

Tanjila Farah, Rashed Shelim

 Department of Electrical & Computer Engineering, North South University
Dhaka, Bangladesh

Moniruz Zaman, Delwar Alam

Department of Software Engineering, Daffodil International University
Dhaka, Bangladesh

ABSTRACT

The Race condition is a privilege escalation vulnerability that
manipulates the time between imposing a security control and
using services in a UNIX like system. This vulnerability is a
result of interferences caused by multiple sequential threads
running in the system and sharing the same resources. Race
condition could occur due to sequence condition imposed by
un-trusted processes or locking failure condition imposed by
secure programs such as operating systems. The race condition
is a common vulnerability in UNIX-like systems, where
directories such as /tmp and /var/tmp are shared between
threads. A study of Race condition vulnerability and its impact
in UNIX like systems are presented in this paper. Also various
types of Race condition attack and there detection, avoidance
and prevention techniques are also discussed in this paper.

Keywords: Race Condition, Vulnerability, Privilege Escalation,
Critical Section, Dirty COW, Semaphore.

1. INTRODUCTION

One very imperative aspect of performance of parallel
computing is shared-memory. In various parallel programming
models, processes/threads share a common address space,
which they read and write to asynchronously [1]. In this model
all processes have equal access to shared memory. Various
mechanisms such as locks and semaphores may be used to
control access to the shared memory. In parallel programming a
program is a collection of threads where each thread has a set of
private variables (i.e. local stack variables) and shared variables
(i.e. static variables, shared common blocks, or global heap) [2].
Threads communicate by writing and reading shared variables
and coordinate by synchronizing on shared variables.

A race condition occurs in a shared memory program when two
threads access the same variable using shared memory data, and
at least one thread executes a write operation. The accesses are
concurrent (not synchronized) so they could happen
simultaneously [12]. Race conditions may occur when shared
data accesses are not synchronized properly but the execution
result depends on the order of threads [3]. Access to shared
memory data access is controlled by critical sections. Yet
without synchronization, shared variables accessed through
critical section may be corrupted by threads.

All systems comprising multiprocessing environment are
vulnerable to Race condition attack. Race condition is also
known as Time of check/time of use (TOC/TOU) binding flaw,
Concurrency attacks, or Threadjacking [3]. Typical race
condition attacks involve opening and validating a file, running

a subprogram, checking a password, or verifying a username
and more.

This paper attempts to present a study of the race condition
vulnerability and its various exploits. Various detection,
avoidance, and preventions techniques of this attack are also
discussed in this paper. The paper is organized as follow. A
literature review on race condition attack is presented in section
2. In Section 3 various key points of race condition are
discussed. In section 4 an analysis of the process of race
condition attack is presented. The detection and avoidance
mechanism of Race condition is discussed in Section 5. Various
exploits of race condition are discussed in Section 6. The
prevention mechanism of race condition and its issues are
discussed in Section 7. We conclude in Section 8.

2. LITERATURE REVIEW

Several papers [1], [2], [3] have defined Race condition. The
following work [4], [5], [7], [8] deal with race condition
detection techniques. Papers [7], [9] deal with possible solutions
of race condition. In [3] authors explain the time to check time
to use (TOC/TOU) method in the critical section. They also
propose a run-time model that detects TOC/TOU binding flaws
on the file space. In [4] presents an algorithm for dynamically
detecting race conditions in programs. This algorithm computes
the order in which synchronization operations are guaranteed to
have occurred. In [7] authors provide formal definition of direct
and indirect information flow. In [8] authors defined anomalies
of race conditions that are causing concealing deadlocks and
results in hangs. None of the previous works discussed various
exploits of race condition and their techniques and effects in
popular application. Our goal is to provide an analysis of
various exploits of race condition. We also discuss the coding
of these various exploits and there detection and prevention
techniques.

3. RACE CONDITION ITS ELEMENTS

A race condition is a special condition that may occur inside a
critical section handling multithread [1]. When the results of
multiple threads executing in critical section differ depending
on the sequence in which the threads are being execute, the
critical section is said to contain a race condition. In this
section, the elements of race condition and the process of race
condition itself is discussed.

Thread
Thread is a process of separating the different applications that
are executing at time in a computer. It is a program's path of
execution. Threads execute processes. The operating system
assigns processor time to threads for the execution of its tasks

Study of Race Condition: A Privilege Escalation Vulnerability

and

22 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 16 - NUMBER 1 - YEAR 2018 ISSN: 1690-4524

[3]. A single process may contain multiple threads of execution.
Threads maintain their own exception handlers, scheduling
priorities, and a set of structures that the operating system uses
to save the thread's context. Threads are different then processes
because processes usually cannot directly share memory and
data structures while threads can.

