

A Study of Science Teachers

Utilizing Visual Programming Techniques
Cheryl Denise Seals

Computer Science & Software Engineering, Auburn University

and

L. Octavia Tripp

Curriculum & Teaching, Auburn University

1. ABSTRACT

This paper presents a study of learning in Stagecast Creator to
discover more about novice programmer teachers, direct
manipulation techniques and exploration of methods to create
interactive lessons for their classrooms. The authors performed a
longitudinal guided exploration of Stagecast Creator with two
middle school science teachers. The results of these evaluations
help to identify implications for educational simulations for
novice programmer teachers and produce a set of initial system
requirements.

1. INTRODUCTION

A study of learning in Stagecast Creator was conducted to
discover more about novice programmer teachers and their
direct manipulation techniques. The teachers that we selected for
the study were science teachers that wanted to learn to utilize
more technology in their curriculum. To further refine our
requirements for future research study, and become more
familiar with science teachers domain of discourse about
computers and programming, we performed a longitudinal
guided exploration of Stagecast Creator with two middle school
science teachers. The results of these evaluations help to
identify implications for educational simulations for teachers
and produce a set of initial system requirements, which will be
utilized to refine subsequent studies.

2. COMPARATIVE ANALYSIS OF SIM ENVIRONMENT

During the preliminary stages of this research project, we
identified our argument of aiming to provide software with
improved usability to increase teacher adoption of new
educational software technology in their classrooms. We would
begin our journey by studying existing simulation creation
software, select software that most closely matched our
teachers’ classroom needs, and then to modify existing or design
and create our own software to support our teachers and their
reuse strategies.

Our first initiative was to conduct a language survey and create
taxonomy to narrow the field of candidates for further study.
The criterion for selecting these languages was that they
represent different types of software that will support
educational simulation. The plan was to evaluate at least one
example from each of the following categories: Visual

Programming; Programming by Demonstration;
Simulation/Construction Kit and Software Reuse/Visual OOP.
In the visual programming environments category we were
introduced to completely visual environments, and one example
of this domain is LabVIEW. LabVIEW is a scientist’s
construction kit to build Virtual Instruments by direct
manipulation. The system programming is handled by three
palettes, which are used for coding, debugging, and creating.
All of the programming is handled by icons in these palettes, but
with a wealth of icons the programming in this environment
would be very complicated for novice users with having to
negotiate the cognitive overload of learning to create programs
with sequences of icons as in traditional programming with
sequences of text. LabVIEW would be the most useful in this
category for building working educational simulations, but this
selection would be very complex and cost prohibitive (i.e.
greater than $1000) for the average middle science school
teacher.

In the programming by demonstration category, we were
introduced to environments where all the rules are created with
the use of a macro recorder device and the demonstration of
actions are rendered as rules. This is acceptable for simple
rules, but makes the creation of more complex rules more
difficult. Of this category we will give details of one example,
Stagecast Creator. Stagecast Creator is a simulation micro-
world building environment, where programming actions are
created with programming by demonstration techniques, and
rules can be modified with direct manipulation. This
environment had facilities geared to support novice programmer
usability and would be useful in the creation of educational
simulations, and could be procured for minimal cost (i.e. less
than $100). Also, ActivChemistry (i.e. Chemistry construction
kit and provides user a fixed number of parts to combine to
perform experiments) was a very good candidate for further
study, but only supports the Chemistry content area. We are
identifying software packages that can be used by all science
and mathematics teachers: therefore, environments we study
should be able to provide more generalized solutions.

In the simulation/construction kit category, we were introduced
to environments that supported the construction kit style of rule
creation. The user simply chooses the rules they would like to
use and just have to assign an order for rules to fire. This is a
very good technique for novice users to create educational
simulations and, one example, AgentSheets already had been

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 4 7ISSN: 1690-4524

used by students to create over a hundred simulations and could
be procured with minimal cost (i.e. less than $100).

In the software reuse/visual object-oriented programming
category we were introduced to environments that are object-
oriented in their implementation and support software reuse.
These environments would be very good for programmers to
build simulations, but have little support for novice programmer
simulation creation.

