

 A practical route search system for amusement parks navigation

Takahiro Shibuya

Faculty of Science and Technology,

Tokyo University of Science,

2641 Yamazaki, Noda, Chiba, 278-8510, Japan

Masato Okada

Faculty of Science and Technology,

Tokyo University of Science,

2641 Yamazaki, Noda, Chiba, 278-8510, Japan

and

Hayato Ohwada

Faculty of Science and Technology,

Tokyo University of Science,

2641 Yamazaki, Noda, Chiba, 278-8510, Japan

ABSTRACT

It is very difficult to find the minimum route to travel in

amusement park navigation. A searching system for visitors

would be useful. Therefore, we constructed a system to find the

route with the minimum total traveling time. Facility visitors

can employ this system on a smart phone. The system is

composed of Java and a Java Servlet. We conclude that our

system is useful and can greatly shorten travel time within a

typical amusement park.

Keywords: Traveling salesman problem, Traveling problem in

amusement parks, Smart phone, Java Servlet.

1. INTRODUCTION

The many attractions in popular amusement parks make it

difficult for visitors to find the fastest way of moving about. A

visitor choosing a very slow route may become tired from

walking and waiting, and may miss the opportunity to ride a

desired attraction.

We believe that visitors can move around quickly if there is a

system to find the fastest order.

This traveling problem is similar to the traveling salesman

problem [1]. A traveling salesman must find the shortest

possible route that visits each city exactly once, given a list of

cities and their pairwise distances.

Research is being conducted to solve the attraction routing

problem by applying the traveling salesman problem. For

example, research is being conducted to propose how best to

move around the 2005 World Exposition in Aichi, Japan with a

two-opt method and a simulated annealing method, which are

among the meta-heuristics methods used to search for an

approximate solution [2].

Research is also being conducted to propose how to travel

efficiently with CPLEX [3].

However, such research has two problems. First, the research

employs a fixed waiting time and therefore is not a realistic

model. Second, we cannot actually use these systems.

Our goal is thus to develop a realistic model and a route search

system that visitors can use on a smart phone.

2. ATTRACTION DESCRIPTION

Target

We constructed a system for Tokyo Disneyland in Chiba

Prefecture in Japan as an example. A visitor chooses eight of

the thirty-one attractions he/she would like to visit. We assume

that the visitor can ride all attractions without considering cases

where the service is suspended.

Location of Attraction

Figure 1 presents a map of Tokyo Disneyland, and Table 1 lists

each attraction’s number, name, and type. The most popular

attractions are marked in a separate column. This popularity is

important for the present study, because our system focused on

estimating waiting times for popular attractions.

The shortest distance between attractions is measured with

"Kyorisoku" [4], a map service used to measure distance

provided by Mapion Co., Ltd. (a Japanese company). When we

measure distances, we use the map with Kyorisoku. We regard

walking speed as three kilometers per hour and used this value

for calculating the transit time.

We assumed that the attraction's entrance and exit are at the

center of the attraction and that the center point leads to the

nearest street because we do not know the exact layout.

We adopted data from the official site of Tokyo Disneyland [5]

for the seat-load time. Actual waiting times were published in

May 2013 by Tokyo Disneyland. We adopted an off-season

day and a very busy day, updating the waiting times every

thirty minutes. We utilized the site "Congestion expectation

calendar in Tokyo Disneyland" [6] to estimate the waiting time.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 8 - YEAR 2013 69

Business hours actually differ by date, but we assumed that

Tokyo Disneyland is open from 9 a.m. to 10 p.m.

3. SYSTEM OUTLINE

Program outline

In previous work, we constructed a system using a constraint

logic programming framework that is useful for optimization,

planning, scheduling resource allocation, timetabling, transport,

etc. [7]. However, due to the system integration required for a

real application, we created a search algorithm that was

implementable within a conventional procedural language,

specifically Java

A typical route search program for the traveling salesman

problem is based on the shortest-path algorithm proposed by

Dijkstra [8]. In this algorithm, the transit and waiting times are

fixed. In contrast, amusement parks have variable waiting times,

depending on the day of the week, holidays, and attraction

popularity. This means that the minimum traveling time should

be calculated within the waiting-time variation. We call this

type of program a dynamic shortest-path program (DSP), as

compared to a conventional shortest-path program (SP)

The visitor inputs the starting time, a list of attractions to be

visited, and the date, used to identify season-off or busy days.

The system outputs the minimum traveling time and the route.

