
Parallel Task Processing on a Multicore Platform in a PC-based Control
System for Parallel Kinematics

Yannick Dadji1, Jochen Maass2, Harald Michalik1

1Institute of Computer and communication Network Engineering, Braunschweig, Germany
2Institute of Machine Tools and Production Technology, Braunschweig, Germany

{y.dadji-foyet, j.maass, michalik } @tu-bs.de

ABSTRACT

Multicore platforms are such that have one physical
processor chip with multiple cores interconnected via a
chip level bus. Because they deliver a greater
computing power through concurrency, offer greater
system density multicore platforms provide best
qualifications to address the performance bottleneck
encountered in PC-based control systems for parallel
kinematic robots with heavy CPU-load. Heavy load
control tasks are generated by new control approaches
that include features like singularity prediction,
structure control algorithms, vision data integration and
similar tasks. In this paper we introduce the parallel
task scheduling extension of a communication
architecture specially tailored for the development of
PC-based control of parallel kinematics. The Sche-
duling is specially designed for the processing on a
multicore platform. It breaks down the serial task
processing of the robot control cycle and extends it
with parallel task processing paths in order to enhance
the overall control performance.

Keywords: Multicore, parallel processing, PC-based
control, parallel kinematics

1. INTRODUCTION

Due to their structure, parallel kinematics enable the
achievement of high velocities and accelerations (up to
10 g) and provide structural stiffness and repeating
accuracy. Generally, their structure consists of a closed
kinematic chain with more than one link connected
over joint elements to the manipulator on the one hand
and to a stationary based platform on the other hand.
Serial kinematics however consist of an opened chain
of links and joints connecting the base platform to the

manipulator. Compared to serial kinematics, all the
active joints in a parallel kinematic structure are fixed
to the stationary platform, so that the mass of the
drives has no significant influence to the energy
balance of the manipulator movements and thus enable
high dynamic movements. Some examples of parallel
kinematics are depicted in Figure 1. The major
drawback of parallel kinematics is the relative limited
workspace, so applications with high dynamic
requirements in a restricted environment will be more
appropriate for this environment.

Figure 1: Structural variety and application
diversity of parallel robots

The development of fundamental concepts to handle
parallel kinematics is one of the focuses of the
Collaborative Research Center 562 (SFB562) [1] at the
technical university Braunschweig. In this context, we
have designed a unified robot control system [2] [3]
that easily adapts to the specific robot and application.
The control system is built on the top of a
communication architecture [3] [4] that supports the

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 1 - YEAR 200960 ISSN: 1690-4524

development chain of the control application from the
PC-software up to the drive controllers.
In the first section of this paper, we will give a brief
description of the communication architecture. We will
particularly consider the task scheduling component of
the communication middleware MiRPA-X. The second
section of the paper will describe the structure of the
robot control software and discuss performance
limitation related to the implementation on a single
core PC. We will insist on the realized serial control
cycle. In the third section we introduce the
parallelization strategy of the task processing in the
control cycle, specially tailored for the deployment on
multicore platform.

2. ROBOT CONTROL SOFTWARE

ARCHITECTURE

The design of the control system relies on a PC-based
approach [2] [5]. The advantages are obvious: The
choice of a PC as control hardware guarantees that the
robot control system will always be based on the state-
of-the-art computer architecture, i.e., the robot control
system will keep pace with the development of the PC
technology. The latest achievements in the multicore
processor technology open the way to more robust and
complex control applications by providing the
necessary processing power.

Communication Architecture
Figure 2 depicts the PC-based communication architec-
ture [3] [4] we deployed for the control of parallel
kinematics. It consists of control software running on a
single PC under the real-time operating system QNX.
The control software is connected to the external robot
communication nodes (sensor/actuator) via the
IEEE1394 bus. In order to support developers in
designing modular control software the application of a
communication middleware (MiRPA-X, Figure 2) is a
key feature. It supports the designer by straightforward
implementation of communication issues within the
system to concentrate on the algorithmic part of the
software. To guarantee a fixed control cycle and assure
a deterministic communication between the control
software and the external robot node, the dedicated
protocol IAP (Industrial Automation Protocol) is
applied. The protocol is implemented on both the
control PC and the external communication nodes of
the robot.