Multithread
Systems require multiple processes to run at the same time such
as drawing pictures while reading keystrokes [4]. An operating
system that allows multitasking creates the effect of
simultaneous execution of multiple threads from multiple
processes by dividing the available processor time among the
threads in process[7]. This is known as multithreading. These
threads share the process resources but execute independently.
The operating system allocates a processor time to each thread
one after another. The currently executing thread is suspended
when it’s time ends and another thread resumes. The threads are
executed within the same program and thus reading and writing
the same memory simultaneously.

Critical Section
A Critical Section of a program is where global shared memory
is being accessed. It is a section of code that is executed by
multiple threads [12]. Here the sequence of execution for the
threads makes a difference in the result of the concurrent
execution of the critical section [8]. While executing multiple
threads inside the same application, multiple threads might
access (i.e. read, write) same resources. This might initiate race
condition vulnerability for the system [9]. Figure 1 shows a
subtraction function java code for critical condition.

Figure 1: A critical section Java code

If two threads, X and Y, are executing the sub() method on the
same instance of the Example class it will not be possible to
know when the operating system switches between the two
threads. The code in the sub() method is executed a set of
smaller instructions as shown in Figure 2.

Figure 2: Set of instructions for Subtract function

The two threads wanted to subtract the values 2 and 5 to the
Example. In Figure 2 both threads read the value 50 from
memory and attempted to subtract 2 and 5 from 50 thus the
value should have been 43 after the threads are executed.
However, since the execution of the two threads is interleaved,

the result became 45. Thus thread X was ignored in the process.
Inside a critical section process has exclusive access to shared
modifiable data. To reduce any possibility of errors in critical
section semaphore is introduced.

4. RACE CONDITION ATTACK

Race condition manipulates the time to check/ time to use
(TOC/TOU) time gap between the threads in the critical section
and thus create disorientation in the shared data [3]. The
example of race condition in a transaction scenario is shown in
Figure 3. In a regular transaction only one request is executed in
one thread. In Race condition attack multiple request is
processed is processed on the same shared data as shown in
Figure 3. In the scenario a two withdraw request is sent in same
thread using the same shared data and only the second transfer
information was saved in the system [9]. This happened because
the time TOC between TOU for request1 is long enough that
request2’s TOC and TOU started processing.

Figure 3: A race condition example

Usually two requests in the same thread won’t take place, yet if
huge number of request is send to the system within a very short
time, the TOC/TOU of two threads will overlap at some point
create race condition possible.

 Code analysis: In this section we will analyze an
example race condition code. Consider the following PHP code
in Figure 4 for withdrawing money or credits from online
account. For getting current balance, getCurrentBalance()
function and for saving balance setUserBalance() function is
used. getCurrentBalance() will check if there is enough money
to withdraw ,and if so it will process the withdraw request and
decrees the money. But this function takes less than half a
millisecond to run and race condition exploit can be executed
with in this half millisecond which will allow the attacker to
withdraw money without decreasing the total balance.

public class Example {
 protected long count = 0;
 public void sub(long value){
 this.count = this.count - value;
 }
 }

this.count = 50;

 X: Reads this.count into a register (50)
 Y: Reads this.count into a register (50)
 Y: Sub value 2 to register
 Y: Writes register value (48) back to memory. this.count now
equals 48
 X: Sub value 5 to register
 X: Writes register value (45) back to memory. this.count now
equals 45

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 16 - NUMBER 1 - YEAR 2018 23

Figure 4: Example code for balance transfer

This above code section is our critical section. To implement
race condition attack simultaneous requests needed to be sent to
the system. By sending simultaneous requests it is anticipated
that at least one request will reach the system within the half
millisecond processing time. Python script shown in Figure 5
sends 128 simultaneous requests to the system for withdrawing
$100 each time.

Figure 5: Example python script for representing attack

So if the starting balance is $30,000. After withdrawing 128 *
$100 =$12800 remaining balance should be $17200. But due to
race condition the final amount of money will not be $17200.
More Credit will be left in user account as web server will
execute queries asynchronously. Two request of executed in the
same time will be interleaved by the operating system's CPU
time sharing system. As a result, after processing 128 requests
only $100 will be deducted from the user account. This is
because the getCurrentBalance () function will be executed
before calling setUserBalance($balance) function from the
previous request. This process is shown in Figure 6.

