

Systemics, Communication and Knowledge:

Shifts of Perspective and the Need for Requirements

In Second-Order Science

Thomas J. Marlowe

Seton Hall University

South Orange, NJ 07079, USA

thomas.marlowe@shu.edu

and

Vassilka Kirova

Alcatel-Lucent

Murray Hill, NJ 07974, USA

vassilka.kirova@alcatel-lucent.com

ABSTRACT

The systemic view of second-order science emphasizes the

interaction of observer and observed, but tacitly assumes a

single observer, or at least a unity of observer perspective. But

experience in multiple domains, including software engineering,

decision science, health sciences, co-creation and Living Labs,

knowledge management, community development and

government policy has emphasized the multiplicity of goals and

perspectives across stakeholders. We look at the issues that arise

when multiple views are incorporated, and propose a toolkit for

addressing those issues.

Keywords: systemics, second-order science, requirements,

communication, knowledge management

1. INTRODUCTION

While Second-Order Science is based on the interaction of the

observer and the observed, there is a tacit picture of a single

investigator (scientist, practitioner, social scientist, and so on) or

tight community interacting with an identified if not well-

understood problem (Figure 1a — see last page). To facilitate

discussion, we extend this picture (Figure 1b) to indicate that

Observer A is focused on the interaction between herself and the

problem B: here Alice (A) is focused on the interaction between

herself and B, from its initial statement as a problem (?B) to its

possible solution (!B); the outer box indicates that this focus

occurs in the environment of Alice’s context.

However, modern science is collaborative across larger scales,

and applied science and technology is often undertaken by

researchers/developers at the behest of clients and for use by

consumers who typically lack a commonality of perspective,

knowledge or context with those researchers.

In Section 2, we look at the traditional view of Second-Order

Science as presented at IIIS Multi-Conferences and elsewhere,

and in Section 3 look at the issues introduced by change in

observer and focus, using the context of software development

of an innovative product line or service. In Section 4, we survey

a number of standard tools and approaches that can help resolve

issues and narrow gaps, and the modifications that might be

needed to apply these more generally. Finally, in Section 5, we

briefly present our conclusions.

2. SECOND-ORDER SCIENCE

Second-order science has three related but different meanings in

the literature [34]: (1) Web-mediated, cooperative and open

collaborative scientific exploration, resulting in a hyperlinked

resource in “the internet of things” [36]; (2) meta-science,

combining multiple studies and disciplines to attain deeper

knowledge [25]; and (3) the expansion of science by means of

new concepts and theories, especially through the interaction of

observer and observed [18]. We focus on the third of these,

which (as its proponents argue) is inescapable in social, decision

and health sciences, and frequently fruitful in other sciences.

Second-order science recognizes that science occurs in a context

that affects interpretation of the problem, and both guides and

constrains progress toward the solution. And while its primary

concern is mutual effects from the interaction of observer,

observed and context, it recognizes that change may also occur

from changes internal to any of the three (reflection and

reflexivity), or from external changes.

However, second order science (in the systemic view)

concentrates on the interaction of science and the scientist, and

thus tacitly assumes a single observer, or at least a unity of

observer perspective. But experience in multiple domains and

disciplines, including software engineering, decision science,

health sciences, co-creation and Living Labs [13, 29],

knowledge management, community development, and

government policy has underlined the multiplicity of goals and

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 9 - YEAR 2013 95

perspectives across stakeholders in the problem, and emphasized

the need to integrate these perspectives.

3. MULTIPLE OBSERVERS

AND MULTIPLE PERSPECTIVES

We consider a paradigmatic situation of multiple observers:

development of an innovative software product line or service.

For simplicity and ease of both illustration and understanding,

we assume a single client, a single experienced team of

developers, and a single, largely homogeneous user community,

and no other stakeholders. For convenience, we will think of

each as a single individual: Carol, the client; Diane, the

developer, and Ursula, the user.

Initially, Carol, the client, begins with a problem to which she

would like a solution to be used, applied, or understood by

Ursula, the user (Figure 2a). Carol then proposes the problem to

Diane, the developer (Figure 2b), after which it becomes

Diane’s problem (Figure 3a). At this point, the real difficulty

occurs: Diane does not have the same context and background

as Carol, and may have a different understanding of the

problem.

