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ABSTRACT 

For the recent years there was an increasing interest in different 
methods of motion analysis based on visual data acquisition. 
Vision systems, intended to obtain quantitative data regarding 
motion in real time are especially in demand. This paper talks 
about the vision systems that allow the receipt of information on 
relative object motion in real time. It is shown, that the 
algorithms solving a wide range of practical problems by 
definition of relative movement can be generated on the basis of 
the known algorithms of an optical flow calculation. One of the 
system’s goals is the creation of economically efficient 
intellectual sensor prototype in order to estimate relative objects 
motion based on optic flow. The results of the experiments with 
a prototype system model are shown. 
This research was supported in part by the grant of 
RFBR № 08-01-00908. 
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1. INTRODUCTION 

Works in the field of an optical flow calculation have been 
conducted for more than 30 years. Last decade these methods 
were used in a wide range of applied problems due to increase 
of computers computing capacity and the occurrence of 
specialized graphic processors. There are many articles that 
have been written on the subject of optical flow methods [1-17]. 
There are also widely available libraries with an open code, in 
which the ready applications of the most popular optical flow 
methods could be found (for example, OpenCV [18], LTI-Lib 
[19], VXL [20]). Methods of an optical flow appear to be useful 
for segmentation of images [15], and also for detection of 
obstacles from moving objects [3].  

Despite the growing efficiency of computers, it is prudent 
to see how the optical flow method can be widely used in 
different applications but with minimal computing expenses and 
sustained data accuracy and calculating stability. In order to 
reduce computing expenses restrictions to the way optical flow 
calculated and processed may be imposed.  
Important questions to be answered are:  
• Accuracy of calculations at a low image resolution;  
• Selection of an optical flow method for specific targets 

regarding the optimal parameters values; 
• Algorithms’ construction where parameters can be 

adjusted depending on changing conditions. 
 
The work paper set out to address the following tasks:   
• Calculation and interpretation of an optical flow using 

Lucas-Kanade method on pyramids of images given plain -

parallel camera movement as well as  movement under an 
angle;  

• Determination of how calculation accuracy depended on 
resulting values of algorithm parameters in various 
applications;  

• Identification of how all algorithms functioned together 
when a single task was performed in real time.  

 
To tackle the above, available in the KIAM RAS laboratory 
template of the vision system (VS) program VS software [21] 
and a custom- made hardware-software complex for studying 
the parameters of Lucas-Kanade optical flow on pyramids of 
images and feature points allocation methods were used. VS 
software is a modular, multi-channel application which allows 
quickly processing various visual data algorithms and most 
importantly working with the algorithms of Lucas-Kanade 
optical flow as well as testing its adjustable parameters.  
The offered solutions have been practically tested using (see 
item 3) a prototype of VS model: the VS for relative movement 
estimation on the optical flow, created in KIAM VS laboratory.  

 
 

2. ARCHITECTURE of VISION SYSTEM FOR 
RELATIVE MOTION ESTIMATION FROM OPTICAL 

FLOW  

During VS creation the following two basic methods were used 
in order to determine relative movement on an optical flow:  

• COTS technology in configuration of hardware and 
software parts of the system;  

• component approach to real time VS design.  
The VS system was also formed as a component of information 
system of mobile devices, inside of which there was 
programmed an ability to integrate with local and global 
navigation.  

 
Software  
A sparsed optical flow method has been used to achieve 
maximum efficiency and to decrease computing expenses. The 
optical flow is not applied throughout the picture, but only at 
feature points [5, 6, 7, 13].  
Any algorithm based on a sparsed optical flow method entails 
three stages:  

-   identification of feature points of the image;  
- definition of the vectors where feature points are 

displaced; 
- segmentation of the resulting vector field and its 

interpretation.  
These stages would be called processing levels of initial visual 
data. Besides these traditional operations, the following 
algorithms were added:  algorithms that allow selecting areas of 
interest in a video camera’s view, algorithms that can 
statistically calculate statistical vectors’ displacement and 
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finally, algorithms that can automatically change the parameters 
of visual data inputs.  

