
Helping Students Test Programs That Have Graphical User Interfaces

 Matthew Thornton, Stephen H. Edwards,
and Roy Patrick Tan

Dept. of Computer Science, Virginia Tech
660 McBryde Hall, Mail Stop 0106

Blacksburg, VA 24061, USA
+1 540 231 5723

{ thorntom, edwards, rtan}@cs.vt.edu

ABSTRACT
Within computer science education, many educators
are incorporating software testing activities into regu-
lar programming assignments. Tools like JUnit and
its relatives make software testing tasks much easier,
bringing them into the realm of even introductory stu-
dents. At the same time, many introductory pro-
gramming courses are now including graphical inter-
faces as part of student assignments to improve stu-
dent interest and engagement. Unfortunately, writing
software tests for programs that have significant
graphical user interfaces is beyond the skills of typical
students (and many educators). This paper presents
initial work at combining educationally oriented and
open-source tools to create an infrastructure for writ-
ing tests for Java programs that have graphical user in-
terfaces. Critically, these tools are intended to be ap-
propriate for introductory (CS1/CS2) student use, and
to dovetail with current teaching approaches that in-
corporate software testing in programming assign-
ments. We also include in our findings our proposed
approach to evaluating our techniques.

Keywords: on-line education, computer science, test-
driven development, test-first coding, GUI, ob-
jectdraw, JUnit

1. INTRODUCTION
With the loss of productivity and system downtime caused by
code defects, it is important for information technology students
to learn how to test software. At the same time, however, lack
of educational support for testing and quality assessment in
university computer science curricula can result in students that
are ill prepared for producing commercial-quality code. As a
result, it is becoming more common for computer science edu-
cators to include software testing activities across multiple
courses, often by adding software testing requirements to tradi-
tional programming assignments. Approaches include using
explicit instructor-provided tests in assignment specifications,
using instructor-provided tests for automatic grading, requiring
students to write test plans and test cases, and even requiring
students to practice test-driven development (TDD). Recent
studies using test-driven development (TDD) in the classroom
show that students produce higher quality code when they write
their own tests, with a 28% reduction in the number of bugs per
thousand lines of student-written code (KSLOC), on average
[14]. In fact, when students were required to write their own

tests and were graded on how well they did this using our tech-
niques, the top 20% of students in our most recent experimental
evaluation achieved defect rates of approximately 4 defects per
KSLOC or better, which is comparable to most commercial-
quality software written in the United States. Of the students in
the control group who were not required to turn in their own
tests and were not evaluated on their own testing behavior, none
achieved this level of performance, with the best score reaching
only 30 defects/KSLOC [14, 16]. Consequently, it has been
demonstrated that test-driven development has some impact on
the quality of student-written code.

Testing frameworks, such as JUnit for Java [3, 22] and similar
XUnit frameworks for languages such as C++ [7] are a critical
enabling factor in developing a curriculum around test driven
development. Many educators have found that JUnit makes
writing tests easy, even for introductory-level students. Most
modern interactive development environments for Java, includ-
ing those targeted at educational communities, offer student-
friendly support for JUnit. The spread of JUnit as the de facto
standard for writing unit-level tests in Java has provided a use-
ful educational advantage in this regard.

At the same time, however, it is also becoming more common
for introductory programming courses to include graphical user
interface (GUI) aspects in assignments. GUIs are a common
metaphor used in discussing object-oriented programming tech-
niques [10]. GUIs also aid in explaining basic programming
concepts, because activities such as implementing the “what
happens next” response to a mouse click or what happens when
you drag and drop an item into a bin can be quickly understood
by beginning programmers. This, in addition to the prolifera-
tion of GUI frameworks available such as Swing [5] and ob-
jectdraw [11], makes teaching students to program GUIs a very
inviting prospect for instructors. However, while there are a
number of level-appropriate educational GUI frameworks to
simplify teaching tasks, there is no level-appropriate support for
testing GUI applications. This dilemma is illustrated in Figure
1. Consequently, it is necessary to develop a framework that
allows introductory computer science students to develop test
cases for their GUI-based programming assignments if one
wishes to include software testing activities.

