
VN-Sim: A Way to Keep Core Concepts in a Crowded Computing Curriculum

R. Raymond LANG

Computer Science, Xavier University of Louisiana

New Orleans, LA 70125 USA

and

Theresa BEAUBOUEF

Computer Science, Southeastern Louisiana University

Hammond, LA 70402 USA

ABSTRACT

Contemporary computer science curricula must accommodate a

broad array of developments important to the field. Tough

choices have to be made between introducing newer topics and

retaining fundamentals that ground the discipline as a whole.

All too frequently, understanding of low level coding and its

relation to basic hardware is sacrificed to make room for newer

material. VN-Sim, a von Neumann machine simulator,

provides a mechanism for streamlined coverage of low level

coding and hardware topics.

Keywords: von Neumann machine, simulator, machine

language, assembly language, low level programming

1. INTRODUCTION

The field of computer science has come a long way from the

programming of large computers with limited memory and

instruction sets to the smaller but more powerful computers of

today. Likewise, programming applications also have changed

to reflect this continuing impact of Moore’s Law [4, 5],

allowing for applications in a wide variety of fields.

Computer science and programming have evolved through the

years, moving more from a mathematical perspective to a

development perspective, where programmers have a wide array

of tools available. In practice, developers adapt existing

packages to solve problems. Mathematics and problem solving

skills continue to be important [1, 2], yet because of the diverse

nature of the field of computer science, some technology-related

careers paths do not rely as heavily on core computing concepts.

Computer science education has also changed through the years

to reflect the needs of business and industry to produce

graduates who can integrate packages and put together solutions

by using already existing software. They use languages with

object libraries built in, so they become proficient in software

development environments and in searching for solutions

online. Students do learn how to code, they learn about

hardware, and they learn about systems. However, in this age

of abstraction and code reuse, students often do not gain a

fundamental understanding of the very basics of computer

science and how hardware and software come together at a low

level to perform simple calculations. This is as important to the

computer scientist as the knowledge of atomic structure is to the

chemist or cell functionality is to the biologist.

With the VNSim package, students can interactively see how

code that they write is stored and implemented in hardware.

They can view memory contents, and they can learn about

errors that can occur in low level coding, which eventually can

cause errors in high level programming applications. We give

examples of the VN-Sim, and describe how it can reinforce

computer science skills for beginning and more advanced

students.

2. UNDERSTANDING BASIC HARDWARE

AND MEMORY

Instruction in hardware fundamentals begins with the von

Neumann model: a central processing unit (CPU) and a memory

storing both programs and data. Student understanding of the

relationship between the control unit (CU) and the arithmetic-

logic unit (ALU) is important preparation for concepts such as

data representation, control flow, indexing, digital logic, and

more.

A static description of the von Neumann architecture [3]

consists of the ubiquitous box and arrow diagram showing the

connections among the components. The fetch-decode-execute

cycle conveys how a stored-program computer operates. To go

beyond the five-minute hand-wave of this topic, an instructor

must describe a few instruction codes, arrange them in memory,

and perform a hand execution of a program of up to a dozen

lines or so. But such a presentation risks leaving students with

the impression that a von Neumann machine is too simple to do

anything but just the sort of programs that can be hand-traced in

just a few minutes. VN-Sim is a von Neumann simulator that

can provide convincing demonstrations of the power and scope

of the model. It supports a better understanding of stored-

program computers by allowing direct manipulation and

observation of a working example of the von Neumann

architecture.

The execution of VN-Sim is governed by its instruction set.

There are instructions for clearing, loading, and storing the

ALU registers, for addition and subtraction in the accumulator,

and for incrementing and decrementing the x-register. The

branching instructions are an unconditional jump, two jumps

conditioned on the accumulator, and one jump conditioned on

the x-register. The READ instruction stores into memory a

value provided by the user, and the WRITE instruction displays

the contents of memory to the user. HALT instructs VN-Sim to

do just that. The instruction set and the I/O dialogs are shown

in figures 2, 3, and 4.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 1 - YEAR 2012 85ISSN: 1690-4524

The opcodes are four digit decimal codes in which the leftmost

digits signify the operation, and the rightmost digits the

operand, a two-digit address in the VN-Sim’s memory. Only

some instructions require an operand. In Figure 2, the operation

codes are shown, followed by two dashes for operations without

an operand or two plusses for operations with an operand. VN-

Sim performs absolute addressing only.

3. UNDERSTANDING LOW LEVEL PROGRAMMING

A solid understanding of high-level programming languages is

grounded in a grasp of operations at the lowest levels. VN-Sim

illustrates how machine level operations can be arranged to

perform a variety of tasks.

Figure 1: VN-Sim main window. Memory addresses 0 through 5 contain

a program to add two numbers entered by the user and display the sum.

The simulator contains a built-in program to add two values; it

loads into the first six memory locations when the “Load

Sample” button is clicked (see Figure 1). To reinforce the role

of the program counter (and lay the groundwork for services

provided by an operating system), the user must manually set

the value of the PC to the address of a program’s first

instruction. The PC is initially set to 0 on startup, but to run the

sample program more than once, the user must set it back to 0

manually.

In presenting to students, the symbolic instructions are initially

described as a convenience to the human programmer, who

must still translate the symbolic instructions by hand to the

corresponding numeric opcodes and then enter these directly

into the VN-Sim’s memory. At this level, the student must

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 1 - YEAR 201286 ISSN: 1690-4524

decide what memory locations will be used for data storage and

take care to use the correct operands when translating the

program.

To gain familiarity with the instruction set, students are asked to

modify the sample program in a variety of ways: by changing

the storage locations used by the program, by making the

program subtract instead of add, and so forth. Students are

introduced to the jump instructions by means of a short program

to read two values and output the larger. After gaining some

appreciation for directly manipulating memory, students begin

using files on the host system to save or load the contents of a

range of memory.