 
Low level algorithms 
The functions from OpenCV library [18] were used to 
completely implement the low level of video data processing. 
An approach identifying feature points was selected in order to 
keep the system working in real time and also to be able to 
address any new issues at a low level from the known optical 
flow methods [11, 14]. There is a possibility of effective 
processing of image points by regions of interest. These regions 
are set by special masks (based on priority of information or as 
a result of analyzing images from previous video sequence) 
which are formed by algorithms of top level.  
 

Feature points allocation. Let each point of the image be 
characterized by the function of intensity I (x, y). For the further 
combination angular points are then selected as feature points. 
Harris's [6] modified algorithm which reacts to angles is applied 
to their allocation. Angle in this case is a local distinctive area 
(location) of the image where the change of intensity function I 
is maximized simultaneously in both directions x and y. An 
equation for Harris’s detector can be written as [6]:  
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Where G – covariance matrix of derivatives function I(x,y) 
(Hessian’s functions I of second order):  
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λi – Hessian own values, and k - empirical value is usually taken 
out from the interval [0.04, 0.06]. RI – is called an angle 
sensitivity function. If its value is negative, then the found 
location is an edge; if its value is higher than the positively set 
threshold, then the location is an angle. Locations with positive 
values RI lower than the threshold are considered monotonous. 
Parameter k sets operator’s sensitivity in that higher the 
parameter value, the fewer number of angles will be found. 
Derivatives (according to numerical methods) are in a vicinity 
of points; therefore high-frequency filtration has already been 
embedded in the algorithm. Local function maxima are picked 
out because several neighboring angle points yield maximum 
values for the angle sensitivity function RI. 

 
The following algorithm is used to identify feature points:  
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Where λ1, λ2 - own values of matrix G in a considered point, q - 
the parameter setting the quality of feature point (an angle 
sharpness), λmax=max (min (λ1

0, λ2
0), min (λ1

1, λ2
1), …, min 

(λ1
sx·sy, λ2

sx·sy)), sx, sy - the size of region of interest (ROI) in 
which feature points are searched, λ1

i, λ2
i - matrix’s own values 

G in each point of the image. As in Harris's general detector, 
several neighboring points of feature location will have min (λ1, 
λ2)> λmax·q. This is why local maxima of own minimum values 
as the feature point are chosen. In case it becomes necessary to 

increase the accuracy of the feature point’s location 
determination, the algorithm’s solution is interpolated.  

 
Average level algorithms 

Definition of the vectors where feature points are 
displaced. From now the definition of Gauss pyramid of images 
will be used. Gauss pyramid of images is a number of images 
with resolution consistently decreasing by 2. The initial image 
lays in the pyramid basis. The operation of images’ combination 
calculates vectors fields that translate feature points of the first 
image into those of the second image. When optical flow is 
calculated in a traditional way, it would be ideal to compare all 
points of the image. However, not all points are unique, not all 
of them are feature points that could be exactly applied to the 
points from the second image, for example, points found in 
monotonous areas where brightness of image is the same. This 
is the reason why optical flow algorithm to such points is not 
applicable. For image combination, i.e. displacement vector 
identification, Lucas-Kanade method is used, where 
minimization condition states that vector displacement:  

bGvopt
1−≈    (3) 