To address this problem, we are adapting an introductory GUI
package called objectdraw [11], together with the Abbot GUI
testing library [1, 13] (based on JUnit), to develop a student-
friendly testing framework for GUI assignments. These tools
can be extended to make student testing easier and can be inte-

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 4 13ISSN: 1690-4524

grated into existing software development and testing tools,
such as BlueJ, Eclipse, and Web-CAT. Once students have
been given a complete suite of frameworks and tools, we can
then evaluate student performance at GUI-based software test-
ing.

The rest of this paper discusses the work that is being developed
in creating student-testable GUIs. Some of the previous work
in the area of student software testing, GUI testing, and GUI
frameworks will be discussed in the following section, followed
by a discussion of how we are adapting those tools for student
testing of GUIs in Section 3. We will follow this discussion
with a brief summary of our initial observations from students
and a proposal for formally evaluating these techniques.

2. RELATED WORK
Over the past 5 years, the idea of including software testing in
student programming assignments across many courses has
grown in popularity with many different results and observa-
tions being documented [14, 17, 18, 19]. Automated software
evaluation tools such as Web-CAT have been widely docu-
mented in the literature as an approach to evaluating student
performance in programming assignments and closed labs [14,
15, 16, 17, 18, 19]. However, prior to this work, Web-CAT has
been unable to run tests on GUI-based programming assign-
ments.

Kim Bruce’s work on the objectdraw library [11, 10] is a way
of simply abstracting the Swing library for Java to make writing
GUIs easier on students. This package will be extended to pro-
vide students with a way to assert properties about particular
shapes in their program. This technology will be the source for
developing student assignments using GUIs and because it is
based on Swing, it can make use of many additional packages
that can test GUIs designed from Swing components.

Abbot is a mature, professional-level testing framework based
on JUnit. It allows one to test partially-developed GUI code as
well as entire GUI-driven applications [1, 13]. It is not neces-
sary to have a complete, runnable program in order to write or
execute Abbot-based tests. Abbot provides especially strong
support for students who are using test-driven development [8,
9, 14, 15], where one rapidly cycles between adding new test
cases and incrementally extending code. Abbot also supports
comprehensive record-and-playback functionality, including a
script editor called Costello for hand constructing or modifying

recorded event sequences. However, it is different from many
other GUI testing frameworks in its support for simple, clean,
hand-written test cases targeted at code under development
instead of complete applications.

Among educationally oriented interactive development envi-
ronments (IDEs) for students learning to program, BlueJ is
widely used by those learning Java. BlueJ provides particularly
strong support for JUnit-based testing, because it allows stu-
dents to directly create and interact with raw Java objects using
only the mouse, and also interactively “record” these actions as
a test case, even before one knows how to write JUnit-style test
cases explicitly [2, 21]. Because BlueJ is so widely used in the
educational community, we have chosen to explore supporting
its interactive test case recording mechanism for use with GUI
test cases, although the general GUI framework we describe
here is applicable in all IDEs.

3. TOOL DEVELOPMENT FOR GUI
TESTING

Two significant issues make it difficult to apply existing GUI
testing tools in introductory computer science courses. First,
existing GUI tools require extensive programming knowledge
that introductory students do not possess. Second, these tools
typically require a lot of work to setup and use. Consequently,
developing GUI tests with such tools appears to students to be
time-consuming busywork—that is, overhead in addition to
actually completing the assignment—rather than a value-adding
activity that makes assignments easier to complete. Conse-
quently, changes and enhancements must be made at multiple
levels of the student’s development process to guarantee that
these roadblocks can be removed.

