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 ABSTRACT

It would be useful to write one description of software
behavior to serve both requirements and design. Having one
description could reduce effort by eliminating the work of
developing two descriptions and of keeping them consistent
and relevant throughout development, evolution, and sustain-
ment. It would also eliminate the inconsistency inherent in
having two descriptions, a fertile source of error. A question
paramount to software engineers is, Could one description of
behavior for a real system serve both requirements and
design? This paper answers that question by describing one
such description of the software behavior of a real system.
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 1. INTRODUCTION

A typical software development project produces several
descriptions of software behavior. Often, natural language
provides one description of behavior, while UML, data flow
diagrams, and pseudocode provide others. Programmers
encode software behavior in one or more of a variety of pro-
gramming languages. Such redundant recording of software
behavior is a significant source both of unnecessary work
and of error. Often, the descriptions are in different lan-
guages, making it difficult to compare with one another for
consistency. As discoveries of what the behavior should be
are made during development, evolution, and sustainment, it
is difficult to keep the various descriptions consistent; often,
they are not. [13]

Reference [13] argues that it would be useful to write one
description of required software behavior to serve both
requirements and design. Having one description could
reduce effort by eliminating the work of developing two
descriptions and of keeping them consistent and relevant
throughout development, evolution, and sustainment. It
could also eliminate the inconsistency inherent in having two
descriptions, a fertile source of error. 

Software behavior1 (also called “computational behavior”) is
the changes in value over time of quantities and qualities
characterizing the system environment that the software con-
trols or affects (e.g., positions of symbols on a head-up dis-

play, when to energize an actuator, whether to light an
indicator or sound an audible signal [13]). Mathematical
variables denote these quantities and qualities. Mathematical
functions, whose domains comprise (1) variables denoting
environmental quantities and qualities and (2) variables rep-
resenting system state, specify the values of those variables.
Each of these functions, which can be understood to specify
behavior for requirements, can also serve design by specify-
ing behavior of the software module responsible for provid-
ing that function. 

While [13] describes a small example of a specification of
behavior serving requirements and design, it does not
address a question paramount to software engineers: Can the
same be done for a real system? Answering that question is
the purpose of this paper, which describes a unified specifica-
tion of the software behavior of a real system intended to
serve both requirements and design. [14]

 2. COMPARING BEHAVIOR 
DESCRIPTIONS

In the late 1970s an NRL team embarked on a project whose
goal was to redesign and reimplement the operational flight
program (OFP) for the Navy’s A-7E aircraft [19]. As part of
that project, the team produced a set of publicly available
development documents. While the A-7E software require-
ments [1] and design documents [7], [8], [15] are not written
in widely differing languages, they provide redundant and
quite different descriptions of the behavior of the A-7E OFP.
This can be seen by comparing functions in the software
requirements [1] and functions in the function driver module
[7] of the design.

The A-7E documents use bracketing notation to indicate
names and to distinguish different sorts of names. Table 1
lists bracketing notation adopted from the A-7E documents
and used in this paper. Note that the table provides several
interpretations for !+term+!. 

The A-7E software requirements [1] use values written to
physical device outputs to specify behavior. Functions of air-

1. While the notion of software behavior is not restricted to reac-
tive systems that monitor and affect a physical environment, such 
reactive systems are the focus of this paper.
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craft operating conditions (e.g., whether the aircraft is air-
borne) and of values read from physical device inputs specify
those values. Table 2 illustrates device output //BMBTON//.
[1] The Description field in Table 2 describes how to inter-
pret the impact on the system environment of writing a par-
ticular value to output //BMBTON//: the associated device
issues an audible tone in the aircraft cockpit when //BMB-
TON// = $On$. It is this impact on the system environment
(an audible tone in the cockpit) that is software behavior. The
values and devices are mechanisms to accomplish that
behavior.

Table 3 illustrates physical device input /RE/. Analogous to
physical device outputs, the Description field describes how
the input reflects the system environment. When the pilot
presses the release enable button on the pilot grip stick
(PGS), device input /RE/ = $On$. [1]

Table 4 provides an example function, a subset taken from a
function table in Section 4.4.3 Switch Bomb Tone On/Off [1].
It specifies required behavior by describing when the audible
tone is on and when it is off (see ACTION row at bottom of
table). The domain of the function comprises *modes*,
!requirements terms!, /inputs/, and //outputs//. The first col-
umn indicates that the behavior is mode-dependent. When
the system is in any of the modes listed in the first column of
the first row, the first row provides rules for turning the audi-
ble signal on (when the pilot presses release enable) and off
(when the pilot releases release enable when the audible sig-
nal is sounding). @T(/RE/=$On$) indicates the event of the
pilot pressing release enable. The conditioned event expres-
sion @T(/RE/=$Off$) WHEN (//BOMBTON//=$On$) indicates
the event of the pilot releasing the release enable button
when the condition holds that the audible signal is sounding.

