GD. 

The task of a search algorithm is to find a solution path through 
such a problem space. Search algorithms must keep track of the 
paths from a start to a goal node, because these paths contain the 
series of operations that lead to the problem solution [4]. 
 

3.0 METHODOLOGY 
 

We consider here an example of a real world adversarial problem 
and adopt the Theory of Explanatory Coherence (TEC) of 
Thagard [5]. 
The real-world problem in consideration, involves a typical day-
to-day problem in our society. It is important to note here that 
there is no standard model applying to all social adversarial 
problem since the problems are varied in nature in terms of 
complexity and dimensions. The seven principles of TEC are 
very applicable in real-world social problems since they enable 
us build and run a mental model of an opponent. TEC shows how 
explanatory breadth, simplicity, explanations by higher level 
hypotheses, competing hypotheses, analogy, and negative 
evidence can all affect the acceptability of a hypothesis. 
The theory consists of the following principles: 

• Principle 1: Symmetry. Explanatory coherence is a 
symmetric relation, unlike, say, conditional probability. 

• Principle 2: Explanation. (a) A hypothesis coheres 
with what it explains, which can either be evidence or 
another hypothesis; (b) hypotheses that together explain 
some other proposition cohere with each other; and (c) 
the more hypotheses it takes to explain something, the 
less the degree of coherence. 

• Principle 3: Analogy. Similar hypotheses that explain 
similar pieces of evidence cohere. 

• Principle 4: Data Priority. Propositions that describe 
the results of observations have a degree of 
acceptability on their own. 

• Principle 5: Contradiction. Contradictory propositions 
are incoherent with each other. 

• Principle 6: Competition. If P and Q both explain a 
proposition, and if P and Q are not explanatorily 
connected, then P and Q are incoherent with each other. 
(P and Q are explanatorily connected if one explains 
the other or if together they explain something.) 

• Principle 7: Acceptance.  The acceptability of a 
proposition in a system of propositions depends on its 
coherence with them. 

 
 
 3.1 A Real-World Case: The prisoners’ dilemma.  
 
On the 10th day of January, 2006, a case of burglary was reported 
to the police. Two alleged burglars, Peter and John were caught 
near the scene of the burglary and interrogated separately by the 
police. Both knew that if they confessed to the crime, they will 
each serve five years in prison for burglary, but if both refuse to 
confess, they will serve only 1 year each for the lesser charge of 
possessing stolen property. 
Peter and John who were old time friends, have in recent time 
had severe conflict over some personal issue. 
The interrogating police officer offered each a deal: If one 
testifies against the other as leader of the burglary ring, he will go 
free while the other will serve 10years in prisons if the other 
refuses to testify. Peter and John were faced with the prisoners’ 
dilemma: Should they testify or refuse? 
 
3.2  Analysis of the problem 
 
We present as follows, the analysis of the problem, showing the 
evidence, hypotheses, explanations and possibly the 
contradictions. 
EVIDENCE 
Proposition E0:               Police investigates crime of burglary 
Proposition E1: Peter and John were caught near 

the scene of burglary with stolen 
properties 

Proposition E2: Peter and John were interrogated 
separately. 

Proposition E3: Peter and John were old time 
friends 

Proposition E4: Peter and John in recent times had 
severe conflicts over some personal 
issues 

Proposition E5: Peter and John earn 5years 
sentence each in prison 

Proposition E6: Peter and John earn 1year sentence 
each in prison. 

Proposition E7: Peter gains freedom, and John 
earns 10yrs sentence in prison.  

Proposition E8: John gains freedom, and Peter 
earns 10yrs sentence in prison. 
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HYPOTHESES 
Proposition A1: Peter and John are suspects in burglary case. 
Proposition A2: Peter would testify against John. 
Proposition A3: John would testify against Peter 
Proposition A4: Peter would not testify against John. 
Proposition A5: John would not testify against Peter. 
Proposition A6: Peter wants to be exonerated 
Proposition A7: John wants to be exonerated. 
 
