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ABSTRACT

In this paper we examine the application of evolution-
ary algorithms to find open-loop control solutions of
the optimal control problem arising from the semi-
discretisation of a linear parabolic tracking problem
with boundary control. The solution is compared with
the solutions obtained by methods based upon the
variational equations of the Minimum Principle and
the finite element method.
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1. INTRODUCTION

In Huntley [1] a comparative study was made of five
methods for calculating the optimal control function
for a linear parabolic tracking problem with bound-
ary control. Both open-loop methods based upon the
variational equations and closed-loop methods via the
Ricatti equation, were analysed for computational effi-
ciency, accuracy, ease of programming and robustness.

This boundary control problem whose underlying
state equations were parabolic partial differential
equations, was first converted to a classical optimal
control problem with ordinary differential state con-
straints through a method of semi-discretisation with
respect to the state variable (the method of lines),

cf [1]. In recent years it has been the practice to tackle
these problems using fully discretised difference or fi-
nite element methods. Yet it has been suggested [2],
that semi-discrete approaches obtained with current
methods of solving stiff systems of ordinary differen-
tial equations might have advantages.

Stonier et al. [3] showed that it was feasible to apply
an evolutionary algorithm with simple operators [4, 5],
to learn an open-loop controller for the classical opti-
mal control problem in the case of a constant target
function in the state variable.

In this paper we first show that for the constant tar-
get function better results can be obtained than those
presented in [3] for the evolutionary learning of an
open-loop control by simple changes in the mutation
and crossover operator.

Huntley [1], also studied two other target functions,
one a flat top ramp function and the other triangular
as a result of the singularity arising at one ends in the
constant case. We present here the evolutionary learn-
ing of an open-loop controller in each of these cases,
comparing our results with those given in [1] and the
finite element method. Penalties are included in the
fitness evaluation of each string to ensure end compli-
ance with the Minimum Principle and smoothness of
the control solution in time.

The new formulation of the boundary control prob-
lem using semi-discretisation brings with it associated
problems in solution, one being the‘curse of dimen-
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sionality’ when such discretisation is made in state
variables, as well as the discretisation in time when
solving the optimal control for a piecewise constant
control strategy.

2. CLASSICAL OPTIMAL CONTROL

The optimal control problem stated briefly is:

Minimise with respect to
∼
u, the performance index

I[
∼
x, t1] = φ(

∼
x(t1), t1) +

∫ t1

t0

f0(∼x(t),
∼
u(t), t)dt, (1)

subject to the differential constraint

d
∼
x

dt
= f(

∼
x,

∼
u, t), (2)

where the initial state
∼
x(t0) is given and state vec-

tor
∼
x ∈ Rn, and control vector

∼
u ∈ Rm. The term

φ(
∼
x(t1), t1) usually represents a cost or penalty asso-

ciated with the state at the final time t1.

In general the system may be subject to combined
state and control, equality and inequality constraints,
and integral constraints as well as interior point con-
straints.

Mathematical programming, differential dynamic pro-
graming and gradient descent methods for this prob-
lem all typically require some form of conversion of
the control function

∼
u into an approximately equiva-

lent representation that consists of weighted combina-
tion/amalgamation of simpler functions (collocation
methods). The problem then becomes one of find-
ing optimal weights. Alternatively we can segment
the continuous control functions by partitioning [t0, t1]
into N intervals and replacing the control functions
with simpler ones such as piecewise control for each
ui in the intervals [ti, ti+1]. The objective is then to
find approximations in these local regions to optimise
the performance integral.

To apply an evolutionary algorithm we need a repre-
sentation of a control strategy over [t0, t1] which can
be easily manipulated by operators that mimic and en-
hance the classical genetic operators of crossover and
mutation. One approach is to consider each real en-
coded string in the population as an array of N m-
vectors if the control is a piecewise constant approxi-
mation locally, (the approach taken in this paper for
application in the open-loop case) or double m-vectors
if the approximation is piece-wise linear.

Mutation or perturbation of the string can be done at
the local or global level. Clearly if all strings have the

same number of time partitions then a typical arith-
metic crossover will, if the control space is convex,
guarantee a valid string in the population. One-point
crossover is more difficult to implement, cf [6].

Constraints are a known major problem in optimal
control problems for we are solving a functional op-
timisation problem in which the solution

∼
u belongs

in control function space and NOT in the traditional
state space. The differential constraints must be in-
tegrated to enable testing of interior state constraints
and any equality or inequality constraints involving
the state variables.