The A-7E design provides virtual devices that encapsulate
characteristics of physical devices. It provides programs that
facilitate writing physical device outputs and reading physi-
cal device inputs [5], [15]. Table 5 describes two such pro-
grams. For both, the bracketed name (!+term+!) in the
description field provides the meaning of the corresponding
parameter and the behavior of the program in terms of the
system environment. Table 6 defines the two !+terms+!,
used in Table 5, which this paper subsequently reinterprets.

To describe behavior, the design specifies when to call vir-
tual device programs and what values to pass to them. The
program +S_AUDIBLE_SIGNAL+, which accepts one input
parameter of type AUD_ind_cntrl, sounds and silences the
audible signal in the A-7E cockpit. AUD_ind_cntrl is an enu-

TABLE 1. Bracketing Notation

Brackets Example Interpretation

!+Term+! !+Aud signal+! Describes meaning of 
program parameter.

Monitored or con-
trolled variable, or 
term

!Requirements 
term!

!A/C facing target! Monitored variable or 
term

!!Local term!! !!time beeped!! Local term

$Value$ $On$, $Off$, $True$, 
$False$

Value of enumerated 
variable

*Mode* *A/A Manrip* Mode

/Input/ /RE/ Input from physical 
device

//Output// //BMBTON// Output to physical 
device

+Program+ +S_AUDIBLE_SIGNAL+ Callable program

TABLE 2. Bomb Tone (BMBTON)

Output data item Bomb Tone

Acronym //BMBTON//

Hardware Bomb Tone

Description There is an audible tone in the cockpit when
 //BMBTOM// = $On$

Value encodings $Off$ (0), $On$ (1)

Instruction 
Sequence

WRITE 8 (Channel 0)

Data representation Discrete output word 1, bit 8

TABLE 3. Release enable button

Input data item Release Enable

Acronym /RE/

Hardware Pilot Grip Stick

Description /RE/ indicates the position of a momentary 
contact push button switch on the PGS.

Value encodings $Off$ (0), $On$ (1)

Instruction 
Sequence

READ 2 (Channel 0)

Data representation Discrete output word 3, bit 8

TABLE 4. Switch Bomb Tone On/Off

MODES EVENTS

*CCIP* 
*Manrip*

@T(/RE/=$On$) @T(/RE/=$Off$) WHEN 
(//BMBTON//=$On$)

*A/AGuns* @T(/RE/=$On$) 
WHEN (!Rockets!)

@T(/BMBREL/=$On$) 
WHEN (//BMBTON//=$On$ 
OR @T(/RE/=$Off$) WHEN 
(//BMBTON//=$On$

ACTION //BMBTON//:=$On$ //BMBTON//:=$Off$
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merated type which allows values $On$, $Off$, and $Inter-
mittent$, the latter of which is not used in this paper. The
definition of !+Aud Signal+! in the dictionary extract in
Table 6 indicates that the effect of the input parameter is to
allow the caller of +S_AUDIBLE_SIGNAL+ to control the
audible signal, which is the behavior of the program. The
program +G_RE+ provides one output, which indicates the
position of the release enable button on the PGS as indicated
by the definition in Table 6 of !+RE pressed+!.

Specifying when to call virtual device programs and what
values to write provides a description of behavior compara-
ble to Table 4. Table 7 and Table 8 (a subset selected from p.
5-3 of [7]) describe behavior as in Table 4. Table 7 illustrates
a function description which identifies which access program
to call and the type of its input parameter. Table 8, which can
be understood analogously to Table 4, describes when to call
that program and what value to write (see Output value: row
at bottom of table). The domain of the function in Table 8
comprises *modes* and !+terms+!, whose values programs
in the design provide the function. In addition to the program
+G_RE+ which reports the position of the release enable but-
ton, the design provides programs reporting events, e.g., of
the pilot pressing and releasing the release enable button. It
also provides programs for obtaining !+Rel in Progress+! and
!+Weapon Class+! (see Table 11). 