The task is the most convenient decision to make. Clearly, both 
would desire to be exonerated, but only one person can be 
completely exonerated, while the other serves a greater 
punishment. Peter and John will not know what either of them 
would say to the policeman, since they are both interrogated 
separately and had no opportunity to confer with each other.  
 
The above scenario is modeled using predicate calculus clauses 
in Fig. 3.0. 

 

 

 

 

 

 

 

 

   

 

 

 

 
 
 
 
 
 
 
 

 
Applying the stipulated principles in Theory of Explanatory  

Coherence (TEC), let a statement  (EXPLAIN (H1 H2) El) whose  
interpretation is that hypotheses H1 and H2 together explain  
evidence E1 be taken as input. Each proposition is represented by  
a network node called a unit, and constructs links between units  
in accord with TEC. 
 
The Ai’s in the model above show the “Hypotheses” that explain  
the ‘Evidence’ Ei’s. E.g. Hypothesis A1 (Peter and John are  
suspects) explain the Evidence that Peter and John were caught  
near the scene of the burglary. The Straight lines indicate  
excitatory links produced by virtue of explanation.   
 
 
4.0     STRATEGY AND SIMPLIFICATION TECHNIQUE 

FOR RESOLUTION 
 
 We consider the use of probabilistic approach, 
specifically the “Bayesian” approach of Thomas Bayes (1702-61) 
for the resolution of the problem. Recall that in State Space 
Search, every current state provides information for the next 
state. The “Bayesian” approach concerns the determination of 
probability of some event A (already known), given that another 
event B (not known) has taken place, i.e. the determination of the 
conditional probability P(AB). Bayes’s results provide a way of 
computing the probability of a hypothesis following from a 
particular piece of evidence, given only the probabilities with 
which the evidence follows from actual causes (hypotheses).  
 Bayes’ theorem states: 

 pሺH୧Eሻ 	ൌ 	pሺEH୧ሻ 	∗ 	pሺH୧ሻ 
     

   	pሺEH୩ሻ 	∗ 	pሺH୩ሻ
	୬	

୩ୀଵ
     Eq(1) 

 
where: 
            p(HiE) is the probability that Hi is true given evidence E. 
            p(Hi) is the probability that Hi  is true overall. 
            p(EHi) is the probability of observing evidence E when  
                  Hi  is true 
            n is the number of possible hypotheses.     
 
Bayes’ decision rule uses the best available estimates of the 
probabilities of the respective states of nature (currently the prior 
probabilities), calculates the expected value of the payoff for each 
of the possible actions, and chooses the action with the maximum 
payoff [6].  
The network model shown in Fig. 3.0 is transformed into its 
equivalent Bayesian network model Fig. 4.0 showing the 
direction lines based on the evidences and hypotheses, i.e, the 
probabilities of some proposed hypotheses given some evidences. 
We observe that there are two pairs of posterior probabilistic 
decisions which are equally likely, these form the decision zone.   
Furthermore, we notice a limitation here in the use of the 
Bayesian concept. Since the decisions of both parties (Peter and 
John) are mutually independent of each other we would not 
clearly know the prior conditions that determine the posterior 
decisions. This is because both parties are interrogated separately, 
so one cannot wait for the other’s decision before he takes his 
own decision. We however suffice to say that prior probabilistic 
conditions are equally likely. 

 
 
 
 

Fig. 3.0  Network model of the  prisoner’s dilemma using 
predicate calculus expressions 

confess(peter)  
confess(john) 
prisonyear(five) 

exonerate(john) 

E1 

A1 

E2 

A6 

A7

E3 

E4 

A3 A4 
A5

A2 

E6

E7 

E8 

E5 

free(john) 
prisonyears(peter,ten) 

caught(peter)  caught(john) 

suspect(peter)  suspect(john) 

   interrogate(peter)   
 interrogate(john) 

exonerate(peter) 
oldfriend(peter, john) 

testifyagainst 
(john, peter) 

testifyagainst 
(peter,john) 

testifyagainst 
(john, peter) 

testifyagainst 
(peter, john) 

free(peter) 
prisonyears(john,ten) 

conflict(peter, 
john) 

confess(peter)  
confess(john) 
prisonyear(one) 