3.1 The Objectdraw Library
The objectdraw library was originally designed to present a
simplified, streamlined application programming interface
(API) to students, making it easy for them to write simple but
expressive GUI programs with just a few lines of code and no
excess clutter. Objectdraw was not designed to support writing
GUI-based tests, however. Most critically, it offers no support
for writing assertions about the state of a program’s graphical
interface. Assertions are simple statements or claims about the
state of an object or a collection of objects, and most test cases
use some form of assertion to express the expected behavior or

 GUI Development Framework GUI Testing Framework

Professionally-targeted AWT/Swing Abbot

Educationally-targeted objectdraw ???
Figure 1: The goal is to create level-appropriate educational support for testing objectdraw-based applications, using

Abbot as the underlying technology.

tested by

tested by

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 414 ISSN: 1690-4524

intended effect of a sequence of actions. If you want to express
claims about the content of or changes in a program’s GUI, you
must be able to “talk about” the various pieces that make up the
GUI. To this end, objectdraw must be extended to support as-
sertions that are appropriate to a student’s level of knowledge
and performance. These assertions must be at a sufficiently
introductory level while, at the same time, providing sufficient
test cases that the students are able to create tests that are
worthwhile to run.

Objectdraw provides a primary class from which main pro-
grams descend: the FrameWindowController class [4]. The
FrameWindowController class manages what a student “sees”
in the graphical user interface. It also includes the mouse
events that can occur in a graphical user interface, including
mouse clicks, mouse movement, leaving the window area, en-
tering the window area, and pressing and releasing the mouse
button. Many student assignments that use the objectdraw li-
brary [10] revolve around implementing an extension to the
FrameWindowController class. Consequently, as a typical
course progresses, students become very familiar with the be-
havior of this class.

In order to make assertions about the properties of shapes that
are rendered on the FrameWindowController, we enhanced the
FrameWindowController by creating a new subclass. The Tes-
tableWindowController class is a subclass of FrameWindow-
Controller that includes several primitive assertion operations.
These primitive assertions allow one to express claims about the
existence of the various kinds of 1- or 2-dimmensional shapes
that can be created in the objectdraw library. There are also
primitives that allow asserting that low-level shapes have spe-
cific properties (color, size, etc.). While these methods are
simple, they provide a basic platform for writing assertions
about the structure or content of a GUI.

At the same time, however, the primitive assertions in Testab-
leWindowController are more detailed and more complex than
we expect beginning students to use, especially when they first
start out. As a result, we have added an additional layer of
abstraction by creating a StudentTestableWindowController
class. This class is a subclass of the TestableWindowController
class and includes methods that are significantly simplified,
including methods such as assertCanvasEmpty(), assertFrame-
dRectangleExists(), and others. The methods in this second
subclass require few or no parameters. This allows very basic
assertions to be used by students, even if method parameters
have not been discussed in the course at that point. Further,
these methods dovetail nicely with the test recording apparatus
provided by BlueJ, for example, so that students can interactive-
ly play out their test cases in a meaningful way, even before
they have mastered programming.

The assertions that are included in both TestableWindowCon-
troller and StudentTestableWindowController behave similarly
to the standard assertions provided by JUnit, and are fully com-
patible with that testing framework.

The assertions that come in the StudentTestableWindowControl-
ler class come in two varieties. One gorup of assertion methods
in this class allows one to check the basic properties of an ob-

ject at a particular screen location. Two parameters are in-
cluded in the list of formal parameters that represent the x and y
coordinates in the drawable area of the window. The student
enters the coordinates and the assert method looks for an object
at that location to see if an object exists at that location with the
desired properties. The second group of assert methods instead
take a reference to a specific GUI object, instead of the object’s
(x, y) coordinates. This can be especially useful when instruc-
tors wish to simulate real-world behavior by introducing ran-
domness to an assignment or if a particular test requires that a
very specific object on the canvas have a certain property. This
is an opportunity for instructors to introduce accessor methods
to the students and provides a mechanism for asserting behavior
about the objects that are returned by those accessor methods.

Figure 2 provides an example of a test case that students could
write about the behavior of a program in its initial state. The
assertions are provided simply by making assertion calls like
you would make any other method call. The assertions pro-
vided here indicate information about the initial state of a
“laundry sorter” application where a swatch is dropped in one
of 3 different bins.