Creating this taxonomy of visual languages helped us to reduce
our field of candidate languages based upon which languages we
felt would be easily accessible to our teachers and not too cost
prohibitive. We also wanted languages, which would support
novice learning and reuse in the creation of visual educational
simulations. We selected three simulation/construction kits (i.e.
AgentSheets, Cocoa, and Hyperstudio) and one programming by
demonstration system (i.e. Stagecast Creator)

Early on, it was found that our teachers had very little time to
spend learning new technology and not enough time to build
technology from scratch. They prefer to adapt content to make it
more relevant to their lessons. Therefore, instead of using an
exhaustive systems approach to learning to build simulations,
minimalist self-study instruction was provided to teachers both
to reduce their time in learning to use the environment [Carroll,
1990] and to explore the benefits of reuse programming in a
visual simulation programming environment [Perrone,
Repenning, 1998]

3. TEACHERS AS SIMULATION BUILDERS

This study pictured teachers as simulation builders who, as
content matter experts in their classrooms, were the best
candidates for designing educational simulations. Research here
worked to reduce teacher frustration with programming. In
many instances, teachers knew exactly what they wanted to
model, and could create this functionality in the current
AgentSheets computational model. Many teachers’ domain
analysis of the problem was very robust and sophisticated, but
most rendered very simplified version of their models. However,
since students’ knowledge of the domain was limited, they
would build structures that simple “look right” [Lewis et al.,
1997].

With current tools, teachers might have difficulty transferring
their elaborate mental models into working simulations without
greater programming skill. In order to mitigate this difficulty
for teachers, improved instruction with an example-based
tutorial presenting different simulations of the same
phenomenon could be provided that included variation in
complexity and coverage. This would give teachers better
understanding that a range of models can be generated from
simplified problem analyses. The types of mechanisms, which
are easy or difficult to model, could also be explained; however,
this technique would limit exploration, which is in conflict with
a minimalist hands-on approach to learning.

Even though these are simplified approaches to programming,
many of the problems the teachers experienced appear to be

similar to issues discussed for years in the literature on OOD
and programming [Rosson, Carroll, 1996; Rosson, Carroll,
Bellamy, 1990].

4. STAGECAST CREATOR STUDY

Our aim was to identify ways to motivate these novice
programmers to create simulations, and continue to make their
own contributions to our planned virtual learning community.
In previous experiments, students were generally successful in
their work with SC and reported that they enjoyed their
experience. Our hope was that if teachers enjoyed building
simulations they would utilized the tools and virtual community
made available. Also that if their students had fun creating
simulations, the students will spend more time in the
environment to learn more about the content material, and with
continued experience learn more about visual simulation
programming.

The environment that we illustrate in the study is Stagecast
Creator (SC), which is based on a movie metaphor and users
create a cast of characters who interact within a simulation
microworld. Users create SC simulations with a macro-recorder
device that allows users to program by demonstrating and
example, and also by direct manipulation. To demonstrate a rule
the user selects the character to be programmed and as in the
Figure below a bounding box or “spotlight” highlights the
character to be edited. In this example the user wants to cloud to
float across the sky. They would simple drag the cloud forward
and that would record a new rule for this character. This makes
it very easy for novice users to begin rule creation, but there are
still some semantic complexities that arise. The spatial context
and visual appearance are requirements of the rule’s
precondition. For example if two characters are next to each
other while a rule is being demonstrated, both objects would
always have to satisfy the precondition or the would not be
executed.

5. LONGITUDIANL STUDY OF STAGECAST

While developing a robust prototype, we discussed content
material with at two middle school science teachers. Our
development and studies focused on teachers in grades six
through nine, and we selected two teachers who participated in
the formal evaluation, and thus are already familiar with visual
programming systems.

Similar to participatory design methods we wanted to get
requirements for simulations from representatives of our
potential user group, and get their perceptions on what they
expected from a software curricula aid and ideas for simulations.
We planned to perform 10 sessions with our two teachers.
During our meetings we introduced them to a visual
programming environment, gave them instruction to bring help
them to bridge the Zone of Proximal development [Vygotsky].
There was considerable distance between what the users knew
initially and their potential for knowing and creating in the area
of visual programming. Our aim was to increase their level of
competence in this area by coordination with the proficient or a
more knowledgeable other [McMahon 1996].