The minimum traveling time is the time from starting at the

entrance to returning to the exit. The user can also determine

the minimum traveling time starting at any attraction and

returning to any attraction. As it happens, the entrance and the

exit are collocated in Tokyo Disneyland.

We present the following formula to calculate the time from

entrance to exit.

I: a set of attractions

T: a set of time zones

Mij: transit time from “attraction i ∈I”

 to “attraction j ∈I”

Mkg: transit time from “attraction k ∈I”

 to exit

Mgh: transit time from entrance to

 “attraction h ∈I”

Wit: waiting time at “attraction i ∈I”

 when time is t ∈T

Pi: time of stay at “attraction i ∈I”

A: a set of branches { (i , j) | i , j ∈I }

Figure 2 provides a DPS algorithm to find the minimum

traveling time. The global variable MIN_PATH is introduced

to store the tentative route in Line 2, and the global variable

MIN_TIME to store its traveling time in Line 3. The search

procedure is invoked with a set of attractions to be visited and a

set of paths traveled so far in Line 6.

The search procedure is recursive. If there are no attractions to

be visited, the procedure calculates a tentative travel time in

Line 10 and updates MIN_PATH and MIN_TIME in Lines 11-

13. Otherwise, an attraction is selected from

REMAINING_LIST, intermediate information is calculated in

Lines 17-20, and the search procedure is invoked recursively.

System structure

Our system is a web application with a Java Servlet. A Java

Servlet is a program for dynamically generating an HTML

document for a web page with Java. We constructed a dynamic

web site to be accessed by a smart phone to use this function.

Table 1. Attractions in Tokyo Disneyland

ID Name of attraction Popular
1 Splash Mountain ○
2 Space Mountain ○
3 Prates of the Caribbean
4 The Haunted Mansion ○
5 Big Thunder Mountain ○
6 Pooh's Hunny Hunt ○
7 It's a Small World
8 Star Tours ○
9 Jungle Cruise

10 Western River Railroad
11 The Enchanted Tiki Room
12 Westernland Shootin' Gallery
13 Country Bear Theater
14 Mark Twain Rivarboat
15 Tom Sawyer Island Rafts
16 Beaver Brothers Explorer Canoes
17 Peter Pan's Flight
18 Snow White's Scary Adventures
19 Pinocchio's Daring Journey
20 Dumbo The Flying Elephant
21 King Arthur Carrousel
22 Alice's Tea Party
23 Roger Rabbit's Car Toon Spin
24 Minnie's House
25 Mickey's House and Meet Mickey ○
26 Gadget's Go Coaster
27 Chip'n Dale's Treehouse
28 Donald's Boat
29 Buzz Lightyear ○
30 Star Jet
31 Autopia

Fig. 1. Attraction map

70 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 8 - YEAR 2013 ISSN: 1690-4524

Figure 3 illustrates our system structure. The system

incorporates Apache and Tomcat; Apache is used to build a

web server, and Tomcat is used for the Java Servlet.

First, a visitor accesses the web site with a smart phone. The

visitor then inputs the starting time, the date, and at most eight

attractions he/she would like to visit. This information is passed

to the Java program.

Note that this system is for Japanese people, so the output

needs to be translated into Japanese. The translation is

performed in Java.

When the above process is completed, the system will output

the total time, the traveling time, and the minimum route.

Finally, the result is displayed using the Java Servlet.

Interface

Our system has the following interfaces. Figure 4 depicts the

top-level interface. This is displayed when a visitor first

accesses our site. The visitor then inputs the starting time, the

date information, and the attractions to be visited. After two or

three seconds, the calculated information, including the

traveling time and the minimum route, will be displayed as

seen in Fig. 5. Here, for the smart phone interface, at least two

attractions, but no more than eight attractions, must be entered.

4. SYSTEM VERIFICATION

In this section, we demonstrate the effectiveness of our system.

Verification environment

The system employs the hardware and software listed in Table

2.

Fig. 4. Top-level interface

Fig. 5. Calculated information

Fig. 2. Dynamic shortest-path algorithm

Fig. 3. System structure

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 8 - YEAR 2013 71

Results

As a typical experiment setting, eight attractions are selected

and applied to a normal day (weekday) and a busy day

(holiday). The experiment measured the minimum traveling

times and the runtimes for the DSP and SP programs.