The formula (3), the basic formula of Lucas-Kanade optical 
flow, states that the vector which fully correlates a point of the 
first image to that of the second could be found with a margin 
error. To reduce the error the given method is applied 
iteratively, i.e. the found vector becomes an input parameter 
into the algorithm to produce a new more exact vector. The 
process is repeated until the desired accuracy lever or number of 
iterations is achieved. Optical flow methods have an essential 
weakness: they can be applied at small (1-3 pixels) 
displacement of objects. In order for the algorithm to work with 
larger displacements, it is applied to the Gauss pyramid of the 
initial image. First, the vectors at the top level of the pyramid 
are calculated; the process is repeated until the margin of error 
sufficient for the application at lower level is reached. These 
steps are performed for all levels. A vector of an optical flow is 
resulted at the final stage. This algorithm even given all its 
advantages has an essential drawback: small errors in 
calculations at top levels of the pyramid tend to accumulate and 
increase.  
In the OpenCV implementation depending on flags, the pyramid 
of images can be constructed in advance, or the function of 
finding an optical flow would call it before the calculation 
begins. The size of a pyramid is chosen based on a rough 
estimate of visible plain-parallel displacement of an image (or 
from the prior information, or from a previously calculated 
vector). Two times as many displacements are found with every 
new level of a pyramid.  
If the feature point of the first image appears closed on the 
second or falls out of the image area, there are two approaches 
to address this situation: either such point is marked as the one 
for which a conformity is not found or the algorithm would 
substitute the point with another with similar features to yield a 
false vector i.e. an optic flow vector that does not correspond to 
the true objects’ movement on the scene. False vectors would be 
filtered at the next stage of the algorithm.  
 

False vectors filtration. Depending on the application, 
vectors’ filtration may be more challenging than the actual 
determination of optical flow. Undoubtedly, accuracy and 
stability of the solution for a specific task is depended on optical 
flow vectors’ segmentation. Also at that stage an image 
comparisons in a camera objective (the so-called visible image) 
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to the real movement of the camera (objects relevant to the 
camera) is made; and the resulting data would serve for 
subsequent calibration of algorithms.  
At a described stage of research, the relative movements, in 
which the visible movement was either plain-parallel or the 
movement of camera’s sensor plain under a constant angle to 
the surface’s plain, were considered.  
Finding an average vector for an optical flow of such camera 
movement is not that difficult. It is the vector whose coordinates 
equal to the sum of corresponding coordinates of all vectors 
divided by the number of vectors (given corrections of camera 
movements under an angle).  
The filtration of false vectors of optical flow is better conducted 
based on direction or length, keeping those, whose directions or 
lengths lay within the acceptable for the average vector’s 
margin of error. The resulting filtration data could be used 
iteratively: first, find an average vector, then, reject vectors 
considerably deviating from the average vector’s directions or 
lengths, finally, find a new average vector, reject, and reduce 
the error. Thus, the accuracy of average vector’s calculation as 
it relates to the plain-parallel movement rises. Since restrictions 
to the camera movement are imposed a priory, comparing an 
average vector to the real world metric, movement parameters 
could be obtained.  

 
Top-level algorithms 
Top-level algorithms set out the functionality for the system 
itself beginning from the visual data collection and ending with 
the results about a certain relative movement.  
The initial a priori data for the algorithms are 

− location and characteristics of attainable visual fields 
(resolution, zoom, responsiveness of the visual data 
channels);  

− location specifics and images’ contours of the observed  
objects (in order to form masks and necessary resolution 
for the level of Gauss pyramid; 

− possibility to obtain additional data about observed 
objects. 
 
The target task of top-level algorithms, the relative 
motion estimation, is divided into several subtasks::  
• selection of the relative motion model;  
• the model verification/specification;  
• calculation of relative motion quantitative characteristics.  
Under the fixed functioning conditions the part of these 
subtasks can be passed.  
For example, in a mode of functioning as contactless odometer, 
it is possible to consider, that the scene scale is fixed, and the 
motion model is limited by the kinematic scheme of a vehicle or 
the robot. Then the decision of the first subtask is replaced with 
use of an aprioristic set of motion models. Similar 
simplification is applicable and in case of estimation of the 
inspection tool movement under a processed surface by 
mechanical machining. 
Mathematical models describe a priori certain type of relative 
motion and can change operatively on signals from the outside 
or by results of the current visual scene analysis. Besides, these 
models can consider the model of the vehicle on which the 
acquisition device is mounted. For example, it can be a model 
of a car suspension, allowing to correct the image scale on the 
next analyzed video sequence image.  

Top-level algorithms are developed with the original approach 
to the images analysis on the basis of a combination of “top-
bottom” and “bottom-top” methods [21, 22].  

