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Abstract—Engineering Cyber-physical information gathering and uti-
lizing systems(CIGUS) presents the systems engineer with a difficult,
multi-criterion, multi-objective decision problem. Research, development
and design is done over many disciplines, across many domains, each
with their specific models. Systems engineers are expected to provide a
common level of communication amongst the domains to promote con-
vergence to a design. We present novel information measures that enable
combination of the underlying domain specific subsystems parameters
in a way that makes the information yield of the system intelligible to
decision makers and domain experts. These measures enable, for the
first time, the application of multi-objective evolutionary algorithms and
end-to-end computer aided engineering of CIGUS.

Our novel approach is validated and verified through the application
and direct comparison of simulated and experimental results of state-of-
the-art weather radar network test bed designs. The approach resulted
in Pareto optimal point within an average of 10% of the actual case
study design parameters and within 25% of the Pareto ideal point.
No additional parameters beyond the underlying domain parameters
were introduced. This demonstrates that the computationally aided
engineering approach presented in this work facilitates engineering
feasibility decisions and the subsequent evolution of the engineered
systems in way that reduces cost and effort.

Index Terms—information gathering and utilizing systems, cyber-
physical, network sensors, multi-objective problem, optimization.

I. INTRODUCTION

Interest in the engineering of cyber-physical information gathering
and utilizing systems (CIGUS) has burgeoned in part due to the
proliferation of wireless technology [1] and in part due to the growing
demand for intelligible information. Such systems are complicated,
with hierarchies of interfaces containing underlying complexity. They
often involve distributed network sensors. The configuration can be
dynamic, static and adaptive. Increasingly they involve real time
collaboration among agents of varying degrees of autonomy. The
interface of high yield systems often hides underlying subsystem
complexity which pose new challenges to systems engineering[2].
Systems engineers are expected to provide a common level of com-
munication amongst the domains of expertise that enable research,
development and design of the system to converge. As the domains
become highly optimized, the language and models become so spe-
cialized that it becomes extremely difficult to communicate across the
domains. Prior to this work there was no practical and well founded
way to combine the parameters of the underlying subsystems in order
to represent the overall intelligible information yield. Moreover, in
order for systems engineers to make the multicriteria tradeoffs and
optimizations required for such systems, it is necessary to introduce
new sets of objective functions without which existing multi-objective
evolutionary algorithms[3], [4], [5], [6] can not be applied to CIGUS.

In the case of CIGUS, specific domain experts do the component
subsystem design and subsequent modeling. Each of these domain
specific subsystem models are developed in their particular domain

language. Signal processing and communication models are essential
to these systems. Weather Radar networks are a classic example.
The sub-domains models involved in the systems engineering include;
models of the component radars and their subsystems[7], network[8],
signal processing[9], [10], and control[11]. What they have lacked is
a systematic approach to overall optimization supporting the decision
making process. The obstacle is combining parameters from different
domains of expertise. The systems engineers ability to provide a level
of abstraction that captures the entire system design problem at all
levels will determine how quickly, or slowly, the design will converge
to meet the requirements and how rapidly the systems will evolve.
Clearly, for CIGUS, the underlying parameters and measures should
resolve themselves in terms of the essential product: intelligible and
useful information.

Moreover, CIGUS may be system of systems with uncertain and
evolving requirements. Decisions made at multiple levels present
a difficult multi-criteria, or multi-objective, decision problem. The
systems engineer is presented with a difficult task of providing the
decision makers with the information needed to support investment
into further system evolution and development. By introducing infor-
mation measures we are able to express the quality of the system
in terms of more generally understood notions such as accuracy,
precision, and bit rates as objective functions. We show that these
objective functions, which encapsulate underlying domain specific
parameters without introducing additional parameters. These can
be combined with cost and throughput functions in a way that
enables the application of state-of-the-art multi-objective evolutionary
algorithms and automated decision support tools. Moreover, the pre-
dictions of this analysis can be directly compared with experimental
data from test beds. One recent state-of-the-art weather network test
bed, the Collaborative Adaptive Sensing of the Atmosphere (CASA)
Integrated Project 1 (IP1), enables the comparison of simulations
and experimental results presented in this paper and in more detail
elsewhere.

