
A Program Recognition and Auto-Testing Approach
      Wen C. Pai                  Chin-Ang Wu

Dept. of Business Mathematics          Computer Center
              Soochow University         Chengshiu Institute of Technology

             Taipei 100, Taiwan          Kaohsiung County 833, Taiwan
      E-mail: wencpai@ms1.hinet.net        E-mail: cwu@cc.csit.edu.tw

Abstract
The goals of the software testing are to

assess and improve the quality of the
software. An important problem in software
testing is to determine whether a program
has been tested enough with a testing
criterion. To raise a technology to
reconstruct the program structure and
generating test data automatically will help
software developers to improve software
quality efficiently. Program recognition and
transformation is a technology that can help
maintainers to recover the programs’
structure and consequently make software
testing properly. In this paper, a
methodology to follow the logic of a
program and transform to the original
program graph is proposed. An approach to
derive testing paths automatically for a
program to test every blocks of the program
is provided. A real example is presented to
illustrate and prove that the methodology is
practicable. The proposed methodology
allows developers to recover the programs’
design and makes software maintenance
properly.
Keywords: Software quality, Software
testing, Program transformation, Program
recognition, Reverse engineering

1. Introduction
Software testing is under heavy

pressure to carry out the higher quality
software as quickly as possible. The major
effort in software engineering is spent after
development on maintaining the systems to
remove existing errors and to adapt them to
changed requirements. As needs change,
software must be amended, or maintained,
to adapt to the new environment. Without an
adequate understanding of a program’s
meaning, it is difficult to maintain it
effectively. Maintainers often spend
considerable energy trying to recover the
design information before making changed.
If there is no information about original
design, the software becomes obsolete, and

the enormous resources invested in its
construction are lost.

Software testing is labor intensive and
costly in software development. In a typical
programming project, over 50% of the total
cost are expended in testing the program or
system. Testing consumes the majority of
the software developers' effort of all the
phases of system development.

Although a number of technologies or
CASE tools are developed to help the
developers to test program. However, these
are almost giving effort in finding syntax-
type error or program tracing. The static
testing technologies are still the main testing
approach in the real information
development world. These approaches
inspect the program by reading the code line
by line, but not walking test cases through
the program. To raise a technology to
reconstruct the program structure and
generating test data automatically will help
software developers to improve software
quality efficiently.

Program understanding and
transformation is a technology that can be
applied at least three areas in software
engineering [3]. 1) Automatic programming
is concerned with automated generation of a
program from a description of the problem.
2) Program modification is used to change
the behavior of a program such as functional
enhancement. 3) Reverse engineering
applies transformations from code to
specification direction.

A lot of researches of program
understanding and transformation are
proposed. The PAT system, proposed by
Harandi and Ning [2], uses interval logic to
express semantic information such as
control flow dependencies among sub-
concepts in order to facilitate computation
and reasoning of abstract concepts. Rich and
Wills [4] built a prototype to find all
occurrences of a given set of clichés in a
program automatically, and build a
hierarchical description of the program in

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 1 - NUMBER 318



terms of the clichés it finds. The
transformation-based maintenance model, or
TMM, developed by G. Arango, I. Baxter, P
Freeman and C. Pidgeon [5], which use
design histories of the code such as program
specifications and the set of design
decisions used to implement the program.
They assume the design information is
availability and accuracy. However, such
design histories of the code is often rarely
complete and reliable.

In this paper, a methodology to follow
the logic of a program and transform to the
original program graph is proposed. The
proposed methodology is a reasonable and
useful process that will allow maintainers to
recover the programs’ design and will make
software maintenance properly.

Section 2 defines a number of program
transformation rules. The program
transformation algorithm is raised in Section
3. Section 4 gives a real example to
illustrate the transformation process. Section
5 presents the conclusion and the future
works we intend to finish.

2. Program recognition and
transformation rules

Program graph is a useful approach to
represent the logical control flow of a
program. The maintainers can understand a
program’s flow by analyzing the program
graph. The program graph can help
maintainers to know the structure of a
program, to test the program, and to derive
testing paths

In general sense, the transformation of
a program is viewed as a process of
rewriting one program into another by
repeated application of a set of
transformation rules. Since a program is a
combination of statements (or instructions),
we can decompose a program into eight
typical statement types, and define some
transformation rules based on each
statement type. Base on the transformation
rules, a program will be analyzed and
transformed to the program graph. The
program graph then used to understand and
modify the program.

 There are eight typical statement types
in a program: (1). Sequence statements,
such as READ, WRITE, DEFINE a
variable, OPEN a file... etc., (2). While-loop
statements, (3). For-loop statements, (4). If-

then-end statements, (5). If-then-else-end
statements, (6). Repeat-loop statements, (7).
Switch-case-with-default statements, and
(8). Switch-case-without-default statements.
Each statement type, or statement type set of
the Sequence statements, essentially
corresponding to a block in the program. In
the paper we will derive testing paths
automatically for each of the statement
types to test every blocks of the program.