 
The hardware  
The structure of the system is modular and open:  
• One or several acquisition devices (a video camera with 
optical system) + the input channel for the image transfer into 
the computing - control device.  
• The computing - control device (universal computer or 
specialized computing device).  
• Software (mathematical models; top-, middle- and low-level 
algorithms).  
The VS is composed of the following items. Different types of 
videocameras with various lenses were used as acquisition 
devices, as well as inexpensive analogue videocameras with 
framegrabber or TV-tuner, digital Web-cameras and more 
expensive Ethernet cameras such as those with progressive 
scan. Notebook and barebones systems were used for 
computing and control.  
The VS architecture has been tested on the contactless odometer 
prototype model (fig. 1). 
 

 
 
Fig. 1. General view of prototype model components of the 
navigating system including contactless odometer. 1 – the 
videocamera on fixing platform;  2 – the computing and control 
unit; 3 – the three-dimensional accelerometer; 4 – the single-
dimensional accelerometer; 5 – the GPS-receiver antenna; 6 –  
the power converter block. 

 
3. EXPERIMENTS WITH A SYSTEM PROTOTYPE 
MODEL 
 
Mobile robots 
Results of research of VS for contactless estimation of 
movements are tested for improvement of an information 
support of two mobile robots: MRK-27 and “Trikol”. 

Remotely controlled robot MRK-27 (CDTB PR 
Bauman’s Moscow State Technical University) (fig. 2) – the 
small-serial robot on the track-type chassis. It is actively used in 
many applied tasks. 
In experiments with this robot the field of view «under feet» has 
been used. It has provided exact and fast estimation of robot 
movement. The results data can be used in a robot control 
contour. Robot movements occurred on smooth concrete floor 
with speed of about 1 m/s. Movement trajectories were 
rectilinear and curvilinear. Distances of 10-30 m have been 
fixed by contactless odometer to within 0,01 m (fig. 3). 
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Fig. 2. The registering block of the contactless odometer is 
mounted in a MRK-27 grasping unit. 
On fig.3 the example of the displacement vectors detection for 
concrete floor scenes is shown. Frequency of the displacement 
vectors generation not less than 10 Hz.  

 

 
 
Fig. 3. Displacement vectors estimated by VS prototype model 
at MRK-27 robot movement on a smooth concrete floor. 

 
     “Trikol” is a laboratory maneuverable three-wheeled robot 
with the high autonomy capability (fig. 4). 

 

 
 
Fig. 4. “Trikol” robot general view. The arrow specifies a 
placement of the forward looking videocamera. Its field of view 
is used for contactless movement estimation.  

 

 
Fig. 5. Movement vectors estimated at the “Trikol” forward 
looking videocamera field of view.  
 
Rail transport 
In experiments, the fields of views of the computer vision 
systems intended for inspection and measurements of 
parameters of various railway infrastructure objects have been 
used (fig.6-9). In these fields of view the regions of interest 
were automatically allocated. In these regions estimation of 
movement of a rolling vehicles relating a railway was made. So, 
to calculate the way based on visual data from a field of view 
intended for the control of a ballast section (fig.8), rails images 
were extracted, and relevant regions for an optical flow 
calculation and for the movement vectors estimation were 
located. 

 
Fig. 6. Movement vectors estimation based on areas of a railroad 
ties lattice along rail threads in a field of view intended for the 
control of a ballast section (speed of movement of 15-20 m/s). 

 
Fig. 7. Movement vectors estimation based on areas of a railroad 
ties lattice along rail threads in a field of view intended for the 
control of a ballast section (speed of movement of 20-25 m/s). 
 
In another system intended for the rail ties surface and rail joints 
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control, in the field of view search of railroad ties at first was 
performed. Then, relative to them regions of interest were 
positioned. Finally, the calculation of an optical flow and 
estimation of movement vectors was made. 

 
Fig. 8. Movement vectors estimation based on areas of a 
railroad ties lattice along rail threads in a field of view 
intended for the rail joints control (speed: 15-20 m/s). 