We can see that the problems emerge when context and

perspective change: handoff (Figure 3a), delivery (Figure 4a)

and use (Figure 5b). Further problems and complications, with

even more views and versions, arise in debugging, maintenance

and evolution, particularly if multiple stakeholders are involved

in discovering and resolving the error, flaw, or environmental

change. The fundamental if not fully realizable goal will be to

involve all stakeholders and unify their perspectives in each step

of the process.

Multiple perspectives and multiple stakeholders inherently

introduce differences in background and expertise, work

environment, problem languages and glossaries, context,

knowledge, and expectations, in addition to issues introduced

by differences in social culture and mother tongue. (There may

also be complications introduced by standards, statutes and

regulations, by intellectual property concerns, and by the need

for trust.) These issues persist even if the multiple observers are

multiple teams of researchers, multiple developers collaborating

or otherwise working together, or a service being designed for a

consortium of clients. Continuing, Diane solves the problem

(Figure 3b) and delivers the solution (Figure 4a), at which point

Carol needs to determine if her interpretation (X) of Diane’s

solution (C) corresponds to Carol’s problem (B) (Figure 4b).

Finally, the solution/product is deployed for use by Ursula

(Figure 5a) — and the same problem arises again (Figure 5b).

4. ADDRESSING THE PROBLEM:

A TOOLKIT

The problems identified above can be partially addressed and

ameliorated via a combination of well-known approaches, with

two goals, partitioning the approaches by the goal each

addresses.

The first group aims primarily at establishing concordance

between stakeholder views: interoperability (in both narrow and

broad senses) to establish a common business and technical

infrastructure and opportunities for shared frameworks, and

support cooperation and collaboration; requirements elicitation

and analysis, to identify stakeholders and their interests, as well

as nature and constraints of the problem; and knowledge

transfer and knowledge management, to enrich context and

understanding of the problem, as well as to create shared

context.

The second group is more oriented toward assuring a proper

solution process and better solutions of the original problem:

verification and validation, to assure both proper translation

across contexts and correct steps toward solutions; maintenance

and evolution for both the project and the product, to handle

changes gracefully while preserving concordance; and a number

of engineering approaches common in software engineering,

aimed at optimizing the solution process.

Each group has some impact on the other goal, and the activities

overlap and interleave. For example, requirements and

knowledge management are clearly tightly coupled, and both

are needed for good risk analysis and management, as is

interoperability. Likewise, validation has to rely on

requirements analysis and knowledge management to assist in

clarifying stakeholder goals and to explicate constraints, as well

as good communication and interaction; conversely, validation

or verification failures lead to maintenance problems or

evolution of the problem, its requirements, or its solution.

 Interoperability: Interoperability traditionally addresses

platform and protocol standardization or alignment for IT

and communication (data, objects, software systems,

services, communication channels) [27, 35], to assure

resources and channels for interaction, with standard

meaning and effect (semantics) for shared functionality.

It has been extended [8, 15, 20] to

(1) alignment of technical and business processes (rules,

process, strategy),

(2) understanding and integrating culture, language and

glossaries (culture, knowledge),

(3) providing consistency for problem and solution facets

(security, risk), especially at interfaces or affecting

multiple stakeholders; and

(4) supporting consistent use of shared frameworks

(social networks, cloud) and a consistent project view

and understanding of responsibilities (ecosystem),

that is, to provide a common technical, business and

knowledge environment to support communication,

coordination and collaboration among stakeholders.

While interoperability is most important with multiple

autonomous developers, these facets matter even in the

simple scenario we are considering.

 Requirements: Requirements acquisition, elicitation, and

analysis are common engineering and business activities

[7, 12, 16]. Short-circuiting or badly performing these

processes has been responsible for many engineering and

software disasters. Acquisition and elicitation seek to

establish domain context, understandings, expectations and

constraints; analysis to verify completeness, coherence and

clarity. The key activity throughout the process is

questioning: identifying stakeholders, considering goals,

constraints, difficulties and risks [3]; eliciting stakeholder

expectations; and assuring high quality, well-documented

results. A standard list of requirements workshop questions

can be found in [28]; these may need to be extended to

deal with collaboration [22], even in the context of co-

creation.