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 48 ISSN: 1690-4524

In order to get more familiar with our teacher participants and
their comfortability with computers and novice visual
programming of simulations, we had an opportunity to perform
a longitudinal study with two middle school science teachers
scheduled for 10 weeks. The tool that they were to investigate
was Stagecast Creator. We began their experience as a typical
tutorial with guided exploration cards to guide their self-study.
Teachers worked individually, during their learning session. It
was suggested that their first learning session be structured as a
minimalist tutorial in the form of guided exploration cards. The
tutorial guides the teachers through starting up the system,
opening a micro-world example, interacting with that example
and examining the rules and creating new rules. For their
second and third sessions the teachers explored some of the
system supplied and facilitator supplied examples. Now that the
teachers are more familiar with the environment and some
simulation examples that can be created, we asked them to bring
in a set of requirements. In specific we asked the teachers what
topics they would cover during the year and of these topics,
which they think, would be good candidates for educational
simulations. For their forth session we began by reviewing the
following suggested simulation topics for middle school
physical science: Scientific Method, Physical Properties, Atomic
Theory, and Chemical Properties.

To give the teachers a tangible task for their next four sessions,
their task was to create two simulations that they would use in
their first month of science classes. Both teachers agreed that
their first in class experiment illustrated the scientific inquiry.
And to illustrate the scientific inquiry the teachers would
illustrate natural phenomena with a small experiment, ask their
students to explain their observations, and finally the teacher
will explain the scientific phenomena. The first set of
simulations created by our teachers dealt with the area of
scientific inquiry and their first two classroom experiments were
to illustrate “cause and effect” scenarios. Scenario one was “If
you add water and sunlight to a plant, then the plant will grow”
as an illustration of photosynthesis. And the second simulation
scenario was an illustration of scientific inquiry as well.

The first simulation created by our teachers was an illustration
of photosynthesis and was described as follows: You begin the
experiment with the sun shining and a flower in a pot. With the
sun shining, as the gardener waters the flower it grows. This
phenomenon is caused by photosynthesis, when the chlorophyll
in the plant receives sunlight and water; this is transformed into
energy and causes the plant to grow. In the simulation the
gardener walks toward the watering pot, waters the flower, and
the flower grows in a three-stage animation. The photosynthesis
scientific method experiment is illustrated in Figure 1.

A. B.

FIGURE 1 TEACHER CREATED PHOTOSYNTHESIS

And the second simulation scenario “Raisins in ginger ale” was
an illustration of scientific inquiry as well. The second
simulation experiment was set up with ginger ale and raisins in a
glass. The scenario is that you pour ginger ale into a glass and
next the student adds raisins to the glass. The effect of
carbonation in the water will cause the raisins to bounce to the
top of glass propelled by carbon dioxide bubbles. Once the
bubble reaches the surface it will burst and the raisin will fall
back to the bottom of the glass. This cycle will repeat until the
level of carbonation is to low and finally all the raisins will
finally settle at the bottom of the glass. This scientific method
experiment is illustrated in Figure 2.

6. TEACHER INTEREACTION DISCUSSION

When our teachers began this project their first question was
“Do we have to draw a glass?” My answer was no we want to
investigate you simulation creation techniques not your drawing
ability so if we can find usable images we will use those and the
ones we can’t find we will have to create. Their next question
was “Where can we get a big glass to put the raisins in?” the
answer was “Let’s go to the web and do a Google search.”

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 4 9ISSN: 1690-4524

 A. B.

C. D.

FIGURE 2 TEACHER CREATED CARBON DIOXIDE EFFECTS ON RAISINS IN GINGER ALE

We completed six sessions and gleaned a myriad of
information from these sessions. We found that
teachers were comfortable with the guided exploration
style of our minimalist tutorial and were able to learn
to create simulations with self-study of our tutorial
materials. From these sessions, we also found that
teachers could identify good candidates for simulation
topics. This was also helpful in exploring motivational
issues for our teachers. They were motivated enough
to complete two simulations but were frustrated with
having to creating their own objects and preferred to
have a handy library of objects to reuse. The
facilitators helped the users import some images from
the web and import them into their simulation, but
created all the rules for their working simulations.
The is a great argument that teachers are motivated to
perform activities that are useful for their classrooms,

and with minimal training our teachers created
working educational simulations that would be useful
in supporting their science class topics.