 
Fig. 9. Movement vectors estimation based on areas of a 
railroad ties lattice along rail threads in a field of view 
intended for the railroad ties control (speed: 15-20 m/s). 

 
In all listed systems the specified restrictions on the speed of 
movement were defined by that fact that cameras intended for 
inspection of relatively large object rather than special video 
cameras were used. These cameras correspond to the TV 
standard. The use in the same configuration of progressive 
video cameras and the selection of local regions of interest 
allows to arrive at the solution of the movement estimation 
problem for a rolling stock with the speed up to 250 km/hour 
and accuracy of 0,02%  from a way (by visual data from a 
forward looking field of view) and to 120 km/hour and accuracy 
0,01 % from a way by visual data from an «under feet looking» 
field of view.  

 
Motor transport 
The contactless odometer problem is present for various mobile 
laboratories, for which the exact binding of measurements is 
important. The described VS has been tested as a part of mobile 
laboratory for operative diagnostics of a road surface. In this 
laboratory there are several video cameras for the various 
parameters of a road surface control. For experiments on 
contactless odometer the field of view of the forward looking 
camera has been chosen (fig. 10). On fig. 12 the closed 
trajectory of the mobile laboratories movement is presented. 
This trajectory restored according to contactless odometer 
measurements.  

 

  
Fig. 10. The general view of Mobile Laboratory for Operative 
Diagnostics of a road surface (MLOD).  

 
Fig. 11. Movement vectors estimated at the MLOD mobile 
laboratory movement on wet asphalt road with the 2-9 m/s 
speed. 

 
Fig. 12. A trajectory of the MLOD laboratory movement. It is 
constructed according to contactless odometer measurements 
based on results of a circular route tour. At a circular route of 
195 m length, an error of moving estimation has made 0,5 m. 

 
Machining process 
The real example of the demand for the contactless relative 
movement’s estimation of other scale is measuring the 
movement of the inspection tool at the time of operative quality 
control of a processed surface during mechanical machining. 
In this task the measuring head moves at a 10 mm distance from 
the processed surface. Moving speed is from 5 to 30 cm/minute. 
The size of a controllable field of view is 10x10 mm. In the 
same area, the horizontal rectangular zones along head 
movement are selected. The received visual data along with the 
main data check, the movement of the measuring head is 
determine as well as the binding of measurements to a place on 
a surface of a controllable detail. The capturing of TV standard 
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frames for the displacement of an observable surface from a 
frame to a frame makes up from 2 to 15 pixels. The described 
VS yielded positive results. 

 
Fig. 13. Vectors of horizontal displacement, calculated from the 
field of view of a measuring head moving under processed 
surface. 
 

4. CONCLUSION 
 
In this work paper it has been shown through a number of 
experiments that the  rational use of well-known low-level 
optical flow algorithms could solve a wide range of tasks where 
an estimate of parameters of relative objects movement is 
needed .  
Thus, the following issues with the optical flow analysis have 
been addressed: 
• big volume of processed data; 
• texture variability (structure of a underlying surface);  
• the errors in feature points correspondences. 
The usage of previously used hardware and software makes the 
offered decisions more economically attractive. 
The cost of equipment used in the majority of considered 
configuration is in range 1500-2000$. For variants automobile 
and railway contactless odometers, capable to work on speeds 
more than 60 km per hour this cost increases approximately in 2 
times (for the account of high-speed videocameras with 
progressive scan).  
Designing a special low-level software package would reduce 
the optical flow computing costs and provide optimization for 
the overall performance of the system of relative objects 
movement estimation based on an optical flow. 
The following steps are considered to be appropriate to address 
the described approach:  
• based on optical flow estimation of complex rotary 
movements of mobile objects (roll, pitch, yaw); 
• fusion and sharing of data on relative movement from the 
optical flow channel with other local navigation systems, such 
as the vertical sensor and accelerometer-based local navigating 
system;  
• development of methods for adaptive adjustment in 
uncontrolled light conditions (in considerable limits). 
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