 Figure 6: Race condition scenario in code

5. DETECTION AND AVOIDANCE OF RACE
CONDITION

The most common symptom of a race condition is
unpredictable values of variables that are shared between
multiple threads. Race conditions generally involve one or more
processes accessing a shared resource (such a file or variable),
where this multiple access has not been properly controlled.
Due to the control issue a process may interrupt another running
process between essentially any two instructions. Race
condition could occur due to interference caused by un-trusted
processes and interference caused by trusted processes.

Race condition caused by interference from un-trusted process
is also known as “sequence” or “non-atomic” condition. This
condition is caused by processes running various programs at
the same time, which accesses shared memory between steps of
the secure program. Loading and saving a shared variable are
usually implemented as separate operations and are not atomic.
So if the variable memory is shared the other process may
interfere. Secure programs must determine if a request should
be granted, and if so, act on that request. There must be no way
for an un-trusted user to change anything used in this
determination before the program acts on it. In Linux like
systems the filesystem is a shared resource used by many
programs, and some programs may interfere with its use by
other programs. Secure programs should generally avoid using
access(2) to determine if a request should be granted, followed
later by open(2), because users may be able to move files
around between these calls, possibly creating symbolic links or
files of their own choosing instead [14]. A secure program
should instead set its effective id or filesystem id, and then
make the open call directly. It's possible to use access(2)
securely, but only when a user cannot affect the file or any
directory along its path from the filesystem root. Regular
programs can become security weaknesses if files are not
created properly. For another example, when performing a
series of operations on a file's meta-information (such as
changing its owner, stat-ing the file, or changing its permission
bits), first open the file and then use the operations on open
files. This means use the fchown(), fstat(), or fchmod() system
calls, instead of the functions taking filenames such as chown(),
chgrp(), and chmod(). Doing so will prevent the file from being
replaced while your program is running (a possible race
condition).

Race conditions caused by trusted processes are also known as
deadlock, livelock, or locking failure conditions. These are
conditions caused by processes running the ``same'' program.
Since multiple processes may have the ``same'' privileges, they
might interfere each other due to lack of proper control. Unix-
like systems resource locking has traditionally been done by
creating a file to indicate a lock, because this is very portable.
Administrator privilege can easily to fix stuck locks. Stuck
locks can occur because the program failed to clean up after
itself. It's important that the programs which are cooperating
using files to represent the locks use the same directory, not just
the same directory name such as “/var/mail”. Another approach
to locking is to use POSIX record locks, implemented through
fcntl(2) as a ``discretionary lock'' [14].

6. VARIOUS EXPLOITS RACE CONDITION

Exploits based on race conditions are delicate. They typically
require repeated attempts to be executed. Race condition

24 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 16 - NUMBER 1 - YEAR 2018 ISSN: 1690-4524

exploits existed in Firefox 2007, Internet explorer 2011,
Windows shortcut link 2010, and in Linux operating system as
Dirty copy on write.

Firefox v2.0.0.10 race condition
Mozilla Firefox version older then 2.0.0.10 is vulnerable to race
condition in the handling of the window.location property [13].
The referrer header of these older versions Mozilla Firefox are
set to the window or frame in which script is running, instead of
the address of the content that initiated the script, which allows
remote attackers to spoof HTTP referrer headers and bypass
referrer-based CSRF protection schemes by setting
window.location and using a modal alert dialog that causes the
wrong referrer to be sent.

Race condition in Pulse Audio
Pulse Audio is a network-enabled sound server is Linux
operating system. Race condition in PulseAudio 0.9.9, 0.9.10,
and 0.9.14 allows local users to gain privileges via vectors
involving creation of a hard link, related to the application
setting LD_BIND_NOW to 1, and then calling execv on the
target of the /proc/self/exe symlink [13]. A user who has write
access to any directory on the file system containing /usr/bin
can exploit the race condition vulnerability to execute arbitrary
code with root privileges.

Windows Shortcut Link
Windows Shell in Microsoft Windows XP SP3, Server 2003
SP2, Vista SP1 and SP2, Server 2008 SP2 and R2, and
Windows 7 allows local users or remote attackers to execute
arbitrary code via a crafted (1) .lnk or (2) .pif shortcut file,
which is not properly handled during icon display in Windows
Explorer [13]. The .lnk file is vulnerable to race condition as it
executes the downloaded dll file 3 times simultaneously. This
hinders the proper exploitation of the victim in case the payload
dll tries to write any file on the disk or tries to access and
change any other resource on the victim system.

