
Tweek: Merging 2D and 3D Interaction in Immersive Environments
Patrick L Hartling, Allen D Bierbaum, Carolina Cruz-Neira

Virtual Reality Applications Center, 2274 Howe Hall Room 1620, Iowa State University
Ames, Iowa 50011-2274, United States

ABSTRACT

Developers of virtual environments (VEs) face an often-
difficult problem: users must have some way to interact
with the virtual world. The application designers must
determine how to map available inputs (button presses,
hand gestures, etc.) to actions within the VE. As a result,
interaction within a VE is perhaps the most limiting
factor for the development of complex virtual reality
(VR) applications. For example, interactions with large
amounts of data, alphanumeric information, or abstract
operations may not map well to current VR interaction
methods, which are primarily spatial. Instead, two-
dimensional (2D) interaction could be more effective.
Current practices often involve the development of
customized interfaces for each application. The custom
interfaces try to match the capabilities of the available
input devices. To address these issues, we have
developed a middleware tool called Tweek. Tweek
presents users with an extensible 2D Java graphical user
interface (GUI) that communicates with VR applications.
Using this tool, developers are free to create a GUI that
provides extended capabilities for interacting with a VE.
This paper covers in detail the design of Tweek and its
use with VR Juggler, an open source virtual reality
development tool.

Keywords
Virtual Reality, Java, JavaBeans, C++, CORBA

1. INTRODUCTION

Interaction within a virtual world is perhaps the most
limiting factor for the development of complex virtual
reality (VR) applications. For example, interactions with
large amounts of data, alphanumeric information, or
abstract operations may not map well to current VR
interaction methods, which are primarily spatial. Current
practices often involve the development of customized
interfaces for each application. The custom interfaces try
to match the capabilities of the available input devices.
Most of these devices are tailored toward simple three-
dimensional (3D) interaction such as grabbing a virtual
object or pointing to indicate the direction of travel.

These techniques work well for spatial interaction, but
many other types of interactions can be represented more
effectively using two-dimensional (2D) interfaces. For
example, text annotations, selecting items from lists, and

viewing documents work well with existing 2D interfaces
in conventional desktop environments. When moving to
an immersive 3D environment, users should not be
required to abandon the effective presentation methods
already available in a standard desktop environment.

In addition to limited interaction in immersive
environments, many of the VR interfaces and interactions
are closely tied to specific display systems. Although
there are applications that demand a particular VR
display, most VR applications should be allowed to run
on different systems with different displays to take
advantage of the available resources or to use the display
that is more appropriate to the task at hand.

The need to support 2D interactions in immersive
environments combined with the need for a flexible
interface that can be used in a variety of VR systems has
motivated us to design Tweek. Tweek combines a
generalized framework for graphical user interface (GUI)
components and a back-end that allows the GUIs to
connect to remote components using the Common Object
Request Broker Architecture (CORBA) [11]. By using
CORBA, the two sides of a network connection can be
written in any language and can be operating on two
different computing platforms. Currently, Java is the
favored language for the GUI, and C++ is the typical
choice for the immersive applications. The combination
of CORBA, Java, and C++ leads to a wide variety of
target platforms and windowing systems, thereby
providing the flexibility required for cross-VR-platform
interaction methods.

Many new interaction techniques can be explored through
this combination of 2D and 3D interfaces. For example,
taking advantage of the rapidly evolving palmtop and
wireless technologies, we are using a tracked palmtop
computer to interact with virtual objects and spaces. This
paper covers the design and implementation of Tweek
and current use of it with VR Juggler [1][12], an open
source virtual reality application development tool. It
also describes several applications in the areas of military
training, virtual manufacturing, and education in which
Tweek has been applied to develop 2D interfaces for
palmtop devices.

2. PREVIOUS WORK

Some of the original ideas for Tweek come from our
previous work [7][8] on integrating 2D interaction into

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 3 57

immersive environments. This work used a Java-based
GUI; however it lacked the CORBA components and a
flexible design that could adapt to application needs.
Other work in this area [4][6][9] has focused on the
effectiveness of using a palmtop in virtual environments.
These efforts put little emphasis on the design of a
framework that will support user- or application-defined
GUIs without requiring customization of the underlying
infrastructure. With Tweek, we are building on these
earlier works to provide the missing framework.

3. TWEEK MOTIVATION

In this section, we explain the motivation behind Tweek
and its novel features, especially as they relate to
previous work in the use of 2D GUIs in 3D
environments. We begin with the flexibility in choosing
a programming language for implementing applications
and GUIs. We then explain the importance of GUI
portability and what Tweek offers in this area. Finally,
we discuss how the Tweek software reuses existing
technology, especially that of GUI implementations.