Note that even though agile approaches [1, 21] place less

emphasis on comprehensive requirements analysis, initial

96 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 9 - YEAR 2013 ISSN: 1690-4524

exploration is still required, both to define the problem and

to reach an agreement among stakeholders to proceed.

There is also a documentation tradeoff with such

approaches. On the one hand, documentation co-evolves

with analysis and design in an iterative-incremental

process, allowing for and benefitting from improving

understanding and knowledge accumulation and

refinement (itself requiring steady interactions and shared

models of understanding). On the other, there is a risk that

evolving implicit understandings may not be reflected in

the final documentation. This may in turn affect

maintenance and evolution, since solid requirements and

design documentation is eventually needed to support

collaboration or changes in the development team in the

course of long-lived projects [32].

 Knowledge transfer and knowledge management: From the

second-order science perspective, the main objective is to

assure faithful translation and transfer of problem and

context between observers/stakeholders, in tandem with

validation and verification activities. With this in mind,

important issues for knowledge management [2, 4, 5, 11]

will include the following activities and concerns.

Standardize glossaries, process notations, and concept

maps as far as possible, often together with agreeing on

infrastructure and tools. (Be careful of overloaded terms

such as “security” [electronic? physical? personnel?] or

“usability” [availability? ergonomics? disability access?

learnability?], and of terms and constructs with social,

linguistic, domain-dependent or enterprise-specific

meanings or connotations [22].) Determine, classify and

articulate knowledge (as far as possible) as explicit,

implicit, or tacit knowledge, and (critically) identify

assumed shared knowledge, and to the extent possible the

kinds of integrated, collaborative or emergent knowledge

that may arise [19]. In an enterprise setting, don’t forget to

consider implicit business rules and policy, and to identify

not only formal but informal or implicit

advocates/sponsors and flows of information.

 Testing, verification and validation: These three are related

but not identical. Testing refers to determining correctness

by interaction with the solution; validation to determining

functionality with the solution deployed in the client’s or

users’ environment (platform, user community, context,

and so on), and verification to formal methods used to

demonstrate properties of the solution.

From the perspective of multiple observers in second-order

science, there are two key activities, which may make use

of any or all of these approaches. The first, affecting every

instance is to check for consistency between the problem

and its solution, and fidelity to its specification. The

second, in the multiple observer/stakeholder scenario, is to

check, to the extent possible, for consistency between

understandings of the problem and context at transfer

points (as illustrated in Section 3).

In addition, particularly in the context of software

engineering, protocols for interfaces have to be tested,

validated and verified, as do fulfillment of stakeholder

objectives and satisfaction of critical constraints.

Moreover, where appropriate, the solution (or problem

monitoring) should be instrumented to facilitate testing and

validation. Such testing should be focused on interfaces

and points of protected variation (PPV) [17]. These

comprise locations at which one or more of the following

occur: structural or semantic change is likely, risks are

high, there are tricky special cases, critical requirements

are addressed, or there is a “dependency knot”—many

other components affect or are affected by actions or tests

at this location.

 Modern software engineering processes and techniques:

These basically fall into three groups: (1) interactions

between stakeholders to clarify requirements and validate

translations (focus groups, requirements negotiation, use

cases and function lists, early prototyping, and ongoing

stakeholder interaction, including co-design and co-

creation or “Living Labs” [13, 29]); (2) approaches to

support incremental and iterative convergence on the

correct problem and solution, as well as debugging,

maintenance and evolution (including software

architectures, adaptive and agile methods [1, 21], design

patterns [10, 17], refactoring [9]); and (3) approaches to

facilitate collaboration and establish trust and sharing [22].

 Maintenance and evolution as a process: Multiple changes

in context, problem and perspective, sometimes orthogonal

and sometimes strongly interacting, must be handled,

primarily by the developer [30]. In software engineering,

maintenance includes preventive (security), adaptive

(environmental changes and portability), corrective (fixing

faults and bugs) and perfective (evolution) aspects. The

latter two are the most significant for multi-perspective

second order science.