Dirty copy on write (COW)
Dirty Copy on Write also known as Dirty COW is a Linux
based Race condition vulnerability. This vulnerability allows
attackers to escalate the file system protection of Linux Kernel,
get root privilege and thus compromise the whole system [10].
The dirty COW exploit call the root file as a read only file.
Using “mmap” function a new virtual space is created for the
file to be changed and then MAP PRIVATE tag is used to
create a copy of the original root file. Every time the exploit is
ran, it will create a copy of the original file. This file is edited as
please. The ’madviseThread’ function is used to locate the
memory address range assigned to the main root file. The
“procselfmemThread” is used to trick the system in believing
that the memory range of the main root file is empty and write
the copy file [10]. Thus the access is gained.

Internet Explorer Race condition
Microsoft Internet Explorer 6 through 8 are vulnerable to Race
condition attack [13]. These versions allow remote attackers to
execute arbitrary code or cause a denial of service (memory
corruption). This is also known as "Window Open Race
Condition Vulnerability. An attacker compiles a web page with
malicious code and when a user visits this page, the exploit
happens. This is similar to cross site scripting attack.

Race condition vulnerabilities in the setuid-root/usr/ bin/at

This race condition exploit binary allows removing any file on
the filesystem. “At” utility reads commands from standard input
and groups them together as an “at-job”, to be executed at a
later time. Each “at-job” is kept in separate file in at spool
directory. “At” jobs may be removed if “-r” option is used with
a job-id parameter to the “at’ command. However, there are two
vulnerabilities within the code that removes “at” from at spool
directory.At utility does not properly handle job ids specified as
a parameter to the “-r” option. It allows removing jobs outside
of “at” spool directory if relative path name is used. Only
absolute path names are filtered out.

“At” verifies ownership of the file and limits the user to remove
only its own “at”. Unfortunately, a race condition occurs after
“at” verifies the file and before the file is unlinked. By altering
directory structure between these two system calls, “at” may be
fooled to remove file other than it expects.Since this code is
executed with full root privileges, these two vulnerabilities may
allow unprivileged users to remove any files on the filesystem.

Linux kernel PTrace Race Condition
This exploit of Red Hat and affects Linux kernel up to 2.6.29
release. The vulnerability is located in ptrace_attach() routine of
kernel/ptrace.c [11]. Here ptrace_attach() uses the current
process’ MUTEX to lock and serialize the two tasks (the current
one, and the one passed to that function as an argument) as
shown in Figure 7. However, the code incorrectly uses the
current task’s cred_exec_mutex instead of the task’s to be
traced. This creates a race condition which allows a user to
ptrace(PTRACE_ATTACH) during the execution of an
execve() call to a SUID binary [11]. But this new member
(cred_exec_mutex) was added to the task_struct to avoid
exactly this behavior. This can lead to local privilege escalation.

Figure 7: Ptrace code with vulnerability

7. PREVENTION OF RACE CONDITION ATTACK

The typical solution to a race condition is to ensure that your
program has exclusive rights to shared data while it's
manipulating the process of gaining an exclusive right to the
data is called locking [11]. Locks aren't easy to handle correctly.
Semaphore system is used to synchronize the locks.

Semaphore
A Semaphore is a thread synchronization system that can be
used either to send signals between threads to avoid missed

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 16 - NUMBER 1 - YEAR 2018 25

signals, or to guard a critical section [12]. A semaphore can act
as a gate way to critical section. Status of the gate is either open
(raised) or closed (lowered). If a thread wants to access data
through critical section, it executes a P operation. If gate is
open, process enters and closes gate behind it. Semaphore
ensures only one thread get access to critical section data at a
time. The java code for semaphore is shown in Figure 8.

Figure 8: Code for semaphore

Semaphore is also used to limit the number of threads allowed
into a section of code. One common problem of lock is a
deadlock in which programs get stuck waiting for each other to
release a locked resource [12]. Most deadlocks can be prevented
by requiring all threads to obtain locks in the same order.

Deadlock
A deadlock occurs when two threads each lock a different
variable at the same time and then try to lock the variable that
the other thread already locked [12]. As a result, each thread
stops executing and waits for the other thread to release the
variable. Because each thread is holding the variable that the
other thread wants, nothing occurs, and the threads remain
deadlocked. An example of deadlock is shown in Figure 9. In
the example thread 1 locks A, and tries to lock B, and thread 2
has already locked B, and tries to lock A, a deadlock arises [12].
Thread 1 can never get B, and thread 2 can never get A. In
addition, neither of them will ever know. They will remain
blocked on each their object, A and B, forever. This situation is
a deadlock.