M

IAP

G M

IAP

G

IEEE1394-COMMUNICATION SYSTEM

ADAPTRONIC
COMPONENTS

IAP

SHARE

IAP

APP

REALTIME

MiRPA-X

APP

APP

APP

DRIVE
CONTROL

ADAPTRONC MSR.
And

CONTROL SYSTEM

DSP

with

POWER AMPLIFIER

DRIVE
CONTROL

Q
N

X
PC

Figure 2: Software and communication architecture
of the parallel robot control system.

Control Software
In this section, the robot control architecture and its
design principles are described. The key technology to
facilitate the development of a control framework is
the usage of the flexible and highly efficient
communication and synchronization middleware
MiRPA-X [3] [4]. It uses QNX [6] internal message
passing as the basic mechanism for putting
synchronous and asynchronous communication
services into reality. According to this, the control
architecture can be ported to any realtime operating
system that supports this kind of mechanism.
Application processes providing control level services
are regarded as servers, while service requesters are
regarded as clients. According to these roles, servers
block on the reception of specific queries and
instructions. Alongside the message-based communica-
tion, MiRPA-X provides a communication mechanism
based on shared memory usage. As for messages, the
shared memory mechanism uses the MiRPA-X name
service. The usage of shared memory facilitates a high-
speed, non-blocking data transfer between application
processes, without the object server being involved in
the actual communication task. After registration,
application processes directly read and write inter-
process data using memory pointers provided by the
middleware. If multiple application processes access
the same shared memory region, data integrity has to
be ensured at any time. As shared memory access is
neither blocking nor synchronized by itself, MiRPA-X
provides a token-passing scheduler. These features

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 1 - YEAR 2009 61ISSN: 1690-4524

allow the control architecture to be designed in a
runtime-evolvable layered structure, as described in the
following subsection.

Motion Module
Force/Torque

“CON“
Motion Module
Force/Torque

“FOR“
Motion Module
Force/Torque

“CFF“
Motion Module

Position
“POS“

Motion Module
Distance
“DIST“

Motion Module
Interpolator

“LIN“
Motion Module

Velocity
“VEL“

Motion Module
Teach In
“SPM“

Senor Module
Laser Distance

Sensor

Senor Module
Human 6D

Input Device

Senor Module
Force/Torque

0101
Serial Port

C
on

tro
l C

or
e

HW
Monitoring &

Control

Drive
Controller

Smart Material
Controller

Field Bus
Communication

(IAP)

GUI Link TCP
Server

skill primitive
Interpreter

Shared
Memory

Message-based Soft RealtimeEvent-based

Data Flow
Control Flow

Token Cycle
Figure 3: Information flow in the layered control
architecture

Layered design
An overview of the control implementation is given in
Figure 3. The architecture consists of three layers, the
very right section representing the hard real-time layer
of application processes. They operate in a token-
passing context in a strictly serial and deterministic
manner within a high-speed cycle frequency. Hard-
real-time processes always run at high priority without
becoming re-scheduled. This leads to extremely low
jitter [7] and the subordinated drive controller benefits
significantly thereof, compared to pure soft real-time
approaches. The token cycle features a field bus
communication process, which is the master
synchronization source. It transmits the sensor data
from the robot via the IAP [3] communication protocol
to a shared memory area. After the process has
released its token, it is received by the Hardware
Monitoring and Control process. This process is
responsible for activation and shutdown sequences of
the robot next to monitoring and surveillance
functionality. Moreover, it activates the control core in
the adjacent layer according to an adjustable ratio of
cycles. The token is passed subsequently to two
processes that encapsulate robot specific controllers:
one for control of the drives and one for smart structure
control, which is applied to parallel kinematic
machines to reduce vibrations induced by high-speed
motion. Then the token returns to the Field Bus
Communication process and the output values are
transmitted to the actuators of the robot. The cycle
described above starts each time the Field Bus
Communication process is triggered by a hardware
clock generated interrupt. In the remaining CPU time,