To achieve good convergence to a solution of these
problems, as well as real life industrial optimisation
problems, requires a new generation of genetic opera-
tors when there are a large number of real-valued pa-
rameters which have to be optimised in the presence
of equality and inequality constraints, see for exam-
ple, [6, 7].

3. BOUNDARY CONTROL OF A
DISTRIBUTED PROCESS

We consider the parabolic boundary control problem
from [1], described by the following equations:

∂x

∂t
=

∂2x

∂y2
, 0 < t < T, 0 < y < L,

subject to boundary conditions

x(y, 0) = 0

∂x

∂y
= ρ(x − u) on y = 0

∂x

∂y
= 0 on y = L


 0 < t ≤ T.

where ρ is a constant heat-transfer coefficient, x is
temperature, y is depth and t is time. The process of
semi-discretisation may be described by replacing

• ∂2x

∂y2
by its central difference approximation

xi+1 − 2xi + xi−1

h2
of local accuracy O(h2), using

∆y = L/(N − 1) = h,

•
[
∂x

∂y

]
y=0

by (x1 − x−1)/2h, and
[
∂x

∂y

]
y=L

by

(xN+1 − xN−1)/2h,
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Defining
∼
x = [x0, · · · , xN ]T , the equations are discre-

tised to

∼̇
x = A

∼
x + B, (3)

where u is the scalar boundary control function, A
is constant tri-diagonal matrix, and B is the vector
[2ρ/h 0, · · · , 0]T . The general analysis for the con-
stant coefficient parabolic problem in one spatial di-
mension with boundary conditions is given in [1]

For this problem the cost function to be minimised is
defined by

J =
1
2

∫ L

0

[x(y, T ) − η(y, t)]2 dy +
1
2

∫ T

0

ru2(t) dt

= J1 + J2, (4)

where η(y, T ) for 0 < y < L, is the target function
specified at all depths y for the dependent variable
x. The first term J1 defines a quadratic performance
measure of the error from the target profile, and the
term J2 a measure of cost in control.

Although the problem is a simple one by definition,
to find its solution is otherwise, for the stability of
numerical approaches is a complicated function of ρ,
r, number of state steps (in y), and the number of time
points (in t). The mathematical analysis of finding
an open-loop control of this system using necessary
conditions arising from the application the Minimum
Principle is also given in [1].

4. SOLUTION BY EVOLUTIONARY
ALGORITHM

To integrate the state equations (3) using a Runge-
Kutta algorithm the time interval was discretised into
NT = 100 fixed time steps. As each subinterval
[ti, ti+1] the Runge-Kutta algorithm requires a control
evaluation at the midpoint of the interval, we con-
struct a possible solution string in the population for
the desired optimising control, as an array

∼
u of 200

constant real elements ui.

The initial population P (0) = {
∼
uk : k = 1, · · · ,M},

where M = 100 is the number of strings, the size of the
evolutionary population, was determined by choosing
the uk

i randomly in the interval [−1, 2]. The global
upper bound Um = 2 and global lower bound U� = −1
were chosen from the control function graphs given
in [1]. This defines a convex region in the control
space.

In determining successive populations a full replace-
ment policy was used, tournament selection with size

nT = 4 and a modified arithmetic crossover, see be-
low, to determine two children in the next generation.
An elitism policy was also used with four (4) copies of
the best string from a given generation passed to the
next generation.

The fitness (objective) function for each string was
determined as

Fobj = β1A(J1) + β2A(J2) + P1 + P2 + P3,

where A(Jk), k = 1, 2 was either a Trapezoidal approx-
imation or Simpson’s approximation to the integrals
Jk, and Pk, k = 1, 2, 3 are penalty terms defined be-
low:

P1 = α3u
2
201, P2 = α1

200∑
k=1

(uk+1 − uk)2,

P3 = α2

200∑
k=2

(uk − uk−1)(uk+1 − uk)

if (uk − uk−1)(uk+1 − uk) < 0.

The constants βk, k = 1, 2 are assumed positive and
it is noted that the minimum of β1A(J1) + β2A(J2) is
the minimum of A(J1) + A(J2) as both are positive.
For the given set of parameters these constants were
set at β1 = β2 = 1. A trapezoidal approximation was
used for the integrals J1 and J2 in our calculations.