Programming Language Independence
In the field of computing, the state of the art changes
constantly, and programming languages are not exempt
from these changes. While object-oriented programming
is popular today, it may not always be the favored
paradigm. Languages that implement paradigms change
in popularity as well.

As part of the development of Tweek, we have
experimented with multi-language capabilities. The
result is an implementation that allows any programming
languages to be used for VR application development and
for GUI development. The current implementation
focuses on Java for the GUI and C++ for the VR
application, but this need not always be the case.

Programming language independence in Tweek is
realized through the use of CORBA. CORBA itself is a
standardized cross-platform, language-independent tool
for distributed programming. These characteristics make
CORBA well suited for use with Tweek where the VR
applications and the GUI are not necessarily written using
the same programming language nor do they necessarily
execute on the same computer.

GUI Portability
VR applications often must be capable of executing in a
variety of configurations, from low-end PCs to
expensive, high-end supercomputers. If a GUI will be
used with a VR application, it should be capable of
moving between systems with the application. Thus,
GUI portability becomes an important issue. Some
previous work in this area has allowed the GUI to run
only in a single computing environment [6]. With

Tweek, we have aimed to address such limitations by
making the GUI portable from traditional desktop
interaction to fully immersive 3D graphics.

With a portable GUI, VR application developers can
work with the same interface in a variety of VR system
configurations. For example, developers of VR
applications often have the ability to develop their
environments in what is known as “simulator mode”.
Generally, this means using a desktop computer for
application design and coding. When running the
application, the mouse and keyboard are used to represent
the input devices actually available in the full-scale VR
system. Thus, the developer can simulate all the actions
possible in the VR system using the desktop
environment. With this understanding of simulating a
VR system on a desktop, we have the motivation for
making a GUI input to the virtual world portable between
the desktop and the VR system.

Moving beyond the desktop simulation, the Tweek GUI
can be brought into CAVE-like VR systems where
large projection screens are used for displaying the 3D
graphics [2]. To bring the GUI into the VR system, users
may install the Tweek GUI software on a palmtop
computer or on a personal digital assistant (PDA).
Current wireless technology makes the use of such
computing devices in CAVE-like systems convenient
and easy.

When a palmtop computer is not available, the Tweek
GUI can make use of 3D windowing tools to run as a 2D
representation in an immersive 3D environment. This is
because the interface between the user and the virtual
environment is separated physically from the virtual
reality system and is therefore made portable. This
preserves the user’s sense of presence because the
interface remains with the user's person as part of the
accessible environment, independent of the VR system
used.

Reuse of Existing GUI Technology
Current 2D GUI technology is very mature and very well
understood. Based on previous efforts to incorporate 2D
interaction into immersive 3D spaces, we have found that
some interactions are better suited to 2D GUIs than to 3D
GUIs or 3D spatial interaction [8]. Thus, the desire to
reuse 2D GUI technology has played a major role in
designing the Tweek software.

The current Tweek implementation makes use of existing
Java-based GUI software libraries. More specifically, we
use the popular Java Swing libraries that have been
included with all Java Development Kit releases since
Version 1.2. As long as a Java virtual machine (JVM)
and a windowing system are available, the Tweek GUI
software can be executed. The use of Java does impose
some restrictions, however, due to JVM availability and

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 358

JVM memory use. For example, most current PDAs
have limited memory (both volatile and persistent) and
may not have a full Java runtime implementation yet. We
feel that the rapidly improving state of PDA technology
will lessen the complications imposed by these
drawbacks.

By reusing existing Java GUI technology, we have been
able to focus on the interaction methods rather than on
the implementation of our own GUI software. The
language-independence feature of Tweek offers the
potential for using other popular cross-platform GUI
toolkits such as Qt and GTK+ as well as the use of other
operating system-native toolkits.

4. TWEEK DESIGN

The basic design goal of Tweek is to provide a cross-
platform, cross-language framework within which VR
application programmers can implement 2D GUI
interactions with a 3D environment. To achieve this, the
Observer design pattern [3] is implemented such that the
subject is the VR application and the observer is the GUI.
Thus, graphical components within the GUI control act as
viewers of state information maintained by the VR
application. The state information is entirely user
defined. It may, for example, contain the user’s position
and orientation so that a top-down map can be displayed
in the GUI as a navigation aid.

With this basic foundation, users in a virtual environment
(VE) can manipulate the 2D interaction on a palmtop
computer in exactly the same manner as they manipulate
conventional 2D interfaces in a desktop environment.
The palmtop provides a physical interface for displaying

and using the GUI. It can be integrated into the virtual
world simply by bringing the palmtop computer into the
space, as can be seen in Figure 1. Input to the GUI is
transmitted via a network connection to the immersive
3D application, and the application responds accordingly.
In the same manner, the application can communicate
information back to the user through the GUI. This
enables users, for instance, to add more information about
virtual objects; to see specifications of a recently selected
object; or to make text annotations about objects using
the palmtop input device. By simplifying data input with
the 2D device, users can also provide fine-grained
specification of numerical values. Object selection and
world navigation can be simplified by providing a 2D
overview of the environment.