Note that Table 8 and a more complete Table 6 that defined
all !+terms+! referenced could provide a precise specifica-
tion of software behavior (when the audible tone in the cock-
pit should sound) without referencing programs required to
implement it.

Also note that the first column of the first row of Table 8
includes additional mode *A/A Manrip*. While this mode is
not included in the corresponding cell of Table 4 from [1],
the mode is defined and used elsewhere in the A-7E software
requirements. And note that the last column of the first row
of Table 8 does not mention !+Aud Signal+! (corresponding
to the use of //BMBTON// in Table 4). The author is unaware
of a rationale for these discrepancies. Nor is he aware of
which, if either, is correct. This paper regards these discrep-
ancies as exemplars of “the inconsistency inherent in having
two descriptions.”

 3. BACKGROUND

The approach taken by the unified specification of behavior
of the A-7E OFP [14] is related to that of Heninger [11] (and
applied in [1]) and to the Four-Variable Model of Parnas and
Madey [17], adopting ideas and terminology from the latter
and mechanisms from the former. In the unified specifica-
tion, the values that a set of variables takes over time
describe software behavior. Called controlled variables, they
denote aspects of the environment that the software controls
or affects. A mathematical function, usually tabular, gives the
value of each variable at any point in time. In the domain of
the function are monitored variables which denote aspects of
the environment that the software monitors or measures;
terms that simplify the specification by representing repeated
or complex expressions; and modes, classes of system state
which abstract system history [11]. While a function may
specify the value of more than one variable, the value of each
variable is given by exactly one function. In some instances,
the function may be broken into distinct pieces that the spec-
ification presents together.

The Four-Variable Model [17] abstracts from the A-7E soft-
ware requirements model [11]; that is, in place of tabular
functions specifying required behavior, [17] leaves open the
form that descriptions of required behavior may take. Mathe-
matical relations on vectors of time functions for monitored,
controlled, input, and output variables replace the conditions,
events, modes, and tables of the A-7E requirements [11].
REQ in Eq. (1), a relation from all possible histories (where
possible means allowed by environmental constraints) of the
monitored variables to all possible histories of the controlled
variables, describes required system behavior. M, the domain
of REQ, is a set of vectors. For each monitored variable (mi),

TABLE 5.  DIM Access Programs 

Program Parameters Description

+S_AUDIBLE_SIGNAL+ p1: AUD_ind_cntrl; I !+Aud Signal+!

+G_RE+ p1: boolean, O !+RE pressed+!

TABLE 6. Dictionary

Name Interpretation

!+Aud signal+! The current state of the audible signal.

!+RE pressed+! $true$ iff the release enable button is currently 
pressed.

TABLE 7. FUNCTION 
DESCRIPTION: Audible 
signal mode

Function type: demand

Result type: DI.AUD_ind_cntrl

Access program: +DI.S_AUDIBLE_SIGNAL+

TABLE 8. Audible Signal Function

MODES EVENTS

*A/A Manrip* 
*CCIP* *Manrip*

@T(!+RE pressed+!) @F(!+RE pressed+!) 

*A/A Guns* @T(!+RE pressed+!) 
WHEN (!+Weapon 
Class+! = $RK$)

@T(!+Rel in Prog-
ress+!) OR @F(!+RE 
pressed+!)

Output value: $On$ $Off$
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a vector has one element, a time function (mi
t(t)). The time

function, which specifies the value of the monitored variable
as a function of time, describes a possible history of that
monitored variable. Each vector of monitored variable time
functions (see Eq. (2)) describes a possible history of all of
the monitored variables. M is the set of all possible histories
of the monitored variables. C, the range of REQ, is a similar
set of vectors of time functions specifying possible histories
of the controlled variables, the behavior of the system. For
each possible history of the monitored variables in the set M,
REQ specifies one or more possible histories of the con-
trolled variables in the set C. Below, this paper will use simi-
lar relations on vectors of time functions for other variables
to describe other models.

REQ: M → C, Eq. (1)

Mt = ( m1
t(t), m2

t(t), ..., mp
t(t)) Eq. (2)

Analogous to M and C, I and O are sets of possible histories
of the system’s physical device inputs and outputs, respec-
tively. An element from a vector in I is a time function repre-
senting a possible history of a physical device input.
Similarly, an element from a vector in O is a time function
representing a possible history of a physical device output.
The relation IN (Eq. (3)) specifies the behavior of the input
devices. The relation OUT (Eq. (4)) specifies the behavior of
the output devices. 

