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ABSTRACT 

 
This paper considers flows of containerized traffic in a cascade 

of channels with diverse risk characteristics. Each channel is 

characterized by a probability distribution function relating the 

probability of loss being less than a given value to the 

magnitude of the loss. The cumulative impact of cascading 

channels is then evaluated as a closed form solution in terms of 

the characteristics of the constituent channels with dissimilar 

risk characteristics. The results presented in this analysis can be 

used to shape the risk characteristics of individual channels 

through, for example, additional investment in order to 

maximize the impact of such investments. 
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1. INTRODUCTION 

 
As businesses become increasingly global in scope, the flow of 

cargo, specifically containerized cargo, becomes a critical need. 

The safe and efficient movement of such cargo is becoming a 

national priority because of the impact of safe and uninterrupted 

flow of such cargo on national security as well as on economic 

growth of the nation [1, 2]. Containerized traffic travels over a 

variety of transport channels, including roads, the open sea, as 

well as air. The flow of containerized traffic will, generally 

speaking, also encounter a variety of gates that include national 

boundaries, customs and other government-mandated check 

points. Each of the modalities of transportation and the gates 

encountered by the container during its transit from the source 

to the destination presents a varying risk profile [3].  Each 

would impact the end-to-end risk characteristics of 

containerized traffic flow in complex ways. 

This paper develops a closed form solution relating the end-to-

end risk behavior of containerized traffic flow in terms of the 

characteristics of each of the channels or gates. Understanding 

the end-to-end risk characteristics is important from the 

perspective of business because the business needs to develop a 

predictable model for risk in order to sufficiently insure its 

cargo and factor the costs of such insurance in the pricing 

model.  From a national security perspective, each government 

or national security agency needs to carefully weigh in the costs 

of improving safety and security against the predicted 

enhancement in attaining such security on an end-to-end basis. 

While the impact of an investment toward the improvement in 

the characteristics of a single channel or gate might be easily 

understood, this understanding is not sufficient in terms of 

evaluating the impact of that investment from an overall risk 

mitigation perspective when several channels in sequence are 

involved. Accordingly, it might not yield the best ‘bang for the 

buck’ invested. This paper characterizes the end-to-end risk 

profile in terms of the characteristics of each of the constituent 

elements in order to maximize the impact of investment toward 

improving the end-to-end risk characteristics. 

The conventional way of understanding risk is in terms of the 

expectation of loss which is a product of the probability of loss 

and the average amount of loss. This information is insufficient 

if one were to assess the probability of loss remaining bounded 

within a predefined threshold. This is what we address in this 

paper, especially under the scenario that a cargo goes through 

when it traverses a number of channels that are inhomogeneous 

in their risk characteristics [4]. We first address the risk 

characteristics of a single channel followed by two channels. 

We then generalize the results to a number of cascaded 

channels with inhomogeneous risk characteristics. The findings 

of our investigation are illustrated through a number of 

examples. 

 

 
2. THE SINGLE CHANNEL MODEL 

 
Our model defines the risk characteristics of each intermediate 

traffic channel and each gate encountered by the in-transit cargo 

individually. We assume that the risk characteristic of each 

element (whether a channel or a gate) is independent. The risk 

characteristics of each element are defined by a single variable 

λ  which is exponentially distributed [5].  

The probability density function of this variable is given by: 
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The cumulative distribution function is given by: 
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An interpretation of Eq. (2) would be that the probability of a 

loss of magnitude x or less is F(x). The boundary conditions of 

Eq. (2) are verified by the fact that all losses are bounded by 
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infinity and zero. Using the properties of the exponential 

distribution, the mean loss of a channel =
λ

1
. Figure 1 shows 

the distribution function for three different values of λ  =0.5, 1, 

and 1.5. The curve with a higher value of the mean loss 

(lambda=0.5) rises more slowly as expected. 

Figure 1 shows the distribution function for three different 

values of λ  =0.5, 1, and 1.5. 

 
Figure 1: Loss Characteristics of a single channel 

 

 
3. THE TWO-CHANNEL MODEL 

 
We now consider a two-channel model, say, consisting of road 

and air transport channels [6]. The probability density function 

of the two channels is defined as: 
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The combined probability density function f(x) of both the 

channels can be evaluated by convolving the two constituent 

probability density functions )(1 xf  and )(2 xf  [7, 8]. We have, 
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After some simplification, (See Appendix A), Eq. (5) can be 

expressed as, 
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From Eq. (7), we notice that 1λ and 2λ are interchangeable. 