The Tweek software is not limited to display of elements
for direct application interaction. Its GUI can load any
other GUI component that is needed. For example, a web
browser could be run for showing maps or documentation
about the immersive world. A scientific visualization
application could incorporate a standard database front-
end into Tweek so that database manipulations could be
visualized instantly.

5. TWEEK IMPLEMENTATION

Tweek is a collection of multiple technologies: C++,
Java, JavaBeans, the Extensible Markup Language
(XML), and CORBA. Combined, these allow a Java GUI
composed of plug-ins to communicate with a C++
application. We explain the use of these technologies in
this section.

Java GUI and JavaBeans
In order to offer users a highly flexible GUI, Tweek
includes a generic Java-based application framework that
loads plug-ins dynamically to extend its functionality.
These plug-ins may be discovered when the Tweek Java
GUI is initialized; they may be loaded from disk after the
GUI has already been activated; or they may be
downloaded, or “pushed”, from the immersive 3D
application. The last of these options allows the 3D
environment developers to bundle a custom GUI with
their application. A user’s palmtop can then receive the
GUI plug-in automatically when first stepping into the
VR system.

The plug-ins loaded by the Java GUI are implemented as
JavaBeans (Beans) [5]. The Beans fall into one of four
categories:

1. Service Beans
2. Viewer Beans
3. Panel Beans
4. Generic Beans

Figure 1 Stuff in VR

Figure 1 Palmtop in an immersive environment

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 3 59

Service Beans encapsulate functionality that may be
useful to core elements of the Tweek Java GUI or to
dynamically loaded code. The entire interface for a
Service Bean must be known when the code using the
service is compiled. This is necessary because the using
code needs to be able to take full advantage of the
service.

Viewer Beans provide a visualization and organization of
the loaded graphical Beans. All Viewer Beans must
implement a well-known Java interface defined as part of
the basic Tweek Java application programmer interface
(API). These Beans may be changed at runtime to
present users with different views of the same set of
graphical Beans. Users of the Tweek Java GUI can write
their own Viewer Bean to get a custom view that suits
their needs and preferences.

Panel Beans are the key to extension of the Tweek Java
GUI. These Beans add components to the generic GUI
and thus provide extended functionality. Programmers
designing a custom GUI to their VR applications write
Panel Beans that make use of existing Java GUI
components. All Panel Beans must have a “key” class
that derives from the basic Java Swing class
javax.swing.Jcomponent (or some subclass
thereof). This is required so that the key class may be
instantiated and added to the GUI layout. Optionally,
Panel Bean authors may implement other interfaces
defined as part of the basic Tweek GUI API to extend the
capabilities of their Beans.

The last category into which a Bean may be classified is
the Generic Bean. Nothing is assumed about Generic
Beans. This Bean category is provided so that other
Beans can do their own dynamic code loading. For
example, a Bean that uses a Factory pattern [3] may want
to have the “workers” loaded dynamically based on some
criteria. In so doing, the functionality of the factory can
be changed dynamically.

XML Descriptions
Beans are discovered using XML-based descriptions.
The XML description provides all necessary information
including paths and external dependencies. An example
XML file is shown in Figure 2. This gives an example of
a Panel Bean contained in the Java archive
PfControlBean.jar. Within the archive, there is an
entry vrjtest/PfControl that is the aforementioned
“key” class for the Panel Bean. This class will be
instantiated by the Tweek Java GUI and added to the GUI
layout.

Observer Pattern
Earlier, we stated that Tweek uses the Observer design
pattern [3]. This pattern defines a separation between the
state of an object and a view of that state. Within the

pattern, there are two classes: observer and subject. The
subject maintains the state; the observer provides a view
of the state. A single subject may have multiple
observers, each of which is notified when the state of the
subject changes. When notified of changes, observers
query their subjects to get the latest state information.

In Tweek, the use of the Observer pattern is implemented
with CORBA. CORBA provides the link between the
Java GUI and the VR applications. When working with
CORBA, all objects are accessed using references. The
reference has a well-known interface that can be accessed
by any programming language. A language-independent
interface to an object is specified using the Interface
Definition Language (IDL). IDL is not a programming
language, but it includes the basic concepts of types, both
fundamental and aggregate, and functions.
Implementations of the interfaces must be written in a
programming language such as C++, Java, or Perl.

To simplify the definition of interfaces, Tweek defines
two basic interfaces: tweek::Subject and
tweek::Observer. The programmers of VR
applications and GUI extend these interfaces to define
behavior specific to their applications. Extensions to the
subject interface will be used by the VR application to
manage state information. Extensions to the observer
interface will be used by the Java GUI to visualize and
possibly manipulate the state information. Each subject
implementation must have a corresponding observer
implementation.