Figure 2: VN-Sim Opcodes.

Figure 3: VN-Sim input.

Figure 4: VN-Sim output.

4. PROGRAM VERIFICATION FOR

LEARNING PROGRAMMING

VN-Sim can also be used to help beginning students understand

the concepts of programming through the use of code

verification. Here students are given some code and the

documented requirements for the code and asked to verify that

the code does what it is intended to do. Simpler programs are

given at first in order to familiarize the students with basic

coding concepts. However, more complex code is given shortly

after, with the goal of exposing the students to high-level coding

constructs, proper documentation and coding techniques, and

problem solving. Through the verification of existing code,

beginning students can rapidly learn the basics of coding and

programming style.

5. CONCEPTS FOR MORE ADVANCED STUDENTS

Once students have mastered the basic skills of the VN-Sim

such as the use of registers, addressing, comparisons, and

jumps, they can begin to expand on these concepts to learn

about such things as multi-path selection or case statements,

looping constructs, function calls, and memory management.

Many of these concepts can be illustrated in the VN-Sim, even

with its limited memory, registers, and instruction set.

Other tasks require the use of additional registers for

maintaining a stack base address and stack pointer, for example.

Students can attempt to solve certain problems that will lead

them to identify additional system resources necessary for their

implementation. Students will also gain an understanding of

techniques for working with limited resources which will give

them insight into problems encountered in the programming of

real-time and embedded systems. This should also lead to an

appreciation for the abundance of system resources available to

programmers and systems engineers today.

6. INITIAL RESULTS

VN-Sim has been used thus far in two courses: (1) a breadth-

first introduction to the computing discipline which students

take prior to their first programming course, and (2) a senior

level programming languages course. In the introductory

course, VN-Sim was used to illustrate the following concepts:

• von Neumann architecture

o the central processing unit, including the roles of the

CU and of the ALU

o a random access memory storing both programs and

data

• the fetch-decode-execute cycle

• flow of control, esp. the use of sequence, selection, and

repetition in programs

• machine language, assembly language, and the distinction

between the two

• input and output mechanisms

• the distinction between operations and operands

• low level programming of small arithmetic operations, esp.

performing operations that are not provided in the

instruction set, e.g. multiplication

• debugging and code tracing

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 1 - YEAR 2012 87ISSN: 1690-4524

Assessment was done by in-class exercises, out of class

homeworks, and quiz questions. Students were asked to

describe the von Neumann architecture, define key concepts,

predict the output of short programs, and to translate from

assembly code to machine code and vice versa. Three weeks of

class time was spent on this material.

Students found the material moderately challenging, and the

grades bore this out. This was our first attempt presenting this

material in this context, so there was no previous data to

compare learning results.

In the programming languages course, students were given an

assignment to write a symbolic assembler targeting the VN-Sim

instruction set. About two thirds of the enrolled students

successfully completed the assembler or had only minor flaws,

the remaining had major shortcomings or were not submitted.

VN-Sim supports only absolute addressing, and the students

were able to grasp the importance of relative addressing and

gain greater understanding of the flexibility provided by

relocatable code modules.

7. FUTURE WORK

Plans are underway to use of VN-Sim in the computer

organization course. This course combines a previous assembly

language course that some felt was obsolete with additional

concepts necessary for computer engineering technology

students. VN-Sim is ideal for such a course as it illustrates

assembly language program concepts, basic computer hardware

and architecture components. We expect students in this course

will be able to better visualize and learn about low-level

workings of the computer and to program basic tasks. Because

many students in this course are engineering technology majors,

they are not as versed in programming as their classmates who

are computer science majors. These students should benefit

from the hands-on, virtual machine approach used by VN-Sim.

8. CONCLUSION

Computer science brings together many areas of science,

technology, communication, and human relations. Computer

applications today are powerful and sophisticated, incorporating

graphical user interfaces and a variety of hardware devices and

networking techniques. When all is said and done, however, a

computer is still a simple machine. It can store data, it can add,

and it can compare two values. Every other operation is built off

of these basic abilities, so an understanding of the low-level

concepts related to basic computer hardware and programming

is essential for computer scientists.

In this paper we described the VN-Sim system and how it can

be used to enhance the education of computer science students.

It reinforces the fundamentals of hardware and software and

their interrelationship in what we call programming. Students

benefit from the hands-on approach as they examine results of

instructions and learn how they can program their own

instructions to achieve desired results. The VN-Sim system has

proven to be both easy to learn and an effective teaching tool.

ACKNOWLEDGMENT

This research was sponsored in part by the NSF grant CCF-

0939108.

9. REFERENCES

[1] Beaubouef, T., Why Computer Science Students Need

Math, SIGCSE Bulletin (inroads), 34, (4), , 57-59, 2002.

[2] Beaubouef, T., Lucas, R., Howatt, J., The Unlock System:

Enhancing Problem Solving Skills in CS1 Students,

SIGCSE Bulletin (inroads), 33, (2), 43-46, 2001.

[3] Godfrey, M., Hendry, D., “The Computer as Von

Neumann Planned It,” IEEE Annals of the History of

Computing, Vol. 15, No. 1, 1993, pp. 11-21.

[4] Moore, G., “Cramming More Components Onto Integrated

Circuits,” Electronics, vol. 38, No. 8, 1965.

[5] Stokes, Jon, “Understanding Moore’s Law,” (Feb. 20,

2003), Retrieved Nov. 15, 2010,

[6] http://arstechnica.com/hardware/news/20

08/09/moore.ars/1

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 1 - YEAR 201288 ISSN: 1690-4524