Table 3 lists the minimum traveling times and routes for the

eight popular attractions. DSP shortens the traveling times for

both normal and busy days. The reduction in traveling time is

quite effective, and the ranking of the route produced by SP is

dramatically improved. The number of total routes is 40,320

for the eight-attraction permutation, and the order of the route

determined by SP ranks 6940th for a normal day and 14,962th

for a busy day. This is also observed from the routes found by

DSP and SP. Figure 6 presents a minimum traveling route

which is quite unlike the shortest path in Fig. 7. Thus, DSP

suggests a reasonable route for efficiently visiting popular

attractions.

Table 4 lists the minimum traveling times and routes for eight

normal (i.e., less popular) attractions. The improvement in

traveling times due to DSP is small because their waiting times

do not influence the total traveling time. Actually, DSP

produced the top-ranked route for a normal day because the

waiting times for the less popular attractions are zero. As for a

busy day, the order of the route by SP is 4431th, with a small

improvement in the traveling times. Figures 8 and 9 illustrate

this situation.

Figure 10 presents the distributions of the minimum traveling

times for a normal day; Fig. 11 presents those for a busy day.

The total number of possible paths is 12,870, and the

histograms are constructed by calculating the minimum

traveling times produced by DSP (blue line) and DP (orange

line). For both figures, DSP produced a shorter traveling time

Table 2. Hardware and software used

CPU Intel Core i5 560M 2.56GHz
Memory 4.0 GB
OS Windows 7 Pro
Java JRE 1.7.0
Tomcat Tomcat 6.0
Apache Apache 2.2.3

Fig. 6. Route for popular attractions calculated by DSP

method on a busy day

Fig. 7. Route of popular attractions calculated by

SP method on a busy day

Table 3. Traveling times and routes for popular

attractions

Day Method
Traveling

time
Route

DSP 293 min. 29-2-25-5-4-1-6-8

SP 400 min. 5-1-4-6-2-25-8-29

DSP 715 min. 1-5-2-4-6-25-29-8

SP 827 min. 5-1-4-6-2-25-8-29

Normal

day

Busy

day

Table 4. Traveling times and routes for normal attractions

Day Method
Traveling

time
Route

DSP 86 min. 11-15-21-7-22-24-27-28

SP 86 min. 11-15-21-7-22-24-27-28

DSP 121 min. 24-27-28-21-7-22-15-11

SP 146 min. 11-15-21-7-22-24-27-28

Normal

day

Busy

day

Fig. 8. Route for normal attractions calculated by DSP

method on a busy day

72 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 8 - YEAR 2013 ISSN: 1690-4524

than that of SP. Note that oscillation occurs in the histogram on

a busy day due to the variability of waiting times for each

attraction.

We also calculated the runtime of our system, as seen in Fig. 12.

The resulting performance is practical because most users

specify at most eight attractions to be visited and requires 10

hours to visit popular attractions. Even in this extreme case, the

running time to find the minimum traveling time is about 0.1

second for nine attractions.

5. CONCLUSION

This study constructed a system for searching routes at Tokyo

Disneyland using a smart phone and presented the system

outline and interface. Additionally, we compared the average

total time with the time calculated by our system and concluded

that our system is useful because it reduces the time required

by about 100 minutes.

6. REFERENCES

[1] S. Lin, B. W. Kernighan, An Effective Heuristic

Algorithm for the Traveling-Salesman Problem,

Operations Research 1973,Vol. 21, No. 2, pp. 498-516.

[2] Yuki M., Hisayoshi, S., Miho T, OR of Amusement park

－ as an example of The 2005 World Exposition, Aichi,

Japan, (in Japanese), Available: http://www.seto.nanzan-

u.ac.jp/msie/grthesis/ms/2005/index.html

[3] Syouta H., Yuka H. Daisuke N., The minimum route in

universal studio Japan, (in Japanese), Available:

http://www.seto.nanzanu.ac.jp/msie/gr-

thesis/ms/2007/04mm10.pdf

[4] http://www.mapion.co.jp/route/

[5] http://www.tokyodisneyresort.co.jp/tdl/

[6] http://www15.plala.or.jp/gcap/disney/

[7] Shibuya Takahiro, Ohwada Hayato, A Constraint-Based

Route Search System for Smart Phone in Attraction

Facilities, IMCIC 2012, pp. 111-115.

[8] Dijkstra, E.W., A Note on Two Problems in Connexion

with Graphs, Numerische Mathematik, 1959, Vol. 1, pp.

269-271.

Fig. 9. Route for normal attractions calculated by SP

method on a busy day

Fig. 10. Traveling-time distribution on a normal day

Fig. 11. Traveling-time distribution on a busy day

Fig. 12. Average running time

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 11 - NUMBER 8 - YEAR 2013 73

	iZA838OE