To simplify object access further, a third interface,
tweek::SubjectManager, is defined. An object
called the Subject Manager may be created on every node
where subjects will be instantiated. Application-specific
subjects are registered with the Subject Manager, and
nodes that need a reference to a given subject request the
reference through the Subject Manager. References are
requested using unique, symbolic strings. Thus, the job
of the Subject Manager is to hide the details of object
registration and reference requesting.

6. CURRENT USES OF TWEEK

Tweek is in use at the Virtual Reality Applications Center
at Iowa State University. We use the Tweek Java GUI on
palmtop computers to control applications in our
projection-based VR systems. For example, we use

<?xml version="1.0" encoding="UTF-8"?>
<beanlist>
 <guipanel name="Pf Model Control">
 <file name="PfControlBean.jar"
 entry="vrjtest/PfControl"/>
 <tree path="/"/>
 </guipanel>
</beanlist>

Figure 2 Sample XML Bean description

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 360

Tweek on a palmtop to provide extended input
capabilities for a military training application. It includes
VCR-like controls that allow playback of recorded
training data; six-degree-of-freedom navigation
capabilities; detailed entity data readout for individual
military units; and visual options for the units and the
environment.

This application is written using VR Juggler, an open
source, cross-platform framework for the development of
VR applications [1]. VR Juggler provides a “virtual
platform” that abstracts the details of the VR hardware
system. It thus allows the applications to be more
portable. When using Tweek with VR Juggler, the GUI
interfaces become portable as well.

7. CONCLUSIONS AND FUTURE WORK

The next stage of development for Tweek will include
dynamic installation of GUI panels on the palmtop
computer. The goal is to allow any user to enter the VE
and get the GUI panels automatically. This functionality
will be realized by taking advantage of GUI component
“pushing”, as discussed earlier.

We are interested in the extension of Tweek GUIs into
the realm of Java applets, small programs that may be
loaded by common World Wide Web browsers. We feel
that incorporation into the well-known browser interface
could enhance the usability of the 2D GUI, especially for
inexperienced users. Related to this, we will investigate
encryption and authentication capabilities available with
various CORBA implementations to enable secure
communication only with authorized parties.

We plan to make use of Tweek GUIs mapped directly
into the 3D environment. We plan to experiment with
existing work such as 3Dwm [10]. Our goal is to offer an
immersive GUI with familiar controls without re-
inventing GUI technology.

8. REFERENCES

[1] A. Bierbaum, VR Juggler: A Virtual Platform for
Virtual Reality Application Development, Master’s
thesis, Iowa State University, 2000.

[2] C. Cruz-Neira, Virtual Reality Based on Multiple
Projection Screens: The CAVE and Its Applications
to Computational Science and Engineering, Ph. D.
dissertation, University of Illinois at Chicago, 1995.

[3] E. Gamma, et. al., Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-
Wesley Professional Computing Series, Addison-
Wesley Publishing Company, New York, NY, 1995.

[4] G.W. Fitzmaurice, W. Buxton, “The Chameleon:
Spatially Aware Palmtop Computers”, ACM CHI'94,
pp 451−452, 1994.

[5] G. Hamilton (ed.), JavaBeans 1.01 Specification,
Sun Microsystems, Mountain View, CA, 1997.

[6] K. Watsen, R.P. Darken, M.V. Capps, “A Handheld
Computer as an Interaction Device to a Virtual
Environment”, 3rd International Immersive
Projection Technology Workshop (IPT 1999),
Stuttgart, Germany, May 10−11, 1999.

[7] L.C. Hill, C. Cruz-Neira. “Palmtop Interaction
Methods for the Immersive Projection Technology
VR Systems”, 4th International Workshop on
Immersive Projection Technology (IPT 2000), Ames,
Iowa, June 19−20, 2000.

[8] L.C. Hill, Usability of 2D Palmtop Interaction
Device in Immersive Virtual Environments, Master’s
thesis, Iowa State University, 2000.

[9] M.M. Wloka, E. Greenfield, “The Virtual Tricorder:
A Uniform Interface to Virtual Reality”, UIST'95
Proceedings, 1995.

[10] N. Elmqvist, 3Dwm: Three-Dimensional User
Interfaces Using Fast Constructive Solid Geometry,
Master’s thesis, Chalmers University of Technology,
Göteborg, Sweden, 2001.

[11] OMG, The Common Object Request Broker:
Architecture and Specification, 2.6 ed., Object
Management Group, December 2001.

[12] VR Juggler WWW site, http://www.vrjuggler.org/,
current April 10, 2002

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 3 61