 IN: M → I Eq. (3)

OUT: O → C Eq. (4)

The A-7E requirements model of [1] and [11] can be repre-
sented approximately by Eq. (5), where M represents aircraft
operating conditions of the OFP informally described by
!requirements terms! of [1], I represents physical device
inputs, O represents physical device outputs, and Z repre-
sents modes. The representation is approximate since the
specifications are semi-formal. While much of the notation
comprising the specification is formal, no explicit formal
model guided the writing of the specification. Eq. (6) repre-
sents the mode tables of [1].

REQA-7E: M X I X Z → O, Eq. (5)

Zf: M X I X Z → Z Eq. (6)

Following [13], for the unified specification, requirements
and design specifications share the relation describing behav-
ior from the Four-Variable Model described by Eq. (1). In
addition, the design describes virtual devices [5], [6]. It
defines virtual device inputs (Iv), such as !+RE pressed+!,
and virtual device outputs (Ov), such as !+Aud Signal+!, anal-
ogously to I and O. The design specification of software
behavior records the relations of Eq. (7), which describes the
behavior of virtual device inputs, and Eq. (8), which
describes the behavior of the virtual device outputs.

INv: M  → Iv, Eq. (7)

OUTv: Ov  → C Eq. (8)

 4. READING THE UNIFIED 
SPECIFICATION OF BEHAVIOR

The unified specification of the A-7E OFP [14] comprises
functions, mostly tabular, specifying the values of 106 con-
trolled variables, organized into the 15 sections of [7]. Fol-
lowing them are a specification of modes of operation, a type
dictionary, a system generation parameter dictionary, and a
variable dictionary.

Table 9, an example tabular function taken from the unified
specification, specifies the value of the controlled variable,
!+Aud signal+!, which denotes whether the aircraft’s audible
signal is on or off. The bracketing notation used in !+Aud sig-
nal+! indicates that the specification interprets it as either a
monitored variable, controlled variable, or term defined in
the variable dictionary. In the variable dictionary extract in
Table 10, the C in the first column of the entry for !+Aud sig-
nal+! indicates that the specification interprets it as a con-
trolled variable. Similarly, the M in the first column of the
three following entries indicates the specification interprets
them as monitored variables. The domain of the function in
Table 9 comprises *modes* and !+terms+! interpreted as
monitored variables.Other functions may interpret some
!+terms+! as terms, which simplify the specification by rep-
resenting repeated or complex expressions. 

The definition of a monitored or controlled variable in the
variable dictionary includes the variable type and its inter-
pretation, which describes how the value of the variable
relates to the aspect of the environment that the variable
denotes. The definition of a term also includes its type. The
interpretation of a term may contain either the expression
that the term represents or an informal description of its
value.

Rules describing when the audible signal beeps (sounds
intermittently) are not included in this limited subset of the
complete function; hence, the value $Intermittent$ is not used
in Table 9. More examples of tabular functions specifying
the values of controlled variables are in [14]. References [2]

TABLE 9. Audible Signal Mode

MODES EVENTS

*A/A Manrip* 
*CCIP* *Manrip*

@T(!+RE pressed+!) @F(!+RE pressed+!) 

*A/A Guns* @T(!+RE pressed+!) 
WHEN (!+Weapon 
Class+! = $RK$)

@T(!+Rel in Prog-
ress+!) OR @F(!+RE 
pressed+!)

!+Aud signal+! $On$ $Off$
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and [10] describe formal semantics of such functions, which
were created before the semantics were available.

 5. CREATING THE UNIFIED 
SPECIFICATION OF BEHAVIOR

Once we understand how the A-7E design organizes its
description of the behavior of the OFP, extracting that
description to create the unified specification (see Table 9
and Table 10) is conceptually simple. Fig. 1 provides a
graphical overview of the module structure of the A-7E OFP
design. Each of the boxes in the figure represents an informa-
tion hiding module. [16] System details that are likely to
change independently are assigned to separate modules. In
the figure, arrows point from a module to its submodules,
e.g., Behavior Hiding is comprised of the Function Driver
and Shared Services modules.

Blacked-out modules, which are concerned with mechanisms
for accomplishing behavior, are not relevant to this discus-
sion of behavior. The Software Decision module concerns
decisions made by software designers based upon “mathe-
matical theorems, physical facts, and programming consider-
ations” [6]. The Extended Computer module concerns
characteristics of the A-7E computer.