The most obvious issues to be addressed are errors in the

original problem formulation or failure to properly handle

unanticipated exceptions and corner cases. The solution

must also evolve to account for changes in client or user

needs, the underlying platform and infrastructure, or

external issues such as security threats.

In the knowledge transfer view, this process is both

simpler and more complex than reconciling viewpoints in

the development phase. On the one hand, a common

context and common glossary has been established,

although there may be problems arising there through

higher-order contextual or linguistic differences. On the

other hand, there are new difficulties in identifying and

addressing discordance between developer solutions and

client or user expectations, and in interpreting user reports

of errors or difficulties.

In addition, the process itself needs to evolve [31], using

feedback from validation, quality assurance and

maintenance activities plus project retrospectives [6, 14] to

address perceived shortcomings or opportunities for

optimization—an echo of the standard second-order

science view.

Note that these issues have already been examined and partially

addressed, not only in software engineering, but also in

traditional engineering ([26]; also compare [23, 33]), and to

some extent in management/decision science [12], community

development [24, 29], and even in applied and pure science. But

note also that the problems are made more complicated and new

issues introduced by multiple clients, developers, user

communities, and additional stakeholders, including

governmental and standards agencies, as well as by intellectual

property, privacy and security concerns [22].

5. CONCLUSIONS

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 9 - YEAR 2013 97

The plurality of observers, contexts and perspectives common

in the scientific enterprise calls not so much for a revision of

second-order science and the systemic approach, as for an

acknowledgment that the observer+observed view is a

simplification. A full discussion of the systemic view of second-

order science must take account of the issues of collaboration,

translation, and interaction much as first-order science is in the

process of doing.

In this paper, we have identified critical instants even in a

simplified project, and suggested a number of tools and

approaches borrowed from decision science and software

engineering to partially mitigate the problems.

6. REFERENCES

1. Agile Consortium, Agile and Business. Accessed on August

10, 2012 at http://agileconsortium.blogspot.fr/2007/12/nokia-

test.html Archived at http://www.webcitation.org/6Ij7bTlDe

2. W. Agresti, Knowledge Management, Advances in

Computers, Vol. 53, 2000.

3. H. Barki, S. Rivard, J.Talbot, “An Integrative Contingency

Model of Software Project Risk Management”, Journal of

Management Information Systems, 17 (4), Spring 2001, pp.

37-69.

4. K. Bondar, B.R. Katzy, “An Emergent Perspective Based on

shared understanding in knowledge-based organizations”, 19
th

ICE & IEEE-ITMC International Conference, The Hague,

Netherlands, June 2013.

5. A. Bounfour, A. Leslie, F. Lettice, M. Neumann, N. Jastroch:

Creation of Innovation through Knowledge Management, IST-

2001-34442 CIKM project report, March 2004. Accessed on

September 2011 at

http://www.metconsult.com/html/english/CIKM%20project%

20report.pdf

6. E. Derby, D. Larsen, K. Schwaber, Agile Retrospectives:

Making Good Teams Great, The Pragmatic Programmer

LLC, 2006.

7. Essential Strategies, Requirements Analysis. Accessed August

7, 2013 at

http://www.essentialstrategies.com/services/analysis.htm

Archived at http://www.webcitation.org/6Ij8GEo2v

8. European Commission: Enterprise Interoperability Science

Base. Accessed on November 10, 2011 at

http://cordis.europa.eu/fp7/ict/enet/fines-eisb_en.html

9. M. Fowler, Information about Refactoring,

http://refactoring.com/sources.html, accessed June 8, 2012.

10. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design

Patterns: Elements of Reusable Object-Oriented Software,

Addison-Wesley, 1995.

11. W.P. Hall, S. Nousala, B. Kilpatrick, “One Company – Two

Outcomes: Knowledge Integration vs. Corporate

Disintegration in the Absence of Knowledge Management”,

Vine, 39 (3), 2009, pp. 242-258.

12. D. Hay, Requirements Analysis: From Business Views to

Architecture, Prentice Hall PTR, 2003.