the middle layer of the architecture is executed, which
is described in the following. The middle layer is
responsible for generating a Cartesian space trajectory
with respect to the actual manipulation primitive that is
executed. A Cartesian trajectory is required, since it
provides abstraction from a particular robot by defining
the motion of the end-effector in distinction from
defining the motion of the drives. The layer is operated
in a message-based soft-realtime environment. When a
synchronization event from the Token Cycle layer
occurs, the sensor module processes are notified by a
multicast message in order to read data from the shared
memory where the sensor data is stored. As the sensor
modules encapsulate signal processing algorithms,
such as filtering or coordinate transformations into the
task frame, they pass the processed information to the
motion module processes. The motion modules
encapsulate the trajectory generation algorithms and
are explained in detail in the next section. They are
activated by the control core by a point-to-point
message using the highly efficient name-service of the
middleware only if required for the execution of the
actual manipulation primitive. Detail information on
control engineering aspects is provided in [7]. After a
configurable number of token cycles has passed, the
Hardware Monitoring and Control process
synchronizes the control core again and the data from
the motion modules is fusioned to a valid set of
Cartesian trajectory data. This information is passed to
the drive controller via the shared memory area located
in the right layer by a mutex-synchronized mechanism.
The upper layer features relaxed reaction-time
requirements. As a result, the robot program interpreter
and the GUI link server are located in an event-driven
message-passing environment located on the left side
of Figure 3.

3. PERFORMANCE ENHANCEMENT
THROUGH MULTICORE PLATFORM

Although the control software has been successfully
deployed for the control of parallel kinematics, the
current implementation based on a single core platform
comes to its performance limits, when new and
complex control paradigms are realized. Indeed, state-
of-the-art and future control algorithms for parallel
kinematics are quite demanding in terms of
computational efforts. Representative examples are a)
singularity prediction [8] in order to safely operate
parallel kinematics machines, b) incorporation of
vision data [9] in general and c) the latest approaches
using force-torque maps for the execution of assembly
sequences [10]. Multicore systems offer a suitable

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 1 - YEAR 200962 ISSN: 1690-4524

platform to address this performance bottleneck. Since
the software architecture obeys a modular design and
both motion and sensor modules are autarkic
components that can be run concurrently, they are
offhand distributed on a multicore platform for parallel
processing. Although the performance is gained
through parallel processing, one important design
factor of the control limits the achievable performance
on a multicore architecture: the token scheduler that
activates the cyclic processing of the software
components involved in the token cycle (Figure 3). In
order to synchronize the inter-process communication
over shared memory regions, the token scheduler was
originally designed to automatically realize a serial
scheduling, i.e. to schedule the processes successively
and according to an adjustable order. The serial
scheduling represents a performance limitation on a
multicore platform, because it does not support parallel
processing. In the next section, we present the
extension of the scheduler for the execution that
supports parallel task execution.

Extension of the Token scheduler

T2

MIRPA-X-Scheduler

T3 T4

T5 T6

T1

T7

Token dispaching point Token collecting point

T2

MIRPA-X-Scheduler

T3 T4 T5 T6T1 T7a)

b)

CPU 0

CPU 1

CPU 2

CPU

Figure 4: Extension of the token scheduler for
parallel task execution in a token cycle