The Behavior Hiding module is concerned with descriptions
of behavior recorded in requirements. It’s comprised of the
Function Driver and Shared Services modules. “The Func-
tion Driver Module consists of a set of modules called Func-
tion Drivers; each Function Driver is the sole controller of a
set of closely related outputs.” [6] These outputs, e.g., !+Aud
signal+!, constitute the behavior of the OFP, i.e., its impact on
the system environment. Functions that capture the rules
determining these output values specify that behavior. The
Shared Services module concerns aspects of behavior com-
mon to several Function Drivers.

The Hardware Hiding module comprises two modules, one
of which (Extended Computer) is irrelevant to the discussion

of software behavior. The other is the Device Interface mod-
ule (DIM), which “provides virtual devices to be used by the
rest of the software.” [6] The DIM defines the outputs, e.g.,
!+Aud signal+!, that describe OFP behavior. It defines also
many of the !+terms+! that comprise the domains of the
functions that specify the values of outputs. The Shared Ser-
vices module defines other !+terms+! in the domains of the
functions.

The functions in the unified specification of behavior and
those in the Function Driver Module (see Table 7 and
Table 8) share the same domains. They use the same brack-
eted variable names in the same way to specify the events
and conditions in the rules determining the values of the out-
puts. Functions in the Function Driver Module specify also
the programs to be called to set those outputs and the values
of parameters to be passed to those programs (see, e.g.,
Table 7, Table 8). In contrast, functions in the unified specifi-
cation specify the values of !+terms+! identified as con-
trolled variables (e.g., Table 9).

Adapting design documents for the A-7E OFP [7], [8], [15]
produces the unified specification. The unified specification
reinterprets !+terms+! that the design documents define to
describe the behavior of programs. It interprets !+terms+!
that describe parameters of programs that write to virtual
device outputs as controlled variables, quantities and quali-
ties in the system environment that the OFP controls. For
example, the program +S_AUDIBLE_SIGNAL+ in Table 5
writes to virtual device output !+Aud Signal+!. The unified
specification interprets !+Aud Signal+! as a controlled vari-
able. It interprets !+terms+! that describe output parameters
of programs that read virtual device inputs as monitored vari-
ables, quantities and qualities in the system environment that
the OFP monitors. For example, the program +G_RE+ in
Table 5 reads virtual device input !+RE pressed+!. The uni-
fied specification interprets !+RE pressed+! as a monitored
variable. 

Adapting tabular functions from the Function Driver [7] to
produce corresponding functions for the unified specification
involves removing function descriptions, e.g., Table 7. It also
involves replacing the contents of the left hand column of the
bottom row of the table (e.g., Output value: in Table 8) with

TABLE 10. Variable Dictionary

Names Type Interpretation

C !+Aud signal+! AUD_ind_cntrl The current state of the 
audible signal.

M !+RE pressed+! boolean $true$ iff the release 
enable button is cur-
rently pressed.

M !+Rel in Prog-
ress+!

boolean $true$ iff a release pulse 
is currently being issued 
to the active weapon sta-
tion(s).

M !+Weapon 
Class+!

weap_class The class of the weapon 
loaded on the currently 
active weapon station(s). 
If no weapon station is 
active, then $GN$.

A-7 Operational Flight Program
Module Hierarchy

A-7 OFP

Behavior
Hiding

Hardware
Hiding

Software
Decision

Function
 Driver

Shared
Services

Device
Interface

Extended
Computer

Fig. 1 A-7E OFP Module Hierarchy
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the name of what is now the controlled variable, e.g., !+Aud
Signal+!. The adapted functions specify the values of con-
trolled variables, the behavior of the OFP.

Usually, the module that provides the program that the func-
tion driver calls to set a virtual device output defines a
!+term+! describing the output. The variable dictionary of
the unified specification collects such !+term+! definitions,
labeling them controlled variables (see, e.g., row 1 of
Table 10). When the module does not provide suitable
!+terms+!, the author of the unified specification defines
them and includes them in the variable dictionary, labeling
them controlled variables.