The first penalty term was introduced to force the
final value of the control to be zero at the final time
T , a necessary requirement of the minimum principle.
The second penalty seeks to ensure the sum of the
squares of the differences in the piecewise constant
approximation to the control remains small and the
third seeks to remove any spiking in the graph due
to gradient changes under mutation. Without the use
of penalties such as these the solution found by the
evolutionary algorithm tended to be ‘bang-bang’. For
the given set of parameters αk, k = 1, 2 were chosen
small constants typically with value around 10−5 and
10−6 respectively, and α3 = 1.0.

In [3] mutation (with probability pm), was taken in the
following form approximating a small random Gaus-
sian perturbation δuk:

If (mutate) uk = uk + δuk where
δuk = α(

∑12
k=1 rk − 6)/6,

where rk was a random number in the interval [0, 1],
and α was a small constant factor, typically around
0.1. To ensure the perturbation realised feasible con-
trols within the prescribed bounds, the new uk was
capped to lie in the desired interval, that is,

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 1 - NUMBER 440



If uk > Um then uk = Um, and
if uk < U� then uk = U�.

Constant Target Case r = 0.00001
Our initial discussion concerns the case of a constant
target function η = 0.2 using the parameters defined
in [1]: L = 1, T = 0.4, r = 0.00001, and ρ = 1.0.

The results given in [3] were achieved at around gener-
ation 236400, with a population of 100, high mutation
pm = 1.0 for the first 50000 generations and then 0.7
thereafter, pc = 0.6 and α = 0.06 and in reasonable
agreement with that obtained by the finite element
method, see Figure 1. As can be seen, the control ob-

Figure 1: Control graphs for methods FE and EA

tained via the EA, does approximate well the solution
obtained directly by the finite element method (the
continuous line on the graph). The number of gen-
erations is unacceptably high and the EA depended
critically on a high level of mutation and a small per-
turbation factor to enable tracking to the desired level
of 0.2 to be effective.

In order to address these issues, let M(α) define the
mutation given above, and take the new mutation op-
erator to be:

if (mutate)

if (flip(0.33)) M(1.0);

else

if (flip(0.5)) M(0.1);

else

if (flip(0.5)) pd = gen/maxgen;

else pd = 0.995;

pow_ = ((1 - pd) * (1 - pd));

fact = (1 - power(Random(), pow_));

if (flip(0.5))

delta = fact * (lb - u_k);

else

delta = fact * (u - u_k);

return (u_k + delta);

else

return(u_k);

If a control value uk is mutated, then the basic mu-
tation with a large factor α = 1, is implemented one
third of the time, basic mutation with a small factor
α = 0.1 one third of the time, and a modification of
Michalewicz’s mutation [5], is applied the remainder
of the time. The standard arithmetic crossover with

Figure 2: Control graphs for methods FE and EA
with r = 0.00001

constant αc and two parents generating two children
was modified as follows: Given two parents

∼
p1 and

∼
p2

selected by tournament a child
∼
c1 is then determined

by random αc ∈ [0, 1] from the equation

∼
c1 = αc∼

p1 + (1 − αc)∼p2.

With continued selection of parent pairs, the children
are added to the next generation’s population until it
is complete.

Applying these new operators with small mutation
pm = 0.01, the evolutionary algorithm yielded the
control graph given by the dotted line in Figure 2
within 100000 generations. The results is a substan-
tial improvement upon that obtained in [3]. Indeed
the resultant control curve is very much as shown in
70000 generations.

Constant Target Case r = 0.001
Returning to the constant target case η = 0.2, with
the new operators and with small pm = 0.01, the
evolutionary algorithm converged quickly within 7000
generations to the control graph shown by the dotted
line in Figure 3. The value of J1 + J2 was 0.00021561
for the evolutionary algorithm and 0.0002143 for the
finite element method.

We now discuss results for two other cases discussed
in [1].