Therefore, the sequence of the channels does not affect the end-

to-end loss. In other words, the end-to-end loss characteristic is 

determined entirely by the loss characteristics of each channel 

and is independent of their sequence. 

 

Examples: 

 

In Figure 2, we present the loss characteristics of four different 

situations, each with two channels and the following loss 

characteristics. 

 

Case 1: 25.1,75.0 21 == λλ  

Case 2: 5.1,5.0 21 == λλ  

Case 3: 75.1,25.0 21 == λλ  

Case 4: 1,1 21 == λλ  

 

Note that in each case the sum of 1λ and 2λ  has been kept at a 

constant value, namely, 21 λλ + = 2. 

 
Figure 2: Loss Characteristics of two channels in tandem 

 

It is evident from Figure 2 that closer values of 1λ  and 2λ  

result in curves that represent better end-to-end loss 

characteristics, i.e., the curves rise faster than those where 1λ  

and 2λ  widely vary.  

We note in passing that the mean value of loss of two channels 

in tandem is equal to

21

11

λλ
+ . This sum will obviously 

increase as 1λ  and 2λ  diverge while their sum remains 

constant. (See Appendix B). In other words, the cumulative loss 

characteristics of two channels in tandem are consistent with the 

loss experienced by each of the two channels.  

 

 
Figure 3: Loss Characteristics of two channels with the same 

end-to-end mean loss 

 

Figure 3 plots a number of curves for two channels in random 

where we have kept the sum 

21

11

λλ
+ a constant while varying 

the individual 1λ and 2λ . It can be observed from Figure 3 that, 

as long as the mean end-to-end loss experienced is kept to be a 

constant, the variance in their cumulative loss characteristics is 

moderate. 
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We can now ask ourselves the following question: Given 

identical end-to-end mean loss, is it preferable to have a single 

channel or two channels in tandem? A surprisingly elegant 

result is presented in Theorem 1. 

Theorem 1: Compared to two identical channels in tandem, 

each having a loss parameter equal to λ , a single-channel with 

the parameter 
2

λ
 has superior cumulative loss characteristics 

up to a mean loss value that can be numerically evaluated. 

Beyond this point, the two-channel model with identical mean 

loss is superior. 

Proof: 

We note that the mean loss value for each model is identical 

since

2
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=+ . We also have, for its single-channel model, 
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And therefore, for such values of x, 
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The two loss curves intersect when )()( 21 xFxF = , i.e., when 

from Eq. (8) and (9) 
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Eq. (12) can be numerically evaluated. 

For large values of x, we have, 
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The ratio of the two terms on the R.H.S. of Eq. (13) can be 

written as, 
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The problem then becomes to compare the relative values of 

x

e 2

λ

and xλ+1 . For a given value of λ , we further note that 

since the slope of an exponential function, 
x

e 2

2

λ
λ

  increases 

with x, while the slope of a straight line is constant λ , there 

cannot be more than two points of intersection between a 

straight line and an exponential curve. The two channel model 

thus has better loss characteristics than the single channel model 

at higher values of loss. 

 

 

4. THE N-CHANNEL MODEL 

 

For n-channel model [9], we also have two cases. One supposes 

that each channel has the same λ , then 
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5. CONCLUSION 

 

This paper has provided a closed form solution to the general 

problem of assessing the probability of bounding loss in a 

cascade of channels when the risk characteristics of each 

channel, modeled as an exponential loss model, are known. The 

results obtained can be utilized to shape the loss characteristics 

of individual channel. 

 

 

APPENDIX A 
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APPENDIX B 

 

Let C=+ 21 λλ (a constant)                                                 (22) 

We intend to show that 

21

11

λλ
+ is minimized when 21 λλ = . 

Let ∆=− 12 λλ                                                                     (23) 

We have assumed, without loss of generality that 12 λλ >  , 

i.e. 0>∆ . From Eq. (22) and (23), we 

have
2
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We now can write after some algebraic simplification, 
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For C and 0>∆ , it can be easily shown that (24) is minimized 

when 21 λλ = .  
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