Modules also define !+terms+! in the domain of each func-
tion and provide programs for obtaining their values. The
unified specification interprets these !+terms+! as monitored
variables if they denote aspects of the environment of the
OFP and as terms otherwise. In either case, the unified speci-
fication collects them and their definitions from the defining
module into the variable dictionary. In a small number of
cases, function drivers reference !requirements terms!
defined in the A-7E requirements [1]. The unified specifica-
tion interprets them as monitored variables or terms and col-
lects them in the variable dictionary. In instances that design
documentation (or requirements, in the case of !requirements
terms!) does not provide suitable definitions, the author of
the unified specification defines them and includes them in
the variable dictionary, labeling them monitored variables or
terms, as appropriate. Of the 106 controlled variables in the
unified specification, the A-7E design defines 81; the author
defined the remaining 25. The variable dictionary contains
307 monitored variables of which the author defined 26. It
contains 22 terms, of which the author defined 14. The vari-
able dictionary contains 8 !requirements terms! from the A-
7E requirements [1], four of which the author defined. See
[14] for details.

!!Local terms!! in the local dictionary of each function driver
are, for the most part, copied into the local dictionary of the
corresponding function in the unified specification. In some
instances, the definition of a !!local term!! includes a call to a
program performing some calculation. In the unified specifi-
cation, the calculation replaces the program call in the defini-
tion. For example, the local dictionary of the function driver
Set HUD flight director azimuth position in [7] defines !!ltd
brg ac ftpt!! as the results returned by the program call
+SU.LIMIT_2+(!!steering error to ftpt!!, 0.5). The function in
the unified specification corresponding to this function driver
specifies the value of the controlled variable !+FLTDIR azi-
muth+!. Its local dictionary defines !!ltd brg ac ftpt!! as
(!!steering error to ftpt!! / ABS(!!steering error to ftpt!!)) x
MIN(!!steering error to ftpt!!, 0.5), the calculation that the
called program performs.

Since the Mode Determination Module, a submodule of
Shared Services, hides how to determine the current modes
of the OFP [6], the rules specifying initial modes and mode

transitions rules don’t appear in the module’s specification.
While the A-7E OFP requirements [1] describe these rules,
the conditions used to construct transition events reference
!requirements terms! defined in the requirements and inputs
from physical devices, rather than definitions in the unified
specifications’s variable dictionary. Consequently, specifying
the modes of operations for the unified specification requires
translating conditions used in [1] to conditions based on the
variable dictionary of the unified specification [14]. 

The mode transition tables in the requirements use 70 terms
to describe mode transitions; 43 are !requirements term!
expressions (some involving more than one !requirements
term!) and 27 are /input/ expressions. Adapting the mode
tables for the unified specification required finding 70 corre-
sponding !+terms+!. The author defined or redefined 16
!+terms+! for !requirements terms! that had no suitable
design equivalent. 

 6. INTERPRETING THE UNIFIED 
SPECIFICATION

This section interprets the A-7E unified specification as a
specification of required behavior and as a specification of
behavior in design, respectively.

A Specification of Required Behavior
 In contrast to the Four-Variable Model, to the model of [13],
and to the A-7E requirements discussed above, in the unified
specification of the A-7E OFP, the relation REQU of Eq. (9)
specifies the behavior of the OFP, where Iv (the virtual input
variables) and Ov (the virtual output variables) are inter-
preted as monitored and controlled variables, respectively.
Note that [13], Eq. (7), and Eq. (8) distinguish virtual inputs
and outputs from monitored and controlled variables. 

Z represents the modes in Eq. (9) and Eq. (10). The relation
ZU in Eq. (10) represents mode transition tables.

REQU: Iv X Z → Ov Eq. (9)

ZU: Iv X Z → Z, Eq. (10)

Inspection of the variable dictionary in the unified specifica-
tion finds many entries that clearly denote quantities and
qualities in the environment of the OFP, suggesting that it is
not unreasonable to interpret them as monitored and con-
trolled variables. For example, the interpretation of the con-
trolled variable !+Aud signal+! is The current state of the
audible signal. The interpretation of the monitored variable
!+az miss dist+! is The distance along the ground between the
target and the ground-projected line from the aircraft to the
computed impact point. The interpretations of some variables
assume the reader is familiar with concepts and terms
described in [1]. For example, understanding the interpreta-
tion of !+boresight azimuth+! requires the reader know what
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the Ya axis and the Xa-Ya plane are. Instead of just describ-
ing how a monitored or controlled variable’s value relates
to some aspect of the OFP environment, some interpreta-
tions also describe how to use the variable, an unwelcome
redundancy with the functions that reference the variable.
!+E coarse scale+! provides an example of such an inter-
pretation: Scale factor per pulse used for velocity calcula-
tion for the Xp axis when the velocities are being measured
by the coarse scale. 