Ramp Case
In this case the target function is given by

η(y, T ) =
{

0.4(y/L) 0 ≤ y/L < 0.5,
0.2 0.5 ≤ y/L ≤ 1.0,
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Figure 3: Control graphs for methods FE and EA in
the constant case r = 0.001

Station Method 3 Method 4 FE EA
y

0.0 0.2001 0.1953 0.2003 0.1991
0.1 0.1990 0.2004 0.1993 0.1989
0.2 0.1987 0.1980 0.1983 0.1992
0.3 0.2020 0.2020 0.2016 0.2023
0.4 0.2044 0.2040 0.2044 0.2046
0.5 0.2040 0.2041 0.2042 0.2039
0.6 0.2008 0.2009 0.2011 0.2006
0.7 0.1962 0.1962 0.1963 0.1960
0.8 0.1915 0.1918 0.1916 0.1914
0.9 0.1882 0.1882 0.1882 0.1881
1.0 0.1870 0.1874 0.1869 0.1869

Figure 4: Table 1 Comparison of output results

and the parameter r is maintained at the same value
r = 0.001. This case is easier than the constant case
as a non-zero target value at y = 0 is no longer de-
manded. In initialising the evolutionary algorithm
and for the mutation operator, global bounds on the
control were selected as U� = −7 and Um = 6.

Results obtained for a longer run of 300000 genera-
tions to obtain the control graph shown again by the
dotted line in Figure 5. The approximation with the
solution found by the finite element method is excel-
lent. The value of J1 + J2 obtained was 0.00028373
for the evolutionary algorithm and 0.0002732 for the
finite element method. A value of J1 + J2 of 0.000285
was obtained by the evolutionary algorithm within
11000 generations. Table 1 shows a comparision of
the results of the evolutionary algorithm and the fi-
nite element method with Method 3 of [1] which is a
numerical integration of the state and costate partial
differential equations arising as necessary conditions
from the minimum principle for distributed systems.

Triangle Case
The final case discussed by Huntley is that of a tri-

Figure 5: Control graphs for methods FE and EA in
the ramp case

Station Ramp Method 3 FE EA
y

0.0 0.00 0.0011 0.0022 0.0028
0.1 0.04 0.0368 0.0367 0.0349
0.2 0.08 0.0846 0.0829 0.0857
0.3 0.12 0.1317 0.1316 0.1324
0.4 0.16 0.1658 0.1666 0.1656
0.5 0.20 0.1853 0.1862 0.1848
0.6 0.20 0.1939 0.1944 0.1935
0.7 0.20 0.1958 0.1959 0.1957
0.8 0.20 0.1947 0.1944 0.1947
0.9 0.20 0.1929 0.1925 0.1931
1.0 0.20 0.1922 0.1917 0.1924

Figure 6: Table 2 Comparison of output results

angular target function with its peak at y/L = 0.2,
defined by

η(y, T ) =
{

0.4(y/L) 0 ≤ y/L < 0.5,
0.4(L − y)/L 0.5 ≤ y/L ≤ 1.0,

In this case we take the parameter r = 0.0001 and
the global bounds on the control are taken to be those
in the ramp case. Noting that boundary control is
applied at one end of the spatial dimension only, it is
not obvious that this difficult target function might be
achieved computationally. Results shown in Figure 7
obtained for a run of 300000 generations to obtain the
control graph shown again by the dotted line in Fig-
ure 5. The approximation with the solution found by
the finite element method is excellent. The value of
J1 + J2 obtained was 0.00033010 for the evolution-
ary algorithm and 0.0002249 for the finite element
method.

These values target values are consistent with the
graphical results for this case depicted in [1]. However
the graphs of the control for both the evolutionary al-
gorithm and finite element are not in good agreement.
Further they are in disagreement with an extra oscil-
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Figure 7: Control graphs for methods FE and EA in
the triangle case

Station Triangle FE EA
y

0.0 0.00 -0.0009 0.0043
0.1 0.04 0.0423 0.0276
0.2 0.08 0.0701 0.0885
0.3 0.12 0.1358 0.1438
0.4 0.16 0.1763 0.1684
0.5 0.20 0.1742 0.1626
0.6 0.16 0.1450 0.1377
0.7 0.12 0.1076 0.1066
0.8 0.08 0.0748 0.0786
0.9 0.04 0.0532 0.0598
1.0 0.00 0.0458 0.0533

Figure 8: Table 3 Comparison of output results

lation in control at the later end of the time interval
as described in Figure 5 of [1].

5. CONCLUSION

We have shown that evolutionary algorithms can be
applied to optimal control problems in distributed pa-
rameter systems under semi-discretisaion with a good
measure of success provided care is taken in correctly
defining the right blend of operators and parameters.

Future research will continue to expand this applica-
tion to the irrigation scheduling problem with the full
water flow model to compare the results obtained with
those obtained by the GA in [10].

A closed-loop control solution for the problem de-
scribed above is under development to compare with
the closed-loop methods given in [1]. It uses a hierar-
chical fuzzy controller with five layers.
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