II. APPROACH

To capture the salience of the engineered system, the systems engi-
neer must separate the domain experts concerns, which are pursuant
to providing objective content from the decision makers concerns,
which are pursuant to ensuring that higher-level requirements are
satisfied. While not conceived as such, a non-obvious example,
rich in engineering challenges is the recently deployed the CASA
IP1[12] experimental network of weather radars. The development
is directed toward demonstration of the engineering feasibility of
an end-to-end (TRL 6) [13] hierarchical emergency response and
real time numerical weather forecast system. Its primary purpose
is to improve tornado and severe weather warnings and to assist
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emergency management response to such events[12]. As a case study
for demonstrating the need and effectiveness of extending multi
objective analysis to the computer aided engineering of CIGUS and
to improve the quality of high consequence technology transition
decisions associated with their design and development, ”IP1”, has
the unique advantage of being intensively and extensively reported
in public documents and the open literature[12]. The present study
thus provides a foundation for extending computer engineering aids
to support and evaluate technical readiness decisions to cases where
such information is not so readily available (e.g. SBInet[14]).

The design of complex sensor systems, such as weather radars and
weather radar networks, was accomplished over years of exploration
and iteration[15], [16] by multiple uncoordinated efforts. While this
traditional process, which involves both trial and error and systematic
design, has provided the sensor community with a new means of
weather sensing and prediction[12], it cannot solve the present com-
munication problem. One limitation of this approach is that it only
allows for a temporary solution to a particular systems engineering
problem that will need to be revisited as future requirements are
introduced case by case. Here we present for the first time, the
Pareto optimal multi-objective analysis of CIGUS. As we discuss
elsewhere[17] this enables us to capture the evolution of a particular
species of CIGUS over many generations. Various benefits such as:
evolutionary context, reuse, accelerate development, and reduced risk.

While the primary and essential quality that is demanded of CIGUS
is informativeness, uninformativeness provides the principled way to
construct quality loss functions. The theory underlying the present
formulation is developed elsewhere[17], in this paper we present
the salience of a specific application. Information produced by such
systems is uninformative to the extent that it is already known,
that is to say the prior or to the extent that it is uncertain. Up to
now, genetic and evolutionary algorithms have offered or developed
neither effective nor principled approaches to incorporating such
priors and uncertainty. (Un)informativeness is key and well suited to
the engineering of such adaptive intelligence oriented systems and
systems of systems because it is directly related to the principle
of maximum entropy[18] as pioneered by Jaynes[19] and subse-
quently developed[20], making the form of the engineering problem
presented here intelligible in a way that enables the application
of multi-objective evolutionary algorithms. Weather radar networks
are particularly suited to our innovative approach because, although
implicit, maximum entropy principle is embedded in the core signal
processing formulation[21]. (Un)Informativeness provides a natural
level of abstraction which fully respects and consistently subsumes
lower levels such as those associated with traditional approaches
to sensing, signaling and communication [9], [22], [23]. In this
paper, we make use of the connection between maximum entropy
and Shannon information theory to cast objective functions in terms
familiar to the engineering community. This has the added benefit of
separating the concerns of channel provider and content provider.

As shown in figure 1, sets of information oriented measures of
the performance of sensor systems may be represented in compo-
nents of an overall objective vector for purposes of evaluation and
optimization. Work completed in [17] show how these measures
abstract the sensor system estimators of the underlying parameters
of the overall system in terms of virtual sensors. By extracting the
relevant information from the underlying parametric signal models,
expressed in terms of the language of the subdomain, experts enable a
reduced set of information metrics that are most relevant to CIGUS.
The complexity of the sensor networks considered here results in
vectors with high dimensions that make it difficult for the decision

Fig. 1: The informative measures are abstraction over the sensor
system estimators and parameters allowing integration over, and char-
acterization of, a single or network of sensors. Objective functions
formulated with informative measures capture the impact of varying
parameters, design vector, on systems and networks of systems.

makers to comprehend. Here we explore the effectiveness of using
multi-objective genetic algorithms(MOGA) in concert with recent
visualization advances for computer aided engineering to facilitate
the decision making process that goes into the evolution of complex
information gathering and utilizing systems, such as weather radar
networks and particularly prospective adaptive networks.