3.2 Testing GUI Applications with Abbot
Abbot is a professional-quality tool for testing Java graphical
user interfaces. Unfortunately, it has several features that make
it difficult for beginning students to understand, and that also
make it difficult for beginning students to write GUI tests.
First, creating a tester in Abbot requires more knowledge than
most beginning computer science students have. Abbot makes
heavy use of anonymous classes and listeners, and is geared
toward developers using the full power of the Swing library
rather than a simplified, educationally-oriented library. Second,
there is a mismatch between the ways that certain low-level
information is represented between objectdraw and Abbot, in-
cluding the representation for locations within a GUI window.

Objectdraw provides a Location class that represents a location
on the canvas. It is much like Java's Point class with additional

public void testInitialCondition()
{
 x.onMouseMove(new Location(100, 100));

 x.assertFramedRectExistsAt(20, 100);
 x.assertFramedRectExistsAt(100, 100);
 x.assertFramedRectExistsAt(180, 100);
 x.assertTextExistsAt(35, 120);
 x.assertTextExistsAt(115, 120);
 x.assertTextExistsAt(195, 200);
 x.assertFilledRectExistsAt(60, 20);
 x.assertFramedRectExistsAt(60, 20);
 x.assertTextExistsAt(20, 200);
 x.assertTextExistsAt(100, 200);
 x.assertTextAt(35, 120, “whites”);
 x.assertTextAt(115, 120, “darks”);
 x.assertTextAt(195, 120, “colors”);
 x.assertTextAt(20, 200, “correct = 0”);
 x.assertTextAt(100, 200, “incorrect = 0”);
 x.assertColorAt(60, 20, Color.white);
}

Figure 2: An example test case testing the initial state of a
laundry sorting program. The x variable is an instance of

the LaundrySorter class.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 4 15ISSN: 1690-4524

methods included. Abbot uses native Java Point objects to
specify locations, and then uses a “robot” to serve as an auto-
mated tester to interact with the program being tested. Crossing
from Locations and Points and back, especially with the high
degree of similarity, imposes an unnecessary cognitive load on
students, making them feel taxed and that they are just going
through “administrative overhead.”

To solve these problems, we have implemented a façade to the
Abbot robot tester to perform all of the tasks that an introducto-
ry student would want to do. The VTControllerTester class is a
wrapper class that encapsulates a lot of the functionality of a
basic Abbot tester, but does so from the objectdraw perspective.
The VTControllerTester class includes a constructor whereby
instead of specifying a static name for the class like you do in
the ComponentTester class in the Abbot package, you pass the
specific instance of the object to be tested. Furthermore, mou-
seClick(), mousePress(), mouseRelease(), mouseMove(), and
mouseDrag() methods are implemented that take a Location
parameter rather than a Point parameter. As a result, students
will be writing tests that are familiar to them in terms of the
behavior of objectdraw, rather than the behavior of the Abbot
package. This dramatically reduces the overhead of students
having to “wade through” the mountain of code written for the
Abbot package and focuses their attention on one class.

One of the issues with testing using Abbot and objectdraw is
wading through the multithreading issues that occur between
the two. Objectdraw has a model for how all of the objects are
loaded in a window and when the window itself is opened. On
the other hand, the Abbot library does not know anything about
the specific timing constraints imposed by objectdraw, and it
may begin its actions before the window is completely set up.
Another problem involves testing in a multiwindow environ-
ment, particularly in Windows XP/2000. To solve these prob-
lems, the VTControllerTester attempts to manage the thread
behavior so that the robot does not begin until the window is
completely set up, and then the robot performs actions only
when expected.