13. L. Heinze, I. Mulder, P.J. Stappers, “Understanding

Networked Collaboration: Fields and Patches of Interaction”,

19
th
 ICE & IEEE-ITMC International Conference, The Hague,

Netherlands, June 2013.

14. N.L. Kerth, Project Retrospectives: A Handbook for Team

Reviews, Dorset House Publishing, 2001.

15. F. Koussouris, F. Lampathaki, S. Mouzakitis, Y. Charalabidis,

J. Psarras, “Digging Into Real-Life Enterprise Interoperability

Areas - Definition and Overview of the Main Research

Areas”, Collaborative Enterprise (CENT) 2011 Symposium,

Proceedings of the 15th World Multi-Conference on

Systemics, Cybernetics and Informatics (WMSCI 2011),

Orlando FL, July 2011.

16. P. Laplante, Requirements Engineering for Software and

Systems, CRC Press, Redmond, WA, 2009.

17. C. Larman, Applying UML and Design Patterns, 3
rd

 ed.,

Prentice Hall, Pub. 2004.

18. W. Lutterer, “Systemics: The Social Aspects of Cybernetics”,

Kybernetes: The International Journal of Systems &

Cybernetics, 34 (3), pp 497-507, 2005. Accessed on-line on

August 7, 2013 at http://www.lutterer.de/Lutterer%20-

%20Systemics.pdf

19. T.J. Marlowe, N. Jastroch, V. Kirova, M. Mohtashami, “A

Classification of Collaborative Knowledge,” Journal of

Systemics, Cybernetics, and Informatics, Vol. 9 (7), 2011.

20. T.J. Marlowe, N. Jastroch, S. Nousala, V. Kirova,

“Collaboration, Knowledge and Interoperability—

Implications for Software Engineering”, Collaborative

Enterprise (CENT) Symposium 2012, Proceedings of the 16th

World Multi-Conference on Systemics, Cybernetics and

Informatics (WMSCI 2012), Orlando FL, July 2012.

21. R.C. Martin, Agile Software Development: Principles,

Patterns and Practices, Prentice Hall, 2002.

22. M. Mohtashami, T. Marlowe, V. Kirova, F. Deek, “Risk-

Driven Management Contingency Policies in Collaborative

Software Development,” International Journal of

Information Technology and Management, 10 (2-4), 2011,

pp. 247-271.

23. NASA, Assurance Process for Complex Engineering,

accessed on August 7, 2013 at

http://www.hq.nasa.gov/office/codeq/software/ComplexElectr

onics/

24. S. Nousala, A. Miles, B, Kilpatrick, W.P. Hall, “Building

Knowledge Sharing Communities Using Team Expertise

Maps”, International Journal of Business and Systems

Research, 3 (3), 2009.

25. S. Nousala, A. Moulet, B. Hall, A. Morris, “A poly-

disciplinary approach: A creative commons for social complex

adaptive systems”, Book of Abstracts, European Conference

on Complexity Systems (ECCS 2012), p 79, 2012.

26. J. O’Grady, Systems Requirements Engineering, Academic

Press, 2010.

27. J. Park, S. Ram, “Information Systems Interoperability: What

Lies Beneath?”, ACM Transactions on Information Systems,

22 (4), October 2004.

28. R. S. Pressman, Software Engineering: A Practitioner’s

Approach, 6
th
 ed., McGraw-Hill, 2005.

29. R. Santoro, A. Braccini, P. Santoro, “KBS Principles Applied

to Co-creation of Smart Conference and Communities: A Case

Study”, 19
th
 ICE & IEEE-ITMC International Conference, The

Hague, Netherlands, June 2013.

30. S.R. Schach, A. Tomer, Development/Maintenance/Reuse:

Software Evolution in Product Lines,

Accessed on August 6, 2013 at

https://www.research.ibm.com/haifa/info/ple/papers/evolution.

pdf

31. L. Solow, B. Fake, What Works for GE May Not Work for

You: Using Human Systems Dynamics to Build a Culture

of Process Improvement, CRC Press, 2010.