A. Information Oriented Objective Functions for Atmospheric Sen-
sors

Information based objective functions enable channelization sensor
information flows in accordance with the value and impact of the
information. A virtual sensor is comprised of an element, called a test
charge, that interacts with the environment that provides a measure of
the stimulus, an element that receives the signal corresponding to this
measure and a mediating element. In general, a phenomenological
field, such as the weather, is sampled by sets of virtual sensors, each
corresponding to a different measure and having its own characteristic
channel.

The information oriented measures are built on the principles of
maximum entropy and the concept of adaptive channel models that
capture the scenes multiple spatial and temporal distributions. Adap-
tive channels model the interaction between the radar and test pattern,
including propagation effects. The measures can be aggregated and
stored in a data structure that consolidates all collaborative viewpoints
on a common grid of vectors, containing all the utilizable information
gathered from the scene[17]. The sensors may be mixed or fused
at the channel level of abstraction enabling design and intensive
optimization of diverse sensor networks.

A particular distribution of the phenomenological field salience and
sensing instrumentation is modeled by a test pattern which represents
a scenario from a set of viewpoints in support of requirements
engineering

Scanning of test patterns by the simulated sensing system in space
and time can be modeled as a graph traversal problem with the nodes
representing subspaces to be sampled and the arcs weighed by the
time cost. Each subspace, node on the graph, is a region defined by
the beam solid angle, ∆θs ×∆φs, and range extent, ∆Rs.

The objective functions used in the present work are chosen to ex-
plore the trade-offs between the conflicting objectives of information
capacity, gathered information, quality of information, cost, and scan
time.

The objective functions, Ji(θ), where the subscript i is the ith
objective function, and θ is the design vector, are constructed for a
typical weather scene as follows:

J1(θ) =

SX
s=1

`
Isrcap

+ Isvcap

´
(1)
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J2(θ) =

SX
s=1

“
IHDsrcap

”
(2)

J3(θ) =

SX
s=1

(Isr ) (3)

J4(θ) =

SX
s=1

(Isv) (4)

J5(θ) =

SX
s=1

“
IHDsr

”
(5)

J6(θ) =

SP
s=1

`
BERsr +BERsv̂r

+BERsσ̂vr

´
3S

(6)

J7(θ) =

SX
s=1

`
T ssubspace

´
+

S−1X
s=1

(T strans) (7)

J8(θ) = costRbase + costpower + costagility + costantenna (8)

There are two classes of targets, six weather subspaces and six hard
target subspaces. The information oriented measures of information
capacity (Isrcap

and Isvcap
), information (Isr and Isv), and Bit Error

Rate (BERsr, BER
s
v̂r
, and BERsσ̂vr

) are captured in equations (1)-
(6). The superscript HD indicates hard target information oriented
measures and the subscript s is used to identify the sth subspace.

The first two objective functions, (1) and (2), sum the information
channel capacity for weather and hard targets over the subspaces,
respectively. Three types of information capacity, reflectivity(Ircap),
velocity(Ivcap), and hard target(IHDrcap

), are defined instantaneously
as the maximum bit rate that can be sustained by channel models of a
gaussian white noise channel, and noiseless gaussian channel, and a
Swerling 1 model channel, respectively[17]. The hard target velocity
capacity is not calculated. In the present analysis the objective
functions of channel capacity are minimized to ensure maximum
capacity utilization.