Figure 3 is an example of a test case that a student might write

to test mouse movement in a program. This example uses the
VTControllerTester class for a programming assignment called
InvisibleGame. Students who are writing their own Invisible-
Game are creating a simple GUI application that places three
invisible boxes on the screen. The user attempts to click these
boxes, getting “hot” or “cold” feedback about how close they
are and racking up points for successful hits. In the assignment,
the student is also asked to provide a “cheat mode” (or debug
mode) that makes the three boxes visible whenever the mouse is
dragged. In this case, the student has explicitly depressed the
mouse button at some location on the screen, moved the mouse,
and then released the mouse button. This behavior is easy for
students to understand, since they drag the mouse on the screen
every day.

The test case in Figure 3 shows what a student might do to si-
mulate the click-drag-release action they would perform ma-
nually with the mouse. It also shows how one would make
claims about the state of the GUI interleaved with the mouse
actions.

3.3 BlueJ Development Environment
The test cases shown in Figures 2 and 3 could be written using
any IDE. However, because BlueJ [2] is so widely used, and
because it provides such strong support for unit testing even
before students know how to write test cases, we are interested
in exploring how the objectdraw and Abbot extensions we are
developing can be used within that environment.

As a student writes small increments of code, they can imme-
diately begin to write (and run) simple test cases that cover the
behavior they have just implemented. In BlueJ, the student can
instead interactively record test cases by directly manipulating
live objects. The objectdraw extensions described here allow
students to record test cases for GUI-based classes in the same
way that they create and record a test case for any other class in
BlueJ. Mouse events can be recorded by right-clicking on the
program in BlueJ’s ObjectBench and invoking the correspond-
ing event method. A student can record which actions they
wish to execute by referring to the VTControllerTester actions
to perform actions and then assert that the program has the cor-
rect behavior using the methods available in the StudentTestab-
leWindowController class. Because of the way that methods
can be referenced in the object workbench, the mouse events
can also be explicitly called by the tester, rather than making
Abbot calls. This allows students to continue to test their me-
thods and is a substitute for writing test cases using Abbot.
Instructors, therefore, have the option of including the Abbot
test cases or simply having the students test the behavior of
their program by calling the mouse event methods like they
would any other method.

At the same time, however, we are also interested in supporting
direct, live recording of mouse interactions. This would mean
that the student need only point, click, drag, etc., right in the
program’s main window itself, rather than go through BlueJ’s
ObjectBench. While this has not been fully implemented yet, it
remains as a key aspect of future work.

public void testDragMode()
{
 prepareNewNonOverlappingSquareGame(x);

 tester.actionMousePress(new Location(10, 10));
 tester.actionMouseMove(new Location(25, 25));

 x.assertVisible(x.getSmallBox());
 x.assertVisible(x.getMediumBox());
x.assertVisible(x.getLargeBox());

tester.actionMouseRelease();

 x.assertInvisible(x.getSmallBox());
 x.assertInvisible(x.getMediumBox());
x.assertInvisible(x.getLargeBox());

}

Figure 3: A test for mouse dragging in the Invisible-Game
programming assignment. In this case, the mouse is pressed
and then moved to simulate dragging. The game’s invisible
boxes must be visible during dragging, but then disappear

once dragging is complete.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 416 ISSN: 1690-4524

3.4 Automatic Grading with Web-CAT
Web-CAT is an automated testing environment that allows
students and instructors to test student submissions [14]. The
system grades student submissions based on the successfulness
of a student's program against their own tests (as well as the
amount of their program was covered in the tests) as well as the
instructor's tests. Web-CAT supports assignments written in
virtually any programming language, but it is most heavily used
by instructors teaching in Java. Until now, automatically grad-
ing GUI-based programs on Web-CAT was not feasible, since
there was no effective way to write executable tests for such
programs in a way that students (or instructors) could manage.
However, the extensions to the objectdraw framework described
here now allow instructors to write tests for GUI-based pro-
grams as easily as students can. The result is that Web-CAT
has now been successfully used to automatically execute and
evaluate both student-written and instructor-provided tests for
GUI-based programming assignments.

