
Real-Time Head Pose Estimation on Mobile Platforms

Jianfeng Ren1, Mohammad Rahman1, Nasser Kehtarnavaz1, and Leonardo Estevez2

1Department of Electrical Engineering, University of Texas at Dallas
2Wireless Terminal Business Unit, Texas Instruments

ABSTRACT

Many computer vision applications such as augmented
reality require head pose estimation. As far as the real-time
implementation of head pose estimation on relatively
resource limited mobile platforms is concerned, it is

required to satisfy real-time constraints while maintaining
reasonable head pose estimation accuracy. The introduced
head pose estimation approach in this paper is an attempt to
meet this objective. The approach consists of the following
components: Viola-Jones face detection, color-based face
tracking using an online calibration procedure, and head
pose estimation using Hu moment features and Fisher
linear discriminant. Experimental results running on an

actual mobile device are reported exhibiting both the real-
time and accuracy aspects of the developed approach.

Keywords: Head pose estimation, mobile platform, real-
time implementation, face detection

1. INTRODUCTION

Many computer vision applications require a face pose
estimation module; for example, identifying the head
gesture during conversation [1], designing a smart room
that monitors its occupants’ activities [2], deploying a
driver assisted system [3]. Recently due to the growth in

the use of mobile devices, face pose estimation on mobile
devices has become of interest. Normally, the real-time
implementation of head pose estimation algorithms is
reported on PC platforms with relatively powerful
processors and large memory sizes. The real-time software
implementation of head pose estimation on mobile
platforms without using any dedicated co-processor poses
its own challenges.

Although many face pose estimation algorithms have been
introduced in the literature, most suffer from one or more
of these limitations: predefined assumptions about the
environment, high computational complexity and low
accuracy. Recently, Murphy-Chutorian et al. [4] presented
a survey on various face pose estimation algorithms and
pointed out that further improvements need to be made to
get a robust real-time pose estimation system. When it

comes to relatively resource limited mobile platforms as
compared to PC platforms, it becomes more challenging to
meet the real-time aspect while maintaining reasonable
head pose estimation accuracy. This paper presents a robust
real-time head pose estimation algorithm by using the Hu
moment shape features [5] in an online training manner to
classify a face pose into one of the following five poses:
center/up/down/left/right.

The remaining part of the paper is organized as follows:
Section 2 includes an overview of the existing head pose
estimation algorithms. The introduced real-time head pose
estimation algorithm is then presented in section 3. Real-

time experimental results on a mobile platform are then
provided in section 4 and finally the conclusions are stated
in section 5.

2. OVERVIEW OF EXISTING HEAD POSE
ESTIMATION ALGORITHMS

In the past few years, much research has been done on head
pose estimation. The existing approaches can be
categorized into two general categories of appearance-
based and model-based approaches. The interested reader is
referred to [4] for details on these approaches.

Head pose estimation is normally done after face detection.
Appearance-based approaches consider head pose
estimation as a multi-class classification problem. The
orientation of detected faces gets classified into several
different poses. These approaches use the detected/tracked
faces as the input, and extract various features such as
Gabor-wavelet and Hu moments. A classification is then

applied. Some of the commonly used classifiers include
support vector machines, neural networks, and Adaboost
cascade classifiers. Generally, the training is performed
offline and the recall is done online.

Model-based approaches mainly use face features such as
the mouth, eyes and/or nose to determine the right pose.
Even though many of these features are simple, the

difficulty lies in detecting these features with high precision
and accuracy, in particular when faces appear small in
captured images.

In this paper, the emphasis is placed on head pose
estimation running in real-time on mobile devices. The
main attribute of the developed solution is that it does not
require any offline training. In what follows, various
components of our head pose estimation system are

discussed.

3. REAL-TIME HEAD POSE ESTIMATION SYSTEM

The developed real-time head pose estimation solution
consists of four main components: Viola-Jones face
detection for the front faces, online color calibration, color-
based face tracking, and finally online head pose
estimation.