To get additional performance from the multicore
platform in the MiRPA-X environment, we extended
the functionality of the MiRPA-X scheduler from a
sequential (serial) to a parallel scheduling. In Figure 4a
an abstract view of the sequential scheduling on the

single core processor is depicted. The tasks are
successively scheduled and no additional synchro-
nisation mechanism is necessary. At the beginning, all
the tasks are in a wait-for-token state, waiting to
receive a token and to start processing. To schedule a
task, the scheduler sends a token (based on blocking
message passing) and waits in a blocked state for reply.
This way, two tasks cannot be scheduled in parallel
and the shared memory data exchange between two
tasks is secure.
On multicore systems, the idea is to classify tasks with
no shared memory data dependency in modules which
will be scheduled on different CPUs (Figure 4b,
encircled tasks). In this context, the scheduler activates
the different modules by dispatching multiple tokens,
one token for each module, and thus executing the
parallel processing of the modules. The token passing
may not be based on a blocking mechanism; otherwise
the token dispatching feature will not succeed. For this
reason it has been implemented with a non blocking
pulse message. To preserve synchronisation, a token
collecting point is provided. Subsequent tasks (i.e.
Figure 4b, task T7) can only be scheduled after all
parallel processing modules complete. The parallel
scheduling of the modules running on different CPUs
reduces the processing time in the token cycle und thus
improve the performance of the control system. The
processing time of the token cycle can theoretically be
reduced up to n times (n number of CPU on the
system).
In Figure 5 a trace of the system events on a dual core
platform is depicted. The trace recording is a feature of
the QNX instrumented kernel. The trace shows the
activation and the processing of two tasks running on
different CPUs. In the figure, the token scheduler is
displayed as the third thread (Thread 3) of the object
server process (observ). The scheduler first activates
the IAP module. After completion of the IAP, It
activates the Modules Hardware_Control and
Drive_Control simultaneously. The latter are
beforehand configured to run each on a different CPU.
The scheduler latency for the activation of the parallel
processing is about 6µs.The extended functionality of
the MIRPA-X scheduler is operational on systems with
up to 32 cores under the QNX Neutrino operating
system. On a dual core system a performance
enhancement of 45% was measured for the token
cycle.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 1 - YEAR 2009 63ISSN: 1690-4524

Timeline

observ
Thread 1

Thread 2

Thread 3

IAP
Thread 1

Thread 2

Hardware_Control
Thread 1

Thread 2

tracelogger
Thread 1

Thread 2

Drive_Control
Thread 1

Thread 2

581,646ms
1,084s723,212ms361,606ms0ns 1,446s 1,808s 2,169s 2,531s 2,979s

581,622ms 582,078ms

Parallel task activation
and procesing

Token scheduler

Figure 5: trace event of the parallel scheduling of two tasks on a multicore platform

Configuration and design restriction
To simplify the use of this feature, we introduce a
central configuration space which parameters are
depicted in Table 1. It enables a static mapping of tasks
on the available CPUs, the configuration of the
modules that will be processed in parallel and the task
processing order. The column “token name” defines
the token cycle. It contains a symbolic reference to the
tasks which will be executed within the token cycle.
According to the token cycle depicted in Figure 3, the
symbolic references IAP, HW_Ctrl, DRIVE_Ctrl, and
SM_Ctrl are respectively set for tasks “Field Bus
Communication”, “HW Monitoring & Control”,
“Drive Controller” and “Smart Material Controller”.
The order of the settings also defines the task execution
sequence. The token cycle is limited by the special key
words _START and _REPEAT. To specify which
tasks should be scheduled in parallel we defined a
parallelization index that is associated to every task.
Tasks that should not be parallelized get the index 0.
All successive tasks with an associated index 1 will be
processed in parallel. In this case, the tasks should be
mapped on different CPU cores for parallel processing.
This CPU mapping is set in the column “Cpu mask”.
The settings in Table 1 consider a platform with at
least 2 CPU cores and correspond to a parallel
execution of the tasks “HW_Ctrl” and “DRIVE_Ctrl”
on the CPU-Cores 1 and 2, respectively.