Gathering these requirements of topics reaffirms that
our teachers would find a software curricula aid very
helpful in the classroom. We referenced these topics
during our research and to complete our system. We
plan to provide technical support of the prototype
system, and the aim of this experiment was to
ascertain whether the system will be robust enough for
teachers to incorporate simulations into their science
teaching, what if any impact it has on their students,
and what impact they believe simulations and this
environment will have on science education.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 410 ISSN: 1690-4524

7. SYSTEM REQUIREMENTS

The end-user population studied in this sample was
domain experts in the area of physical science,
biological science, and physics. The age groups that
teachers designed simulations for were middle and
high school students. The goals of the requirements
analysis phase were to narrow the scope of work and
to begin preparing a structure for the design and
development of the system. The system incorporated
an environment for drawing, behavior creation and

reuse of simulation microworlds and their
components. System requirements are highlighted;
giving a rational that substantiates requirements for
general environment, robust support of reuse and
others.

Table 1 Initial Requirements

I. General environment

• Providing a set of rich drawing tools which allow user to draw and modify objects

• Supports simple undo and incremental testing

• Clear recognizable common sense icons

• Easy creation/execution of graphical simulations.

• Satisfactory level of usability for novice programmers.

• Platform independent implementation (i.e. Java or Smalltalk)

II. Robust support of reuse

• A base set of generic template objects that can be reused

• Opening of multiple worlds to facilitate copy/past and reuse learning.

• Support user creation of object behaviors/interactions with rule templates or toolkit

• A library of reusable objects and simulation projects

III. Some secondary requirements

• Importing graphics

• Importing background graphics

• Support for multimedia and interactive simulations

• Ability to have macro recorder to record actions and create rules.

8. SIMULATION BUILDING IMPLICATIONS

Tools for Teachers

The aim was to have teachers able to create real
simulations quickly; relying on their domain expertise
and the new skills they have learned about simulation
creation. The rationale for building simulations as
educational material is practical. Kuyper states that
simulations are independent of time and place, which
makes them more readily available for real experience.
He also states that simulations can provide a better
conceptual model of a situation, and can be used to
create virtual environments [Kuyper, 1998].

With this research, the following general problems
with visual languages were identified: environmental,
drawing tools, and with rule creation. A problem was
also encountered with the level abstraction. Most of
the environments studied were based on a grid-based
concept and objects, when layered, did not operate as
anticipated (e.g., rain on top of a flower in one case
would evaluate only the object on top). Minimalist
instruction was used by creating tutorial materials for
analysis. The tutorials created were very helpful to
users, got them started quickly, and aided them in
completing the exercises with salient results. Ideas
were also explored for the building of reuse libraries
by providing categories for types of problems. Since
this new environment was created for science teachers

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 4 11ISSN: 1690-4524

and simulations were categorized based on content
areas like, for example, Mathematics, English,
Biology, Social Science, etc. The first category to be
built into the library was Physical Science. Within
each category, the plan is for simulations to be
organized in alphabetical order. The identification of
general problems with visual languages in this study
helped to build our knowledge of visual languages.

9. REFERENCES

[1] J. M. Carroll, The Nurnberg Funnel:

Designing Minimalist Instruction for Practical
Computer Skill. Cambridge, Massachusetts:
The MIT Press, 1991.

[2] M. Kuyper, Knowledge engineering for

usability: Model-mediated interaction design

of Authoring Instructional Simulation.
University. University of Amsterdam,
Department of Psychology, 1998.

[3] C. Lewis, C., C. Brand, G. Cherry, & C. Rader,
Adapting user interface design methods to the
design of educational activities. Proceedings of
Human Factors in Computing Systems. Los
Angeles, CA, 1998).

[4] C. Perrone, and A. Repenning, Graphical

Rewrite Rule Analogies: Avoiding the Inherit
or Copy & Paste Dilemma. Proceedings of the
IEEE Symposium of Visual Languages, pp. 40-
46. Nova Scotia, Canada: Computer Society,
1998.

[5] M.B. Rosson, and J. M. Carroll, Usability

Engineering: Scenario: Scenario-Based

Development of Human Computer
Interaction. Morgan Kaufmann Publishers. San
Francisco CA: Academic Press, 2002.

[6] M.B. Rosson, and J. M. Carroll., C. D. Seals, and
T. L. Lewis, Usability Engineering: Scenario:

Scenario-Based Development of Human
Computer Interaction. Morgan Kaufmann
Publishers. San Francisco CA: Academic Press,
2002.

[7] L. Vygotsky, Thought and Language.
Cambridge, Massachusetts: The MIT Press,
1986.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 412 ISSN: 1690-4524

	E583XN