We will raise eight statement-
statement flow transformation rules in the
following. Although the eight statements
types presented in the paper may be not in
general condition, however, the other
structured language can be considered in the
similar approach. These rules will be used in
the next section to transform a program. The
approach of testing paths generating will
also consider in the next section.

Rule 2.1 Sequence statements
transformation rule
The statement flow of sequence

statements is

A

For example, when transform a
Microsoft FoxPro program as:

USE Vfpfile.dbf
BROWSE for I_qty > 15000
CLOSE ALL

The transformed program flow based
on the rule 2.1 is

A

From the flow, maintainers can
maintain the program according to the
program flow instead of considering the
original program meaning, which will lead
to maintain more efficiency.

Rule 2.2 If-Then-End statements
transformation rule
The statement flow of If-Then-End

statements is

USE Vfpfile.dbf
BROWSE for I_qty > 15000
CLOSE ALL

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 1 - NUMBER 3 19



A

B

C

Rule 2.3 If-Then-Else-End statements
transformation rule

The statement flow of If-Then-Else-
End statements is

A

CB

D

Rule 2.4 Switch-Case-With-Default
statements transformation rule

The statement flow of Switch-Case-
With-Default statements is

A

N1 N2 Nk

B

.  .  .

Rule 2.5 Switch-Case-Without-Default
statements transformation rule

The statement flow of Switch-Case-
Without-Default statements is

A

N1 N2 Nk

B

.  .  .

Rule 2.6 For-loop statements transformation
rule

The statement flow of For-loop
statements is

A

C

B

Rule 2.7 While-loop statements
transformation rule

The statement flow of While-loop
statements is

A

C

B

Rule 2.8 Repeat-loop statements
transformation rule

The statement flow of Repeat-loop
statements is

A

B

C

Syntactically, a program is a
combination of statements. We can
transform a whole program by first
transforming each statement, and then
combining the statement flow to a whole
program graph. Maintainers to understand,
audit, and modify the program can use the
combined program graph. This will make
maintenance works more efficiency. The
program transformation rule is given in the
Theorem 2.1.

Theorem 2.1 Program transformation rule
P={S1, S2, … , Sn} is a program with

statements S1, S2, … , Sn sequence. F1, F2,
… , Fn are the corresponding statement flows
of S1, S2, … , Sn transformed with definition
2.1 to 2.8.

Set G is the program graph of P
⇒  G= F1+ F2+ … ,+ Fn is a

combination of F1, F2, … , Fn
Proof:

Set F1, F2, … , Fn are the
corresponding statement flows of S1,

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 1 - NUMBER 320



S2, … , Sn transformed with definition
2.1 to 2.8 as following:

F1 : S1 →  F1

F2 : S2 →  F2

.

.

.
Fn : Sn →  Fn

Define F : P={S1, S2, … , Sn}→  G
1)

If ∃ Si

∋  Si →  Fi’+ Fi+1’, where Fi’+ Fi+1’≠ Fi
such that
F : P={S1, S2, … , Si, … , Sn}→  G= F1+
F2+ … ,+ Fi’+ Fi+1’+ … ,+ Fn

Since Fi : Si →  Fi ,
Based on definition 2.1 to 2.8, it is a
contradiction!

2)
If G= F1+ F2+ … +Fi’+… ,+ Fn such that

∃ Si and Si+1

∋  Si + Si+1 →  Fi’, where Fi’ ≠ Fi+ Fi+1

⇒  It is trivial that Si and Si+1are
sequence statements
⇒  Si and Si+1 are in the same block
⇒  Si and Si+1 can be combined to one
statement block Si’

Then F : P={S1, S2, … , Si, Si+1,… , Sn}→
G= F1+ F2+ … +Fi’+… ,+ Fn

⇔   F : P={S1, S2, … , Si’,… , Sn}→
G= F1+ F2+ … +Fi’+… ,+ Fn

i.e., the program graph G=F1+ F2+ … ,+
Fn is a combination of F1, F2, … , Fn, and
the proof is completed.

Based on the transformation rules 2.1
to 2.8 and theorem 2.1, we can decompose a
program into a series of statements and
transform them to a series of statement
flows. The program graph of the whole
program is a combination of these statement
flows, then the program graph can be used
to understand the program. The process of
the transformation and combination will be
illustrated with a real example in the next
section.

3. An algorithm
In a software testing job, a number of

testing paths are derived after function
requirements be defined and reviewed. A
testing path is derived according to the
program flow, and software testers must

decide what test data will be used. These
jobs are processed by reviewing the
program flows. If the program flow and
testing paths can be provided automatically,
it will help testers to test software more
efficiency. In this section, a program
transformation algorithm is proposed
according to the transformation rules
presented in the previous section.