Objective functions J3, J4, and J4 are comprised of the aggre-
gated information gathered over the individual reflectivity, velocity,
and hard target reflectivity channels, which are then summed over
the subspaces, respectively. Hard target velocity information is not
calculated. These functions are maximized.

The bit error rates are a measure of the quality of the information
extracted and are a function of the errors in the underlying estimators.
Objective function J6 used in this analysis consolidated the BER
associated with the various channels to provide an overall quality
of information measure. The summation is over S, the subspaces,
of the individual terms of each subspace referring to the reflectivity,
(BERr) the velocity (BERv̂r ), and the spectrum width (BERσ̂vr ).
Hard target reflectivity or velocity bit error rate is not calculated.
Minimizing the BER, maximizes accuracy and precision of the
information[17].

Objective function J7 is a measure of the total time it takes to
acquire the information in the scene. It is a measure of the information
gathering throughput of the system, the amount of information
collected for the time to complete the test pattern scan. The time
objective function is split into two summation, the first is the time
to scan each subspace, the second is the time taken to scan between
each subspace. The time to scan each subspace, T ssubspace, is given

by the dwell time of the radar, DT , and the number of positions in
azimuth, Baz = ∆θs

θaz3dB
, and elevation, Bel = ∆φs

φel3dB
, necessary to

scan the entire subspace and the time to transition from beam to beam
within the subspace. The time to move from subspace to subspace,
T strans, is given by rotating the sensor. Equations (9) and (10) define
the subspace time and transition time.

T ssubspace = BazBelDT +Bel [(Baz − 1)aztB2B ]

+ (Bel − 1)eltB2B (9)

T ssubspace = azstS2S + elstS2S (10)

where aztB2B , and eltB2Bare the times to transition from beam
position to beam position. In the case of the transition from subspace
to subspace, aztS2S and eltS2S , the time is given by the angular
difference in azimuth and elevation multiplied by the angular velocity
in that direction. Minimizing J7, maximizes the throughput.

Objective function J8 is a measure of the cost of the system. The
cost objective function, J8(θ), is made up of four factors; base radar
cost, excess power cost, excess agility cost, and excess antenna cost.
Our initial objective cost function is a first approximation to the true
cost function to be created and is referenced to the cost values for
the IP1 weather radars[24], [12]. Cost is minimized.

In this study we chose the following decision variables: maximum
transmit power, half power beam width in azimuth and elevation,
and maximum angular velocity of the pedestal, given in table I to
make up the decision vector, θ = [θ1, θ2, θ3, θ4]. These variables
were chosen because the object functions are most sensitive to them
and are sufficient for validating the approach.

In the present case of computer aided engineering of a single radar
we have reduced our objective vector, J(θ), to eight dimensions,
corresponding to the six aspects of the scene about which we seek
to gather information, the time interval over which we seek it, and
the cost of the deployed system.

B. Multi-Objective Genetic Algorithms

Multi-objective optimization seeks to optimize problems that re-
quire the simultaneous optimization of multiple, often competing
objectives [3]. Genetic Algorithms were originally developed to
imitate the process by which living organisms evolve [4]. They
have since been applied to multi-objective optimization problems as
algorithms to supply reasonable approximations to the Pareto front
and set [25]. Here they are used in a computer aided engineering
approach to simulate the evolution of complex engineered systems.
The technical analysis supports the decision makers in making a
selection of a particular design out of the set of Pareto optimal
designs. Each of the solutions returned by the analysis, see Figure
2, is a valid optimal design resulting from tradeoffs among the
conflicting objectives reaching mutually non-dominated solutions
referred to as the Pareto front. The discrete set of optimum points can
then be used by the various decision makers to drive the evolution of
the complex system being optimized, in this case a cyber-physical
information gathering and utilizing system. The use of genetical
algorithms to calculate the Pareto front and set of a multi-objective
optimization problem is referred to as MOGA. Within the present
approach we will demonstrate how MOGA can be used to calculate
the Pareto front and set for low order models of a single weather
radar. Higher order models can be incorporated into MOGA through
the use of a more sophisticated simulation[17].
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TABLE I: MOGA Settings
Decision Variables Parameter (Unit)

lower initial upper
θ1 Peak Power (W) 5e3 12.5e3 20e3
θ2 θaz3dB(deg) 1 2 4
θ3 θel3dB(deg) 1 2 4
θ4 Agility (deg/sec) 10 40 80