56 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 3 - YEAR 2010 ISSN: 1690-4524

Fig. 1: Face detection algorithm based on Viola-Jones object detection.

3.1 Viola-Jones face detection

The developed head pose estimation system requires face
detection first. Among the face-based detection algorithms,
the one based on the Viola-Jones object detection approach
has been shown to be most robust to environmental lighting
changes [6-8]. Let us briefly state the real-time

implementation of the Viola-Jones face detection on mobile
platforms which we previously reported in [9].

For detection, a so called integral image for the entire
image frame is computed. Then, each subimage with
different positions and sizes is tested against all trees/stages
in the classifier. Figure 1 provides an overview illustration
of the algorithm. First, the available classifier parameters

are read into one data structure such as a binary tree or an
array. In the implementation reported here, we used the
classifier parameters for frontal view faces. It should be
mentioned that for profile faces or other face orientations,
the corresponding classifier parameters can be used. The
classifier selected for frontal view faces consists of 22
stages with each stage comprising different numbers of
trees ranging from 3 to 212. For each subimage to be

examined, its corresponding features are computed. Viola
and Jones proposed four different rectangular features
within a subimage as shown in Fig. 2. During the training
process, the number of rectangular features within one
24x24 block is about 18,000. After training, each tree does
the comparison for one rectangular feature. Therefore,
during each stage, each tree is applied to the subimage
under testing. This will generate one value to be compared

with a threshold of that tree. If the value is less than the
threshold of that tree, the left value of the tree gets
accumulated. Otherwise, the right value gets accumulated.
For each stage, if the stage sum is less than the stage
threshold (T# in the figure, where # indicates the number of
stages), then the testing ends indicating that the tested
subimage does not contain any face. Otherwise, it continues

to go through all the trees/stages until the last one. If one
subimage goes through all the stages and the final result is
1, this indicates the subimage is a face.

Fig. 2: Rectangular features shown for a tested subimage

This algorithm has been implemented in hardware in digital
camera products. In [9], we presented a software-based

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 3 - YEAR 2010 57ISSN: 1690-4524

implementation of the Viola-Jones face detection algorithm
on the TI OMAP3430 mobile device. We considered a
number of optimization techniques including data
reduction, search reduction and numerical reduction to be
able to run the Viola-Jones algorithm in real-time. After

incorporating all these optimizations, we were able to run
the Viola-Jones face detection algorithm on this device
every 90ms for VGA resolution video frames.

3.2 Online color calibration

After faces are detected, a skin color-based look-up table is
used to identify the skin face area. We previously reported
the details of our skin color-based face detection in [10].

Figure 3(a) shows a sample detected face area (outer box)
and the area from which skin samples are collected (inner
box). To separate skin pixels from non-skin pixels, the k-

means clustering algorithm is applied to the inner area
pixels. Figures 3(b) and 3(c) show the face area from which
data samples are collected and the segmented skin area
after clustering, respectively. A skin color model is then
trained online and a lookup table is generated using the
chrominance values of the skin pixels as exemplified in
Fig. 3(d).

0 50 100 150 200 250
0

50

100

150

200

250

Cb

C
r

(a) (b)

(c) (d)

Fig 3: (a) Detected face area, (b) face area from which
skin samples are collected, (c) segmented skin area
after clustering, and (d) skin color cluster in Cb-Cr

chrominance space.

3.3 Color tracking

In [10], we reported a robust color tracking algorithm to

detect faces in video streams captured by the OMAP3430
mobile device.
Figure 4 shows the flow chart of our online color
calibration and color tracking algorithm. At the beginning,
few of initial frames are skipped because, in many camera

systems, auto white balance and auto exposure have not
reached a stable state. After this initial warm-up time, the
feature based face detection algorithm is started and
allowed to run for next five frames. The median of these
five frames is obtained in order to avoid any ambiguity

caused by false alarms and then the detected face area is
used for the online calibration of the skin color model.

Fig. 4: Components of our hybrid face detection algorithm.