To give the algorithm of the program
transformation, we must build an instruction
table, which lists the transformation rules
between statement and statement flow
according to definition 2.1 to 2.8. Based on
the instruction table, we transform each
instruction of the program to the
corresponding flow. The program graph is a
combination of these flows after the
program is completely scanned.

The algorithm of program
transformation is giving in the following.

algorithm
PROGRAM_TRANSFORMATION
begin

get PROGRAM
set START_NODE

set NEW_NODE
move POINTER to NEW_NODE
while not END_OF_PROGRAM

read next INSTRUCTION
search INSTRUCTION_TABLE
if INSTRUCTION = SEQUENCE_STATEMENT

skip
else  /* the other statement types */

set NEW_NODE (or NODES)
/* according to the instruction table */

move POINTER to NEW_NODE
/* according to the instruction table */

end {if}
end {while}
set END_NODE

end { PROGRAM_TRANSFORMATION }

In the next section, we will illustrate
the transformation approach with a program
written with FoxPro language.

4. An example
The real example giving in the

following is a program of a MEMBER
MANAGEMENT INFORMATION
SYSTEM and is written with Microsoft
FoxPro language.

We scan the program and transform to

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 1 - NUMBER 3 21



program graph with those rules illustrated in
Section 2. The transformed program graph
of the program is showed in the Figure 1
and the steps of building program flow are
showed in Table 1.

1   ********** A FoxPro Program *****
2   ********************************
3   SET TALK OFF
4   PRIVATE LOP
5   STORE "F" TO LOP
6     DO WHILE LOP="F"
7   ******** CHOOSING FILE ****************
8   STORE " " TO ANS
9   CLEAR
10     @  13,30 SAY "Query..." FONT "Times New Roman",
14
11     @  17,30 SAY " Choosing file and press ENTER "
FONT "Times New Roman", 14;
12        GET ANS FONT "Times New Roman", 14
13        READ
14  FL=DBF()
15  ************ INITIALIZE **********
16  STORE "N" TO ANS
17  DO WHILE ANS<>"Y" .and. ANS<>"y"
18      STORE "  " TO YYUP
19      STORE "  " TO MMUP
20      STORE "  " TO DDUP
21      STORE "  " TO YYLOW
22      STORE "  " TO MMLOW
23      STORE "  " TO DDLOW
24  *******************
25  CLEAR
26     @   7,15 SAY "Records Setting … " FONT "Times New
Roman" , 14
27     @   9,15 SAY "Date From Year:" FONT "Times New
Roman" , 14;
28        GET YYLOW FONT "Times New Roman", 14
29        READ
30    @  12,25 SAY "Month:" FONT "Times New Roman" ,
14;
31        GET MMLOW FONT "Times New Roman", 14
32        READ
33    @  15,25 SAY "Day:" FONT "Times New Roman" , 14;
34        GET DDLOW FONT "Times New Roman", 14
35        READ
36    @  18,15 SAY "Until Year:" FONT "Times New
Roman" , 14;
37        GET YYUP FONT "Times New Roman", 14
38        READ
39    @  21,25 SAY "Month :" FONT "Times New Roman" ,
14;
40        GET MMUP FONT "Times New Roman", 14
41        READ
42    @  24,25 SAY "Day :" FONT "Times New Roman" ,
14;
43        GET DDUP FONT "Times New Roman", 14
44        READ
45    @  27,21 SAY "Are You Sure(Y/N)?" FONT "Times
New Roman" , 14;
46        GET ANS FONT "Times New Roman", 14
47        READ
48  ENDDO
49  ********************
50  STORE "N" TO ANS
51  DO WHILE ANS<>"Y" .and. ANS<>"y"
52      STORE "  " TO HB
53      STORE " " TO DV
54  *******************
55  CLEAR
56    @   7,15 SAY "Unit Code..." FONT "Times New
Roman" , 14
57    @   9,15 SAY "Hombu..." FONT "Times New Roman" ,