Figure 9: A deadlock scenario

Race conditions exceptions are unchecked exceptions which
occur only in the runtime, and cannot be detected by the
compiler. In order to prevent them, synchronized block should
be used around the shared resource to prevent multiple accesses
at a time.

8. CONCLUSIONS

In this paper we have presented an analysis of race condition
attack, its components, and an example technique. Moreover we
have surveyed various exploits of race condition and their
affected applications. We have found out, Firefox and Internet
explorer web browser have been vulnerable to race condition
attack. Various versions of Windows and Linux operating

systems are still at risk of race condition attack. Exploit like
Dirty COW has just been released in October 2016. This
indicates that even after good number of research in the field
there exists a gap between existing the detection and prevention
techniques of race condition. In various cases this vulnerability
exists due to the lack of programmer’s knowledge. As per
countermeasures the programmers should employ some
synchronization primitives in order to explicitly serialize the
process accesses to critical regions. They might also use a two
phase save algorithm with fine tuned error handling to address
the issue.

9. REFERENCES

[1] S. Carr, J. Mayo, and C.K. Shene, "Race Conditions: A Case
Study", Journal of Computing Sciences in Colleges, vol. 17,
no. 1, pp. 90–105, Oct. 2001.

[2] R. H. Netzer and B. P. Miller. "What are race conditions?
some issues and formalizations". ACM Letters on
programming Languages and Systems, 1(1):74–88,
Mar.1992.

[3] K. Lhee and S. J. Chapin, "Detection of file-based race
Conditions ". International Journal of Information Security,
pages 105–119, February 2005.
[4] R. H. B. Netzer, and S.Ghosh, "Efficient race condition
detection for shared-memory programs with post/wait
synchronization". in Proceedings of the 1992 International
Conference on Parallel Processing, St. Charles, IL, Aug. 1992.
[5] C. Flanagan and S. N. Freund, "Detecting race conditions in
large programs," in Proceedings of the 2001 ACM
SIGPLANSIGSOFT workshop on Program analysis for
software tools and engineering, New York, NY, USA, pp. 90–
96, ACM, 2001.
[6] M. Bishop, and M. Dilger "Checking for race conditions in
file accesses". Computer System, pp 131–152.
[7] J. Rouzaud-Cornabas, P. Clemente, & C. Toinard, "An
Information Flow Approach for Preventing Race Conditions:
Dynamic Protection of the Linux OS". in Fourth IEEE
International Conference on Emerging Security Information
Systems and Technologies, pp. 11-16, Jul 18, 2010.
[8] A. T. Do-Mai, T. D. Diep, & N. Thoai, "Race Condition and
Deadlock Detection for Large-Scale Applications". in 15th
IEEE International Symposium on Parallel and Distributed
Computing (ISPDC), pp. 319-326, Jul 8 2016.
[9] E. Tsyrklevich & B. Yee, "Dynamic detection and
prevention of race conditions in file accesses," in Proceedings
of the 12th conference on USENIX Security Symposium
(SSYM’03), Berkeley, CA, USA, pp. 17–17, 2003.
[10] T. Farah, R. Rahman, M. S. Hossain, D. Alam, & M
Zaman, "Study of the dirty copy on write, a linux kernel
memory allocation vulnerability" in Proceedings of 3rd
international conference on electrical engineering and
information technology, Dubai, UAE, June 9-11, 2017.
[11] "Linux kernel PTrace Race Condition". [online] Available:
https://xorl.wordpress.com/2009/05/08/linux-kernel-ptrace-
race-condition. accessed 9th June 2017.
[12] "Race Conditions and Critical Sections". [online]
Available:http://tutorials.jenkov.com/java-concurrency/race-
conditions-and-critical-sections.html. accessed 9th June 2017.
[13] "Race Condition Exploits". [online] Available:
http://cecs.wright.edu/~pmateti/InternetSecurity/Lectures/Race
Conditions/. accessed 9th June 2017.
[14] "Avoid Race Conditions". [online] Available:
http://tldp.org/HOWTO/Secure-Programs-HOWTO/avoid-
race.html. accessed 19thSeptember 2017.

Thread 1 locks A, waits for B
Thread 2 locks B, waits for A

public class Semaphore {
 private boolean signal = false;
 public synchronized void take() {
 this.signal = true;
 this.notify(); }
 public synchronized void release() throws
InterruptedException{
 while(!this.signal) wait();
 this.signal = false; }
}

26 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 16 - NUMBER 1 - YEAR 2018 ISSN: 1690-4524

	SA025BU17.pdf