58 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 3 - YEAR 2010 ISSN: 1690-4524

 As soon as training is finished, the skin color based
algorithm is started. If a face is detected, then the search
region for next frames is arranged to be in a neighborhood
area around the detected face. The full image area is used
again in a next key frame or if the algorithm fails to find

any face in a previous frame. This stabilizes occasional
abrupt changes in the face position or when a new face

enters the image. If the skin color based algorithm fails to
detect any face for 10 consecutive frames, then the Viola-
Jones algorithm is executed again to recalibrate the skin
color model assuming that the lighting condition has
changed or a new person has entered the frame.

Fig 5: Components of the developed real-time head pose estimation system.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 3 - YEAR 2010 59ISSN: 1690-4524

3.4 Online training

As illustrated in Fig. 5, in our approach, an online training
is carried out first by collecting five different poses of a
subject whose face poses are to be identified. Hu moments
from each pose are captured by pushing the keyboard

buttons 1 through 5 of the mobile device. During this
online training procedure, feature vectors are obtained by
projecting Hu moments via the Fisher linear discriminant
matrix [11]. The k-nearest neighbor (KNN) algorithm is
then applied to provide representative feature vectors for
each pose. The recall gets started by pushing the button 6.

Let
L

ωωω ,,, 21 � and
L

NNN ,,, 21 � denote the

pose classes and the number of sample images in each

class, respectively. Let
L

MMM ,,, 21 � and

M denote the class means and the overall mean,
respectively. The within-class and between-class scatter
matrices are computed as follows:

{ }))((
1

t

ii

L

i

w MyMy −−Ε=Σ ∑
=

 (1)

{ }t

ii

L

i

b MMMM))((
1

−−Ε=Σ ∑
=

 (2)

Fisher linear discriminant provides the projection matrix

Ψ that maximizes
ΨΣΨ

ΨΣΨ

w

t
b

t

. This ratio is

maximized when Ψ consists of the eigenvectors of the

matrix
bw

ΣΣ
−1

. The projected features via the projection

matrix are then used during the recall phase.

4. EXPERIMENTAL RESULTS

In this section, the above computationally efficient head
pose estimation algorithm is implemented on the OMAP
mobile platform. We selected this platform since it is a
widely adopted platform in many modern cell-phones. This
platform possesses a triple core engine consisting of an
ARM Cortex-A8 processor, a graphics processor, and a
C6400 DSP processor. Figure 6 and Figure 7 show a
snapshot of the head pose estimation algorithm running in

real-time on the PC and on the OMAP3430 mobile device.

The developed head pose estimation algorithm achieved
more than 90 percent correct pose estimation when
considering individual frames as part of live video streams
running on the OMAP3430 platform. The outcome of a
typical test experiment for three subjects appears in Table 1
based on individual frames in the corresponding video
stream. As can be seen from this table, an average

estimation accuracy of 94.1% was resulted. A sample
confusion matrix based on individual frames of a video
stream is shown in Table 2 exhibiting the origins of the
misclassified cases.

Table 1: Head pose estimation accuracy

Subject Detection Rate

Subject 1 91.2%

Subject 2 96.8%

Subject 3 94.2%

Average 94.1%

Table 2: Sample confusion matrix

 Center Up Down Left Right

Center 74 9 25 0 0

Up 3 69 0 0 0

Down 0 0 33 0 0

Left 0 0 0 100 0

Right 0 0 0 0 127

It is evident from Table 2 that the misclassification is

primarily caused between the center-down and center
poses. The reason for this is that the captured face image
still retains most of the frontal facial features when tilting
the head down. This problem was addressed by using
majority voting. That is to say a time or moving window
was used and the classification outcome was considered for
a number of consecutive frames. Then, the pose with the
majority number of frames was selected. This majority
voting approach led to 100% correct pose estimation on

live video streams.
The breakdown of the processing time for each part of the
head pose estimation process is as follows: Viola-Jones
face detection 90ms, online calibration (worst case 250ms,
depends on detected face size), color-based face tracking
70ms and head pose estimation 10ms. These times are
listed in Table 3. It should be noted that the Viola-Jones
face detection and the on-line calibration are only run for

the first few frames, which is to say after an initial warm-up
time, the color tracking takes over.