Cost Variables Value
Rbase $220e3
λ1 245
γ1 2
κ1 8e3
λ2 1463
γ2 1.5
κ2 20
λ3 736
γ3 1.5
κ3 4

For these higher dimensional multi-objective problems, the present
approach is an 8 dimension problem, a visualization technique called
Level Diagrams[5] will be used to enable an improved analysis of the
Pareto front and will provide an excellent tool for the decision makers.
The Level Diagrams classify each Pareto front by the distance of the
Pareto front from the ideal point, accounting for all the objectives
simultaneously. It is extremely unlikely for an optimized solution to
the Pareto front to achieve the ideal point[6], but we define the Pareto
optimal point as the point with the shortest 1-norm distance from the
ideal point. Every objective (Ji(θ), i = 1, . . . ,m) is normalized and
classified with respect to its minimum and maximum values on the
Pareto front, Jnormi (θ), i = 1, . . . ,m [5]:

Jmaxi = max
θ∈Θ∗

P

Ji(θ), J
min
i = min

θ∈θ∗
P

Ji(θ), i = 1, . . . ,m (11)

Jnormi (θ) =
Ji(θ)− Jmini

Jmaxi − Jmini

(12)

such that,

0 ≤ Jnormi (θ) ≤ 1 (13)

The Y-axis on all the Level Diagram graphs, figure 2, corresponds
to the value of the normalized objective function, and this means
that all graphs are synchronized with respect to this axis. The X-
axis corresponds to values of the objective, or decision variables, in
physical units. Using this representation, all plots are synchronized
with respect to the y-axis, meaning a single level on the y-axis returns
all the information for a single point on any of the objective function
or decision variables plots[5].

III. MOGA ANALYSIS: CASE STUDY

A. Scanning Analysis

The MOGA analysis is done with an agile mechanical pedestal
using the decision variables and cost variables listed in table I.

The Level Diagrams of the Pareto front and set for the MOGA
analysis of the agile mechanical X-band radar is given in figure
2. The Pareto optimal point is the light green square referenced
by the arrow. Black vertical lines in plots of J7, J8, θ1, θ2 and θ3

represent the specifications given in [24], [26] for the IP1 weather
radars. Given the complexity of the multi-objective problem, it is
surprising to see the Pareto optimal point coming in close comparison
to the documented values of the IP1 weather sensing radar. The
Pareto optimal point returns θaz3dB = 1.6o, θel3dB = 1.9o, Pt =

TABLE II: MOGA Analysis Summary
Power (Pt) θaz3dB θel3dB Scan Time Cost

(W) (deg) (deg) (sec) (k$)
Simulated 9359 1.6 1.9 53 458.6

IP1 8000 1.8 1.8 60 459.0

9.4kW, cost = $459k and time = 53sec, compared to the IP1 values
of θaz3dB = 1.8o, θel3dB = 1.8o, Pt = 8kW, cost = $459k and
heart beat time = 60sec.

IV. DISCUSSION

The present computer aided engineered approach applied to the
given weather radar sensor results in a well formed high dimension
Pareto front yielding the Pareto optimal point close to the ideal
point. The 1-norm Level Diagrams, shown in figure 2, have smooth
objectives with well defined minima where no single objective
dominates, suggesting convexity of the Pareto front. Combined with
location of the 1-norm Pareto optimal point to within 25% of the ideal
point, we can characterize the Pareto front as well formed. Therefore,
the Level Diagrams are providing insight into high dimension Pareto
fronts when based on information oriented measures and test patterns.