Token name Parallelization index Cpu mask
_START

IAP 0 1
HW _Ctrl 1 1

DRIVE_Ctrl 1 2
SM_Ctrl 0 2

_REPEAT
 Table 1: static configuration of the parallel task
scheduling

The only design restriction of the parallel
scheduling extension is that the parallel processed
modules are not allowed to have any shared memory
data dependency, since data inconsistency could occur.
But this restriction is not relevant, compared to the
overall performance gained.

4. CONCLUSION

In this paper we presented a PC-based control

system for parallel kinematics. We described the
layered robot control software based on the top of a
real time communication architecture. To solve the
performance bottleneck occurring on single core
platform we introduced the multicore platform
approach. Then, we discussed the design related
performance limitation, due to the serial task
scheduling in the token cycle. After this, we introduced
the parallel task scheduling approach specially tailored
for multicore platforms. It consists in classifying tasks

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 1 - YEAR 200964 ISSN: 1690-4524

with no shared memory data dependency in modules
which will be scheduled on different CPUs. In this
context, the token scheduler uses a non blocking
communication mechanism to activate the different
modules by dispatching multiple tokens and such
enabling a parallel task processing. For synchroni-
zation purposes, additional dispatching and collecting
points are introduced. Finally, we gave some
performance data and introduced some software design
restrictions. Up to 45% of performance enhancement
on a dual core platform could be achieved for a token
cycle. The parallel scheduling and the additional
performance gained open the door to the realization of
more complex and robust control approaches.

5. ACKNOWLEDGMENT

The authors highly appreciate the support given by
the German Research Foundation (DFG) within
SFB562 and by QNX Software Systems providing free
software licenses.

6. REFERENCES

[1] P. Last, C. Budde, F. M. Wahl, proceedings of the
second international colloquium of the collaborative
research center 562, Braunschweig, Germany, may 2005.

[2] J. Maaß, N. Kohn and J. Hesselbach, “Open modular
robot control architecture for assembly using the task frame
formalism”, International Journal of Advanced Robotic
Systems, vol 3-1, pp. 001-010, 2006.

[3] N. Kohn, J.-U. Varchmin, J. Steiner, U. Golz, “Universal
communication architecture for high-dynamic robot systems
using QNX”, 8th International Conference on Control,
Automation Robotics and Vision, Kunming, China, pp.
205- 210, 2004.

[4] Y. Dadji, H. Michalik, T. Moeglich, J. Steiner, “
Performance optimized Communication system for high-
dynamic and real-time Robot Control Systems, CD-ROM
proceedings of the 16th. International Workshop on
Robotic in Alpe-Adria-Danube Region, 7-9 June 2007,
Ljubljana, Slovenia.

 [5] G. Pritschow, T.L Tran, “Parallel kinematics and PC-
based control system for machine and tools“, proceedings of
the 37th IEEE Conference on Control, Tampa, Florida
USA, pp. 2605-2610, 1998.

[6] The QNX operating system, http://www.qnx.com, April
2008

[7] J. Maaß, J. Hesselbach, N. Kohn, “Open modular robot
control architecture for assembly using the task frame
formalism“, International Journal of advanced robotic
systems, 3, pp. 001-010

[8] J. Hesselbach, J. Maaß and C. Bier, “Singularity
prediction for parallel robots for improvement of sensor
integrated assembly”, Annals of the CIRP, pp. 349-352,
2005

[9] S. Hutchinson, G. Hager, P. Corke, “A tutorial on visual
servo control”, Transactions on Robotics and Automation,
vol. 12, pp. 651-670, 1996

[10] S. R. Chhatpar and M. S. Branicky, “Localization for
Robotic Assemblies Using Probing and Particle Filtering”,
IEEE/ASME International Conference on Advanced
Intelligent Mechatronics, pp. 1379-1384, 2005

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 1 - YEAR 2009 65ISSN: 1690-4524

http://www.qnx.com/

	ZT742HE