Table 3: Computational breakdown of head pose
estimation components during recall

Component Processing Time

Viola-Jones face detection 90ms

Online calibration At most 250ms,
depends on face size

Color tracking 50ms for VGA
resolution

Head Pose estimation 10ms

60 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 3 - YEAR 2010 ISSN: 1690-4524

Fig 6: Snapshot of five head poses for a video stream running on PC platform.

Fig 7: Snapshot of five head poses running in real-time on mobile platform (OMAP3430).

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 3 - YEAR 2010 61ISSN: 1690-4524

5. CONCLUSION

In this paper, a robust head pose estimation approach for
real-time deployment on mobile devices is presented. The
developed solution consists of three parts: (1) Viola-Jones
face detection, (2) color tracking based on an online
calibration procedure, and (3) a computationally efficient
head pose estimation algorithm. An actual implementation
on a mobile device is performed demonstrating both the

robustness and real-time aspects of the introduced solution.

6. ACKNOWLEDGEMENT

This work was partially sponsored by the Wireless

Business Unit of Texas Instruments.

7. REFERENCES

[1] M. Trivedi, “Human movement capture and analysis
in intelligent environments,” Machine Vision and

Applications, vol. 14, no. 4, pp. 215–217, 2003.

[2] S. Baker, I. Matthews, J. Xiao, R. Gross, T. Kanade,
and T. Ishikawa, “Real-time non-rigid driver head
tracking for driver mental state estimation,”

Proceedings of 11th World Congress Intelligent
Transportation Systems, Oct 2004.

[3] S. Fujie, Y. Ejiri, K. Nakajima, Y. Matsusaka, and T.
Kobayashi, “A conversation robot using head gesture
recognition as para-linguistic information,”

Proceedings of 13th IEEE International Workshop
on Robot and Human Communication, pp.159-164,
Sep 2004.

[4] E. Murphy-Chutorian and M. Trivedi “Head pose
estimation in computer vision: A survey,” IEEE

Trans. on PAMI, vol. 31, no. 4, pp. 607-626, Feb
2009.

[5] R. Sivaramakrishna and N. Shashidharf, “Hu's
moment invariants: how invariant are they under skew

and perspective transformations?” Proceedings of

IEEE Conference on Communications, Power and
Computing, pp.292 – 295, May 1997.

[6] P. Viola and M. Jones, “Rapid Object Detection Using
a Boosted Cascade of Simple Features,” Proceedings

of IEEE CVPR, vol. 1, pp. 511-518, April 2001.

[7] OpenCV[online]
http://www.intel.com/technology/computing/opencv/o
verview.htm

[8] X. Tang, Z. Ou T. Su and P. Zhao, “ Cascade
AdaBoost Classifiers with stage features optimization

for cellular Phone embedded face detection system”
Lecture Notes in Computer Science, vol. 3612,
Springer, 2005.

[9] J. Ren, N. Kehtarnavaz, and L. Estevez, “Real-Time
optimization of Viola-Jones face detection for mobile
platforms,” Proceedings of Seventh IEEE Dallas

Circuits and Systems Workshop, pp. 1-4, Oct 2009.

[10] M. Rahman, J. Ren, N. Kehtarnavaz, “Real-time
implementation of robust face detection on mobile
platform”, Proceedings of IEEE ICASSP

Conference, vol.1, pp. 1353-1356, April 2009.

[11] C. Liu, H. Wechsler, “Gabor Feature Based
Classification using the enhanced fisher linear
discriminant model for face recognition”, IEEE

Transactions on Image Processing, vol. 11, no.4,
pp. 467-476, April 2002.

62 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 3 - YEAR 2010 ISSN: 1690-4524

	GS270PF