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 13 - NUMBER 1 - YEAR 2015  63



 
 

 

 

 

 

 

 

 

 

 

 

 

The goal as we can see lies within the decision zone. The 
decision(s) that has/have the highest probabilistic value is/are the 
most probable decision. To arrive at that, we convert  the model 
into a series of state space structures linked to an initial null state 
which together form a complete state space of the problem (see 
Fig.4.1). We used the breadth-first search strategy to locate the 
decisions. The probabilistic weight of each encounter of a 
decision is noted and incremented steadily as each of those 
decision encounters re-occur. Noting the frequency of 
occurrence, the mean of each of the probable decisions is taken. 
The highest value(s) is/are taken as the most probable decision(s).        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
Fig. 4.1   Complete State Space for the  “Prisoner’s Dilemma”  

problem  
 

5.0 SOLUTION APPROACH 

The problem poses a triangular picture which shows 
three major probable actions Viz: 

 
 

 Must occur actions 
 May occur actions 
 May not occur actions 

 

 

 

 

 

Fig. 5.0 Triangular picture of the major probable actions 

Fig. 4.0  Bayesian Network representation of the Prisoner’s  
dilemma problem 
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The probable actions that may occur are: 

 That either Peter or John would be 
exonerated 

 That either Peter or John would testify 
against each other 

 Both Peter and John would testify to the 
crime 

 
The probable action that may not occur is: 

 That both Peter and John will not testify 
against each other.   

The probable actions that must occur are: 

 That either Peter or John will serve 
10yrs jail term 

 That both Peter and John will serve 5yrs 
jail term each 

 That both Peter and John will serve 1yr 
jail term each.    

 
5.1    SOLUTION 

 Given that Peter and John were caught at the scene 
of the crime, clearly, the probability that both are 
suspects is 1.  

 Since Peter and John may have likely desire to be 
exonerated, the chance that Peter wants to be 
exonerated and the chance that John wants to be 
exonerated will be 0.5 each. 

 Probability of A2 (Peter testifies against John) is a 
joint probability of the probabilities A1 ( Peter and 
John are suspects) and A6 (Peter will be 
exonerated) 

i.e.  PሺA2ሻ 	ൌ 	PሺA1	and	A6ሻ  
ൌ 	PሺA1ሻ	∗ 	PሺA6ሻ 

              ൌ 	1	 ∗ 	0.5  
                                                             ൌ 	0.5                        Eq (2) 

 Probability of A3 (John testifies against Peter) is a 
joint probability of the probabilities A1 ( Peter and 
John are suspects) and A7 (John will be 
exonerated) 
i.e.  PሺA3ሻ 	ൌ 	PሺA1	and	A7ሻ 	ൌ 	PሺA1ሻ 	∗ 	PሺA7ሻ 

  ൌ 	1	 ∗ 	0.5 	ൌ 	0.5  
               Eq (3) 

 Probability of A2 (Peter testifies against John) 
given E7 (John will be sentenced to 10yrs 
imprisonment while Peter is set free), clearly is 1.  

i.e. 	PሺA2E7ሻ 	ൌ 1	                    Eq(4) 

 Probability of A3 (John testifies against Peter) 
given E8 (John will be sentenced to 10yrs 
imprisonment while Peter is set free), clearly is 1.  

i.e.  PሺA3E8ሻ 	ൌ 1	  Eq(5) 

 Probability of A1 (Peter and John are suspects) 
given E3 (Peter and John are old friends), clearly 
is 1.  

i.e. PሺA1E3ሻ 	ൌ 	1                    Eq (6) 

 Probability of A1 (Peter and John are suspects) 
given E4 (Peter and John had conflicts in recent 
times), clearly is 1.  

i.e. P(A1E4) = 1         Eq(7) 

 Probability of A1 (Peter and John are suspects) 
given E2 (Peter and John were interrogated 
separately), clearly is 1.  

i.e. PሺA1E2ሻ 	ൌ 	1  Eq(8) 