In the unified specification, functions specify the values
that controlled variables must assume as relevant quanti-
ties and qualities in the environment of the OFP change
over time. Monitored variables, terms, and mode transition
tables describe that changing environment. This suggests
that it is also not unreasonable to interpret the unified spec-
ification as a specification of required behavior of the OFP. 

The unified specification of the behavior of the A-7E OFP,
like the specifications of behavior in the requirements [1]
and the design [7], is semi-formal. While much of the nota-
tion comprising the specification is formal, no formal
semantics underlie it. Though formal semantics for such
specifications exist (e.g., [2], [10]), it would require some
work to make this specification adhere to one of them. In
addition, many aspects of the specification are informally
captured.

A Specification of Behavior for Design
Since the unified specification of behavior of the A-7E was
adapted from design specifications of the A-7E OFP, it’s
reasonable to think it can serve design needs. The unified
specification of behavior can be incorporated without
modification (with some exceptions discussed below) into
a design that adheres to the model described in [18] and
exemplified by [6]. Such a design consists of a number of
information hiding modules [16], some of which provide
programs intended to be used by the programs of other
modules ([8], [15], Table 11) and some of which comprise
programs, called function drivers, that use programs in
other modules ([7], Table 9). The function drivers, which
specify the values of the controlled variables, use other
programs to set the values of the controlled variables and
to obtain the values of the monitored variables, terms, and
modes that determine what the values of the controlled
variables should be. The function drivers are incorporated
into the Function Driver Module. The organization of the
controlled variable functions (function drivers) into 15 sec-
tions reflects an information hiding decomposition of the
Function Driver Module. Each of the fifteen sections rep-
resents a submodule of the Function Driver Module. [6]

The Mode Determination Module, a submodule of Shared
Services, hides the rules specifying the transitions among
the system modes. Consequently, its specification can be
thought of as part of the module’s internal design, specify-
ing how to implement the module’s functions, as opposed
to specifying their black box behavior. 

The definitions in the variable dictionary describe the
behavior of programs in the DIM [15] that implement vir-
tual devices and of certain programs in the Shared Services
Module [8]. Associating a controlled variable with the
input parameter to a program indicates that the effect of
calling the program with the parameter set to a particular
value is to affect the environmental aspect denoted by the
controlled variable in the appropriate way. For example,
+S_AUDIBLE_SIGNAL+, a program on the interface of the
Audible Signal device interface module (Table 11 illus-
trates documentation of the program adapted from [15]),
has one input parameter of type AUD_ind_cntrl. The type
indicates the parameter can have values $On$, $Off$, and
$Intermittent$. The controlled variable !+Aud signal+!,
which denotes the “current state of the audible signal,”
describes the effect of setting the input parameter. Thus,
the effect of calling the program +S_AUDIBLE_SIGNAL+
with input parameter p1 set to the value of the controlled
variable !+Aud signal+! is to cause the audible signal either
to be silent, to be on steady, or to beep (as described by
!+Aud signal+!). It is the responsibility of the implementa-
tion of the function driver that specifies the value of the
controlled variable !+Aud signal+! to call
+S_AUDIBLE_SIGNAL+ and pass it the parameter value
specified by the function.

Similarly, associating a monitored variable with the output
parameter of a program indicates that on return from a call
to the program, the output parameter’s value will reflect
appropriately the environmental aspect denoted by the
monitored variable. For example,
+G_WEAPON_RELEASE_CLASS+, a program on the
interface of the Weapon Characteristic Submodule of the

TABLE 11.  Access Program 
Interfaces

Program Parameters Description

+S_AUDIBLE_
SIGNAL+

p1: AUD_ind_cntrl; 
I

!+Aud Signal+!

+G_WEAPON_
RELEASE_CLASS+

p1: weap_class; O !+Weapon Class+!

+G_RE+ p1: boolean; O !+RE pressed+!

+G_REL_IN_
PROGRESS

p1: boolean; O !+Rel in prog-
ress+!

86 SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 11 - NUMBER 8 - YEAR 2013 ISSN: 1690-4524



Device Interface Module (Table 11), has one output
parameter of type weap_class. Defined in Table 10, the
monitored variable !+Weapon Class+!, which is the “class
of the weapon loaded on the currently active weapon sta-
tion(s)” describes the value returned by the parameter. On
return from a call to +G_WEAPON_RELEASE_CLASS+,
the parameter has the value, for instance, $RK$ if and only
if rockets are loaded on the currently active weapon sta-
tion(s). The implementation of the function driver that
specifies the controlled variable !+Aud signal+! calls the
program to determine whether rockets are loaded when
deciding to sound the audible signal when it detects that
the pilot has pressed the release enable button, while in
mode *A/A Guns*. The function depends on the DIM to
signal occurrence of the event @T(!+RE pressed+!), i.e.,
!+RE pressed+! going from $False$ to $True$.