4. INITIAL DEPLOYMENT AND FEED-
BACK

Virginia Tech has deployed the GUI testing framework for its
CS1 course. The framework includes the BlueJ IDE and the
objectdraw and Abbot extensions. Web-CAT has been updated
to include a submission profile that allows instructors to create
GUI-based programming assignments and the types of assign-
ments that have been developed include the following:

 Square Lab: A student creates a square on the screen
that disappears when the mouse button is pressed and
reappears when the mouse is released. This is just to
get students acquainted with the environment.

 Squares Lab: A student can create multiple squares
by clicking at different locations on the canvas. The
squares change from an initial red color to blue once a
new square has been created. This lab exposes
students to writing classes with private members.

 Laundry Sorter Lab: The laundry sorter is a simulator
where students drag and drop a differently-colored
swatch into one of 3 bins and is given credit for a
correct or incorrect selection, exposing students to
conditionals, program “states” and more complex
mouse behavior.

 Bullseye Lab: In the bullseye lab, students draw a
bullseye recursively. The bullseye can then be moved
around the screen and its size changes as the mouse
moves “faster” or slower.

 Invisible Squares Program: This programming
assignment tests everything students have done up
until the Laundry Sorter lab by giving students a
game to implement where they try to find invisible
boxes by clicking on the screen. The program
provides feedback with regard to how close the
student has come to clicking the box.

Initial observations have led to several improvements to the
design of the StudentTestableWindowController class (For ex-
ample, breaking the assertions into multiple subclasses would

reduce the number of assertions that students have to wade
through in searching for a particular assertion) as well as the
amount of detail that is needed for lab and programming as-
signment instructions.

5. PROPOSED EVALUATION
In order to gauge the effectiveness of incorporating GUI testing
into assignments, we have prepared to do a large amount of
analysis. On submitting all of these assignments to Web-CAT,
we will have a large number of student submissions to do anal-
ysis on. Web-CAT keeps a large amount of data on each sub-
mission and with additional research that's being done on creat-
ing reports based on that data [6], there will be a very practical
system from which we can get a great deal of useful informa-
tion out of the student's submission results. These can include
things like:

 An aggregate comparison of student submissions and
grades this semester versus previous semesters.

 A comparison of the success of student tests versus
the instructor reference tests.

 An analysis of how many tests students wrote based
on how much a particular lab was completed.

 An analysis of which types of test cases were most
commonly passed/failed.

There are, obviously other reports that can be run, as well and
each of these types of reports can gain us additional information
about how students perceive the work they are doing.

Additionally, at the end of the semester, students will partici-
pate in a round-table discussion with the instructors and teach-
ing assistants to give us their feelings on what went right and
what went wrong in the class. We will also get their feedback
on their views on test-driven development and whether or not
the use of GUI-based programming assignments helped or hin-
dered the process. This will be repeated over several semesters,
since we have no prior coursework that emphasized GUI testing
to compare against our results from this semester.

6. FUTURE WORK AND CONCLUSIONS
There are additional tasks that would be desirable to put this
system together. The immediate desire is to get the current
version of the extensions and tools into a more refined state and
then work on improving the usability of the objectdraw exten-
sions and the Abbot wrapper. Furthermore, with the informa-
tion gathered from our evaluation process, the assignments and
tools will be revised to improve the quality of the work being
done. Subsequently, testing of these techniques in additional
CS1 courses will give us more data and show how the system
has improved over time.

A long-term goal is to provide students with the tools to test
objectdraw programming assignments with test scripts that are
even easier to understand than the current ones, allowing stu-
dents to create tests with as little knowledge of programming as
possible, thereby reducing further the cognitive load on students
and improving their results on assignments.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 4 17ISSN: 1690-4524

With software bugs and defects being the major roadblocks to
software development and with the loss of productivity as a
result [12, 20], making our students better testers before they
enter their exacting field of industry, it is necessary to guarantee
that they are in a better mindset about the benefits of thoroughly
testing their code and introducing them to test driven develop-
ment with graphical user interfaces is a way of combining good
testing techniques with a common metaphor for discussing the
most commonly-taught paradigm of the time, object-oriented
programming.