32. C.J. Stettina, E. Kroon, “Is There an Agile Handover? An

Empirical Study of Documentation and Project Handover

Practices Across Agile Software Teams”, 19
th
 ICE & IEEE-

ITMC International Conference, The Hague, Netherlands,

June 2013.

33. Technik, Requirements Analysis & Engineering Management,

Accessed August 7, 2013 at

http://www.technikinc.com/services/requirements Archived at

http://www.webcitation.org/6Ij8vARbo

34. S. Umpleby, “Cybernetics as a Language for Interdisciplinary

Communication”, Plenary Keynote Address, 10
th
 World

Multi-conference on Systemics, Cybernetics and Informatics

(WMSCI 2006), accessed on August 6, 2013 at

http://www.bing.com/search?q=+second+order+science&src=

IE-TopResult&FORM=IE10TR

35. Wikipedia, Interoperability, accessed on April 27, 2012 at

http://en.wikipedia.org/wiki/Interoperability April 2012.

36. Wikipedia, Science 2.0, accessed on August 7, 2013 at

http://en.wikipedia.org/wiki/Science_2.0

98 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 9 - YEAR 2013 ISSN: 1690-4524

http://agileconsortium.blogspot.fr/2007/12/nokia-test.html
http://agileconsortium.blogspot.fr/2007/12/nokia-test.html
http://www.metconsult.com/html/english/CIKM%20project%20report.pdf
http://www.metconsult.com/html/english/CIKM%20project%20report.pdf
http://www.amazon.com/Esther-Derby/e/B002BLJE8A/ref=sr_ntt_srch_lnk_1?qid=1376368095&sr=1-1
http://www.amazon.com/Diana-Larsen/e/B002BM7U7Q/ref=sr_ntt_srch_lnk_1?qid=1376368095&sr=1-1
http://www.amazon.com/Agile-Retrospectives-Making-Teams-Great/dp/0977616649/ref=sr_1_1?s=books&ie=UTF8&qid=1376368095&sr=1-1&keywords=retrospectives+agile+teams
http://www.amazon.com/Agile-Retrospectives-Making-Teams-Great/dp/0977616649/ref=sr_1_1?s=books&ie=UTF8&qid=1376368095&sr=1-1&keywords=retrospectives+agile+teams
http://refactoring.com/sources.html
http://www.amazon.com/Norman-L.-Kerth/e/B00288MP8C/ref=sr_ntt_srch_lnk_4?qid=1376367874&sr=1-4
http://www.amazon.com/Project-Retrospectives-Handbook-Team-Reviews/dp/0932633447/ref=sr_1_4?s=books&ie=UTF8&qid=1376367874&sr=1-4&keywords=retrospectives
http://www.amazon.com/Project-Retrospectives-Handbook-Team-Reviews/dp/0932633447/ref=sr_1_4?s=books&ie=UTF8&qid=1376367874&sr=1-4&keywords=retrospectives
http://www.crcpress.com/product/isbn/9781420064674
http://www.crcpress.com/product/isbn/9781420064674
http://www.amazon.com/Lawrence-Solow/e/B0035F8IK6/ref=ntt_athr_dp_pel_1
http://www.amazon.com/Brenda-Fake/e/B003R16HAQ/ref=ntt_athr_dp_pel_2

Figure 1: Two Views of Second-Order Science

Figure 2. The Client and the Developer: Assignment

Figure 3. The Client and the Developer: Solution

Figure 4: The Client and the Developer: Delivery

Figure 5: The User: Deploying the Application

 Observer Observed

?B
 !B

A A

A

Figure 1a: Standard View Figure 1b: Focus on actor and context

Figure 2a. Client definition Figure 2b. Request for Proposals

?B !B

C C

C

?B !B

C C

D

?B ?C

C
C

D

?C !C

C

D D

Figure 3a. Handoff to Developer Figure 3b. Developer Solution

Figure 4a. Delivery Figure 4b. Validation

!C !X

C

D

D

!X !B
?

C C

C

=?

!B
?

!B
?

C

C

U

!B
?

!E

U U

U

Figure 5a. Deployment Figure 5b. Use

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 9 - YEAR 2013 99

	iSA924MS