Each function driver implementation uses the appropriate
program to set each controlled variable whose value it
determines. Similarly, the function driver implementation
uses the appropriate program to obtain the value of each
monitored variable, term, and mode that it references. The
DIM (see [6]) provides programs that manifest the values
of controlled variables. The DIM and other modules pro-
vide programs to obtain the values of monitored variables,
terms, and modes. In the case of events, these modules
provide mechanisms that signal when the value of a vari-
able of interest changes.

Note that starting with the unified specification, complet-
ing the design requires making and recording design deci-
sions regarding what programs each function driver must
depend upon to determine the values of relevant monitored
variables and terms and when they change and to set the
values of controlled variables. The model of the unified
specification [13] assumes there’s a simple, straightfor-
ward relationship between variables and the programs
called to set them or to determine their values. Ideally,
when a function in the unified specification specifies the
value of a particular controlled variable, the design should
provide one program to call which accepts that value as
input and will manifest the value appropriately in the envi-
ronment (e.g., sound the audible alarm). Analogously,
when a rule in a function references a particular monitored
variable or term, the design should provide one program to
call that will provide the value of the referenced monitored
variable or term. 

Sometimes this simple, straightforward relationship
between variables and the programs does not exist in the
A-7E design. The Doppler Radar Set (DRS) provides two
parameterless programs to turn it on and off. The value of
the boolean controlled variable !+DRS on+! determines
which program to call. Weapon Release System also pro-

vides a parameterless program to manifest a controlled
variable value in the environment. Toggling the value of
boolean controlled variable !+prepare weapon+! causes the
design to call the corresponding program. To take advan-
tage of the physical device’s ability to control certain sym-
bols together, the Head-Up Display Location-Indicator
provides one program that will accept several controlled
variables at once. The initialization of several physical
devices does not fit well into this model. The Projected
Map Display Set provides a program that returns a boolean
indicating whether the PMDS can display a given point on
the Earth. A subsequent call to another program will either
display that position or report an error. More details are
available in [14].

 7. DISCUSSION

This paper understands software behavior to refer to the
impact that software has on the environment of the system
that incorporates it. The paper reports an effort to produce
one description of the software behavior of a real system
that can serve both requirements and design as described
by [13]. It presents the A-7E unified specification as a
proof of concept, more than as an exemplar. The author
adapted this specification from design documentation. The
specification reinterprets !+terms+! defined to describe
the behavior of programs providing virtual devices as
monitored and controlled variables denoting quantities and
qualities in the system environment. The author adapted
tabular functions describing when to call programs imple-
menting virtual output devices and to what values to set
their parameters. The adapted functions specify the values
of virtual outputs that the unified specification interprets as
controlled variables. Of the 106 controlled variables, a
handful were unable to fit the model of [13] well.

Reference [12] applies the idea of a unified specification,
without using those words, to model-driven development.
It refers to variables as “attributes,” which are organized
into four overlapping models. The Sage behavior model
records the information in the unified specification. The
environmental model associates environmental attributes,
which includes what this paper calls monitored variables
and controlled variables, with objects that they character-
ize in the environment of the system. The design model
organizes the information in the behavior model into
design classes, analogous to the information hiding mod-
ules discussed earlier. The run-time model organizes the
behavior model into loosely-coupled, location-transparent
reactive agents. Both design model and run-time model
distinguish

• Attributes on a class’s or agent’s public interface. 

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 11 - NUMBER 8 - YEAR 2013 87



• Attributes expected to be on another class’s or agent’s 
public interface. 

• Attributes that are local to a class or agent. 

The Sage development environment generates agents in
the SOL [2] language. When translated to the language of
the Salsa property checker [4], Salsa checks the consis-
tency and completeness [9] of the SOL agents. When com-
piled, the SOL agents execute in the execution
environment that SINS middleware [3] provides. 

Success of the unified specification approach in reducing
the time and effort needed to develop, evolve, and sustain a
software system requires understanding the system’s needs
and supporting infrastructure and technology. It also
requires understanding how they will evolve during the
system’s development and operational life. To the extent
that this understanding is flawed, benefits resulting from
expected reductions in effort and error may not be realized.
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