14;
58        GET HB FONT "Times New Roman", 14
59        READ
60    @  12,15 SAY "Division..." FONT "Times New
Roman" , 14;
61        GET DV FONT "Times New Roman", 14
62        READ
63    @  27,21 SAY "Are You Sure(Y/N)?" FONT "Times
New Roman" , 14;
64        GET ANS FONT "Times New Roman", 14
65        READ
66  ENDDO
67  *******************************
68  CLEAR
69    @ 12,40 SAY "Wait ..." FONT "Times New Roman" ,
14
70  *******************
71  SET TALK OFF
72  STORE "      " TO DUP
73  STORE "      " TO DLOWUP
74  DLOW=YYLOW+MMLOW+DDLOW
75  DUP=YYUP+MMUP+DDUP
76  *******************
77  USE \CSPS\NSFUYO.DBF
78    DELETE ALL
79    PACK
80  ********* Append ***********
81  APPEND FROM &FL FOR fuyodate>=DLOW .AND.
fuyodate<=DUP
82  ************ Start to query
********************************
83  **************************
84  CLEAR
85    SUM FOR NSFUYO.HOMBU=HB AND
NSFUYO.DIVISION=DV TO TEST
86    @   7,40 SAY TEST PICTURE "$$,###,###,##9" ;
87                 FONT "Times New Roman" , 14
88  **************************
89  ********* Continue or not ****
90  STORE " " TO ANS
91    @ 15,40 SAY "Continue (Y/N)?" FONT "Times New
Roman" , 14;
92       GET ANS FONT "Times New Roman" , 14
93       READ
94          IF ANS<>"Y" .AND. ANS<>"y"
95             STORE "T" TO LOP
96             SET TALK ON
97          ENDIF
98  ENDDO
99  ***************************
100 CLOSE ALL
101 CLEAR ALL
102 RETURN

In Figure 1, the program graph is a
combination of two While-statement flows
and one If-then-end-statement flow, which
satisfying the structure of the original
program. With the program graph, two
testing path {<1,2,3,4,5,6,7,8,9,10,11,12,
2,13>, <1,2,3,4,5,6,7,8,9,10,12,2,13>} by
testing each edge are derived. This can help
software testers to maintain the program
more efficiently.

5. Conclusions and future works
To avoid software resource waste,

software maintainers need an adequate
understanding of a program’s information.
Usually, it is difficult to make changes for

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 1 - NUMBER 322



program in the absence of program
structures. An experienced programmer can
reconstruct program’s design by recognizing
data structures and algorithms. However,
programmers tend to heavy rely on their
experience as much as possible. We need
more technologies to recognize program’s
design and help maintainers to modify
software.

This paper presents eight typical
structured statements, and proposes a
number of transformation rules to
reconstruct program graph. Besides, we also
present a real example to illustrate and
prove the methodology is practicable. The
proposed methodology allows maintainers
to recover the programs’ structure and
makes software maintenance properly.

The maintainers are under pressure to
carry out the software modification as
quickly as possible. The automated
recognition of programs can greatly help the
understanding of software and support
software maintenance. The methodology
proposed in this paper can help us to
recognize programs automatically; this will
be the next work we intend to finish.

Start

1

2

3

4

5 6

7

8 9

10

13

12

11

End

Figure 1. Program graph of the example

Line
number

Non-sequence
instruction

Node(s)
to be set

Pointer

initial Start
node

Start
node

1-5 Node 1 Node 1
6 Do while Node 2,

node3
Node 3

7-16 Skip Node 3
17 Do while Node 4,

node 5
Node 5

18-47 Skip Node 5
48 Enddo Node 6 Node 6
49-50 Skip Node 6
51 Do while Node 7,

node 8
Node 8

52-65 Skip Node 8
66 Enddo Node 9 Node 9
67-93 Skip Node 9
94 If Node 10 Node 10
95-96 Skip Node 10
97 Endif Node 11 Node 11
98 Enddo Node 12 Node 12
99-102 Skip Node 12
end End node End

node
Table 1. The steps to build program flow

References
[1] I.D. Baxter and M. Mehlich, “Reverse

engineering is reverse forward
engineering,” Science of Computer
Programming, Vol.36, pp.131-147, 2000

[2] M.T. Harandi and J.Q. Ning,
“Knowledge-based program analysis,”
IEEE Software, Jan., pp.74-81, 1990

[3] V. Kozaczynski, J. Ning and A.
Engberts, “Program concept recognition
and transformation,” IEEE Tran. On
S.E., Vol. 18, No.12, pp.1065-1074,
1992

[4] C. Rich and L.M. Wills, “Recognizing a
program’s design: a graph-parsing
approach,” IEEE Software, Jan., pp.82-
89, 1990

[5] G. Arango, I. Baxter, P. Freeman and, C.
Pidgeon, “TMM: Software maintenance
by transformation,” IEEE Software,
May, pp.27-38, 1986

[6] I.D. Baxter, “Design maintenance
systems,” Comm. of the ACM, Vol.35,
No.4, pp.73-89, 1992

[7] B. Biggerstaff, “Design recovery for
maintenance and reuse,” IEEE
Computer, July, 1989

[8] S.H. Edwards, “Black-box testing using
flowgraphs: an experimental assessment
of effectiveness and automation
potential,” Software Testing,
Verification and Reliability, Vol. 10, pp.
249-262, 2000

[9] A. Zeller, R. Hildebrandt, “Simplifying
and isolating failure-inducing input,”
IEEE tran. On SE, Vol.28, No. 2,
pp.183-200, 2002

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 1 - NUMBER 3 23