 Probabilities of A4 (Peter would not testify against 
John) and A5 (John would not testify against 
Peter) given E3 (Peter and John were old time 
friends) are equally likely, therefore each has a 
probability of 0.5 

 i.e. PሺA4E3ሻ 	ൌ 	0.5 and 

                                                PሺA5E3ሻ 	ൌ 	0.5  Eq(9) 

 Probabilities of A4 (Peter would not testify against 
John) and A5 (John would not testify against 
Peter) given E6 (Peter and John earn 1year 
sentence each in prison if both refuse to testify) 
are equally likely, therefore each has a probability 
of 0.5 

i.e. PሺA4E6ሻ 	ൌ 	0.5 and 

                                               PሺA5E6ሻ 	ൌ 	0.5               Eq(10) 

 
 Probabilities of A2 (Peter testifies against John) 

and A3 (John testifies against Peter) given E4 
(Peter and John in recent times had severe 
conflicts over some personal issues) are equally 
likely, therefore each has a probability of 0.5 

i.e. PሺA2E4ሻ 	ൌ 	0.5 and 

   PሺA3E4ሻ 	ൌ 	0.5               Eq(11) 

 
 Probabilities of A2 (Peter testifies against John) 

and A3 (John testifies against Peter) given E5 
(Peter and John earn 5years sentence each in 
prison) are equally likely, therefore each has a 
probability of 0.5 

i.e. PሺA2E5ሻ 	ൌ 	0.5 and   
  PሺA3E5ሻ 	ൌ 	0.5                Eq(12) 
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 Probabilities of A2 (Peter testifies against John), 

A3 (John testifies against Peter), A4 (Peter would 
not testify against John), and A5 (John would not 
testify against Peter) given E2 (Peter and John 
were interrogated separately) are equally likely, 
therefore each has a probability of 0.5 

i.e. PሺA2E2ሻ 	ൌ 	0.25  

  PሺA3E2ሻ 	ൌ 	0.25  
  PሺA4E2ሻ 	ൌ 	0.25  
  PሺA5E2ሻ 	ൌ 	0.25              Eq(13) 

We now find the average probabilities of 
A2, A3, A4, A5 respectively. 

i. Ave. PሺA2ሻ ൌ Sum	of	all	Probabilities	of	A2	  
    Number	of	Cases	of	A2 

= 0.5+1+0.5+0.5+0.25
   5 
 = 2.75  
     5  
 = 0.55                Eq(14) 

                ii           Ave. PሺA3ሻ 	ൌ 	Sum	of	all	Probabilities	of	A3  
    Number	of	Cases	of	A3 

= 0.5+1+0.5+0.5+0.25
   5 
 = 2.75  
     5  
 = 0.55              Eq(15) 

iii Ave. P(A4) = Sum	of	all	Probabilities	of	A4  

Number	of	Cases	of	A4 

= 0.5+0.5+0.25 
           3  
 = 1.25  
     3  
 = 0.42                     Eq(16) 

iv Ave. P(A5) = Sum	of	all	Probabilities	of	A5   

Number of Cases of A5 
 
= 0.5+0.5+0.25 
           3   
= 1.25  
    3   
= 0.42              Eq(17) 

We see that the maximum payoff probabilities here are P(A2) and 
P(A3) which have equal probabilistic values of  0.55.  Therefore, 

 Peter would testify against John      and  
 John would testify against Peter 

 

5.0 CONCLUSION 

In this study, we have attempted to bring the State 
Space Search concept from mere board games and simple puzzle 
problems to a real life situation. Using a complex adversarial 
problem scenario where information of individual opponent’s 
actions are hidden from each other, a model was derived. A 
problem space of this nature forms a state space, and the drive 
towards a more realistic decision forms the state space search.      

The partial combination of Thagard’s Theory of 
Explanatory Coherence (TEC), and Baye’s decision rule, together 
with breadth-first search were applied to find the optimal 
solutions for the state space search. Results from the study led to 
the conclusion that some real world adversarial problems are 
peculiar in nature and so should be treated with regards to their 
peculiarities.      
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