7. ACKNOWLEDGEMENTS
This work is supported in part by the National Science Founda-
tion under grants DUE-0618663 and DUE-0633594. Any opi-
nions, findings, conclusions, or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

8. REFERENCES
[1] Abbot Java GUI Test Framework Home Page, Available

at: http://abbot.sourceforge.net/

[2] BlueJ-The Interactive Java Environment, Available at:
http://www.bluej.org/

[3] JUnit Website, Available at:
http://www.junit.org/index.htm

[4] Objectdraw API, Available at:
http://eventfuljava.cs.williams.edu/library/objectdrawJavad
ocV1.1.2/index.html

[5] Swing (Java Foundation Classes), Available at:
http://java.sun.com/javase/6/docs/technotes/guides/swing/i
ndex.html

[6] Allevato, T. and M. Thornton, Web-CAT Reporting En-
gine, 2006, Available at: http://web-
cat.cs.vt.edu/CsEdWiki/WebCatReportingEngine

[7] Allowatt, A. and S. H. Edwards, Designing an Adaptive
Learning Module to Teach Software Testing, 37th Tech-
nical Symposium on Computer Science Education, ACM
Press, 2005, pp. 259-263.

[8] Beck, K., Aim, Fire (Test-First Coding), IEEE Software,
18(5) (2001), pp. 87-89.

[9] Beck, K., Test-Driven Development: By Example, Addi-
son-Wesley, Boston, MA, 2003.

[10] Bruce, K., A. Danyluk and T. Murtagh, Java: An Eventful
Approach, Prentice-Hall, Upper Saddle River, NJ, 2005.

[11] Bruce, K., A. Danyluk and T. Murtagh, A Library to Sup-
port a Graphics-Based Object-First Approach to CS1,
32nd SIGCSE Technical Symposium on Computer Science
Education, ACM, 2001, pp. 6-10.

[12] Cusumano, M. A., Technology Strategy and Management:
Who is Liable for Bugs and Security Flaws in Software,
Communications of the ACM, 47 (2004), pp. 25-27.

[13] Dutta, S., Abbot--A Friendly JUnit Extension for GUI Test-
ing, Java Developer Journal, April 2003, pp. 8-12.

[14] Edwards, S. H., Improving Student Performance by Eva-
luating How Well Students Test Their Own Programs,
Journal of Educational Resources in Computing, 3 (2003),
pp. 1-24.

[15] Edwards, S. H., Rethinking Computer Science Education
from a Test-First Perspective, Addendum to the 2003 Pro-
ceedings of the Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, ACM, 2003,
pp. 148-155.

[16] Edwards, S. H., Using Software testing to Move Students
from Trial-and-Error to Reflection-in-Action, 35th
SIGCSE Technical Symposium on Computer Science
Education, ACM, 2004, pp. 26-30.

[17] Goldwasser, M. H., A Gimmick to Integrate Software Test-
ing Throughout the Curriculum, 33rd SIGCSE Technical
Symposium on Computer Science Education, ACM, 2002,
pp. 271-275.

[18] Jones, C. G., Test-driven Development Goes to School,
Journal of Computing in Small Colleges, 20 (2004), pp.
220-231.

[19] Jones, E. L., Software Testing in Computer Science Curri-
culum--A Holistic Approach, Proceedings of the Autrala-
sian Computing Education Conference, ACM Press, 2000,
pp. 153-157.

[20] NIST, The Economic Impacts of Inadequate Infrastructure
for Software Testing--Planning Report 02-03, 2002.

[21] Patterson, A., M. Kölling and J. Rosenberg, Introducing
Unit Testing With BlueJ, Proceedings of the 8th Annual
Conference on Innovation and Technology in Computer
Science Education, ACM Press, Thessaloniki, Greece,
2003, pp. 11-15.

[22] Wick, M., D. Stevenson and P. Wagner, Using Testing and
JUnit Across the Curriculum, 36th SIGCSE Technical
Symposium on Computer Science Education, ACM, 2005,
pp. 236-240.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 418 ISSN: 1690-4524

	E488MSB