The resulting Pareto optimal design vector yielded values, on
average, in excellent correspondence with the actual IP1 design.
An agreement between the optimal design vector and IP1 design of
within 10% for the scan time is evidence that the current test pattern
is a good representation of a multitask scene. Further indication is the
similarity, within 10%, of the optimal azimuth and elevation beam
width to the IP1 design. The Pareto optimal peak transmit power, a
relatively outlier at 18% greater than the IP1 design, is a result of the
magnetron transmitter in the IP1 radar operating below its maximum
rated peak power. The present computer aided engineered approach
accurately models the evolution of IP1 system.

Although the results exhibit excellent convergence, extending the
objective vector to include a reliability/availability component would
likely result in further convergence between the Pareto design and
real case. However, a valid and verified reliability/availability model
for the present case under study has not appeared in the literature.
As the models become available, they can be incorporated into the
multi-objective optimization aiding in the engineering of the system.

The computer aided engineering approach provides isolation from
the other objective functions allowing higher level models for cost,
reliability, maintainability, volume manufacturing, industrial learning
curves, and other potential non-functional and functional require-
ments to be readily incorporated or modified. MOGA simultaneously
evaluates each of the objective function individually. This allows
the objective functions to be individually modified without the
need to update subjective weights. The additional abstraction of the
informative objective functions allows the inclusion of uncertainty
and priors into the MOGA analysis and encourages the use of other
multi-objective evolutionary algorithms(MOEA) that may be better
for other applications.

The method presents an approach allowing for the acceleration of
the evolution of complex, multi-criterion information gathering and
utilizing systems. Extension to higher order models of signal estima-
tors and test patterns in the presence of multiple weather sensors is of
interest to provide insight into design trades over changing weather
conditions and different venues. Specifically, creation of higher order
models of the sensor system and test pattern will facilitate exploration
into the trade space of polarimetric weather radar networks and
waveform design for network multifunction radars. Moreover, the
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Fig. 2: 1-norm Level Diagram of the Pareto front and set the eight objective functions comprising the objective vector, Ji(θ), where the
subscript i is the ith objective function, and θ is the design vector used in the MOGA analysis of the case study X-band weather radar
described in section III-A. The Pareto optimal point is the light green square referenced by the arrow. Black vertical lines in plots of
J7, J8, θ1, θ2 and θ3 represent the specifications given in [24], [26] for the IP1 weather radars.

method can be extended to incorporate further decision support for
more complex trade-off analysis that may be required to assess the
evolution at higher levels to support business modeling and planning.

V. CONCLUSION

We have shown that by introducing integrative objective informa-
tion oriented measures, we can define a level of abstraction which
captures the underlying sensor estimators and parameters that solves
the communication problem between the systems engineers, domain
experts and decision makers. Not only will the obstacle be eliminated,
the design of these complex sensor systems will converge much more
rapidly, allowing for an acceleration in the evolution of the systems,
with the inclusion of the preferences of decision makers a posteriori
to the objective analysis, hence acknowledging subjective influences.

The analysis is applied to weather radar designs providing complex
multi-objective design problems with evolving specifications and
requirements. Without any adjustable parameters, any subjective
weighting, and in such a complex design space where a multiplicity of
results could have occurred, the informative methodology of systems
engineering resulted in decision parameters very close to that of the
IP1 system. The results of the MOGA analysis case study, show
that the approach is successful in modeling the complex system by

producing a Pareto optimal point within an average of 10% of the
case study’s design specifications and providing an objective basis for
evaluating the engineering feasibility of the end-to-end system and
its transition into operational environments for further development.

The foregoing capabilities facilitate the demonstration of engi-
neering feasibility and subsequent development and evolution of the
CIGUS. We develop objective functions, combining measures of
cost and throughput with the underlying domain specific parameters,
enabling the application of state-of-the-art multi-objective evolution-
ary algorithms and automated decision support tools. The novel
systems engineering approach is further validated and verified by
the agreement of the predictions of the analysis and the experimental
data from the IP1 test bed. Clearly, in the case of weather radars had
the present approach been available, considerable time and money
could have been saved[17].
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