

 Removing Ambiguities of IP Telephony Traffic Using Protocol Scrubbers

Bazara I. A. Barry

Department of Computer Science – University of Khartoum

Khartoum, Sudan

ABSTRACT

Network intrusion detection systems (NIDSs) face the serious

challenge of attacks such as insertion and evasion attacks that

are caused by ambiguous network traffic. Such ambiguity

comes as a result of the nature of network traffic which

includes protocol implementation variations and errors

alongside legitimate network traffic. Moreover, attackers can

intentionally introduce further ambiguities in the traffic.

Consequently, NIDSs need to be aware of these ambiguities

when detection is performed and make sure to differentiate

between true attacks and protocol implementation variations or

errors; otherwise, detection accuracy can be affected

negatively. In this paper we present the design and

implementation of tools that are called protocol scrubbers

whose main functionality is to remove ambiguities from

network traffic before it is presented to the NIDS. The

proposed protocol scrubbers are designed for session initiation

and data transfer protocols in IP telephony systems. They

guarantee that the traffic presented to NIDSs is unambiguous

by eliminating ambiguous behaviors of protocols using well-

designed protocol state machines, and walking through packet

headers of protocols to make sure packets will be interpreted in

the desired way by the NIDS. The experimental results shown

in this paper demonstrate the good quality and applicability of

the introduced scrubbers.

Keywords: Protocols, Intrusion detection systems, Security, IP

telephony, Protocol scrubbers.

1. INTRODUCTION

IP forms the decisive difference between circuit-switched

networks and IP telephony networks. It is being used to carry

voice alongside data. IP networks, which are packet-switched,

break voice and data into packets that are routed to a certain

destination. Upon arrival at the destination, the packets are

reassembled into their original format. Contrary to circuit-

switched networks, packets in packet-switched networks can

travel across multiple independent paths to the final

destination. This feature can benefit the network in terms of

self-recovery with failed link paths because paths can be

allocated dynamically. These differences between traditional

circuit-switched and IP telephony networks entail changes in

the infrastructure and protocols used.

Components in IP telephony infrastructure can be generally

classified into servers, endpoints, and routing nodes. IP

telephony servers are the components responsible for various

duties aiming at maintaining the service and enhancing it such

as address resolution and registration. Endpoints are the

devices capable of initiating and terminating a call. Routing

nodes have the capacity to connect IP networks to either other

IP networks or circuit-switched networks.

The most dominant multimedia suites in IP telephony are

H.323 and SIP. Both protocols are used for signaling and with

them come other protocols that cater for functions other than

signaling in IP telephony environments. In this paper we focus

on SIP suite. Session Initiation Protocol (SIP) is a standard

signaling protocol for IP telephony, and is appropriately coined

as the ―SS7 of future telephony.‖ It was developed by the

Internet Engineering Task Force (IETF) in RFC 2543 which

was updated by RFC 3261. SIP was designed to address some

important issues in setting up and tearing down sessions such

as user location, user availability, and session management.

The simplicity and versatility of SIP make it the choice of

instant messaging, video conferencing, and multiplayer game

applications among others. SIP uses other protocols to perform

various functions during a session such as Session Description

Protocol (SDP) to describe the characteristics of end devices,

Resource Reservation Setup Protocol (RSVP) for voice quality,

and Real-time Transport Protocol (RTP) for real-time

transmission.

IP telephony protocols have a tendency towards openness and

simplicity which gives attackers the opportunity to manipulate

the protocols to their advantage and use their very features to

launch attacks. Attackers can introduce ambiguous network

traffic that may not be interpreted in the same way at different

endpoints. Sophisticated attackers can leverage subtle

differences in protocol implementations to wedge attacks past

the NIDS’s detection mechanism by purposefully creating

ambiguous flows. In such attacks, the NIDS treats the traffic as

benign, whereas the destination endpoint reconstructs a

malicious interpretation. Such attacks can eventually defeat the

purpose of NIDSs and turn them unusable.

In this paper we present the design and implementation of an

application layer network scrubbing tool that targets the

protocols SIP and RTP in IP telephony environments. Our

network scrubber examines incoming traffic before it gets

examined by the NIDS and removes any potential ambiguities

that may hinder the NIDS’s detection capabilities. The

application layer scrubber picks one interpretation of the

protocols and converts incoming flows into a single

interpretation that is interpreted universally by all endpoints.

The rest of the paper is organized as follows: Section II

discusses the related work. Section III sheds some light on

Session Initiation Protocol (SIP) and Real-time Transfer

Protocol (RTP) internals and message structure. Section VI

shows the design of our protocol scrubber in terms of the state

machines and normalization process. Section V demonstrates

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 5 - YEAR 2012 85ISSN: 1690-4524

the implementation and experimental results. Section VI

concludes the paper.

2. RELATED WORK

We start in this section with discussing insertion and evasion

attacks which were mentioned briefly previously. Insertion and

evasion attacks are often associated with ambiguous network

traffic. Network traffic is called ambiguous if it is treated

differently by different nodes in the network. In other words, a

secondary source of information is needed by the node to

interpret the traffic correctly.

A common problem that a NIDS faces, and is related to

ambiguity, is discerning whether a certain packet in the traffic

is acceptable to an end-system the NIDS is monitoring or not.

Some of the causes of such a problem are the NIDS’s lack of

knowledge about the network topology, the end system’s

configuration, and the end system’s operating system [1]. Such

a problem can render a NIDS unreliable due to the misleading

and less information it provides and the false sense of security

it gives to security officers [1].

Insertion attacks involve the NIDS accepting packets that are

rejected by end-systems. A good example to be given here is

related to IP fragmentation and reassembly. A receiver

reassembles incoming fragmented packets using sequence

numbers and offset values. If an attacker manages to insert

packets in the incoming stream, the packets will be

reassembled in a way different from the expected by the end-

system which should always reject such packets. Therefore, a

NIDS should never accept such packets.

Evasion attacks on the other hand involve the NIDS rejecting

packets that are acceptable by the end-system. Continuing with

the same example above, an attacker can disrupt a NIDS

causing it to miss part of the incoming traffic. Therefore, a

NIDS will not be able to reassemble incoming traffic in the

same way end-systems do.

Most of insertion and evasion attacks can be attributed to

attackers taking advantage of wrong behaviors in the monitored

protocols such as sending packets with bad header fields.

In the following, we shed some light on the related works in the

area of protocol scrubbing.

Protocol Scrubbing to Counter TCP/IP Fingerprinting

TCP/IP stack fingerprinting is the process of determining the

identity of a remote host's operating system by analyzing

packets from that host. This process is called fingerprinting

because it is similar to identifying an unknown person by

taking his or her unique fingerprints and finding a match in a

database of known fingerprints. Attackers can use

fingerprinting to quickly create a list of targets with known

vulnerabilities based on the operating system.

M. Smart, G. Malan, and F. Jahanian developed a tool called a

fingerprint scrubber to remove ambiguities from TCP/IP traffic

that give clues to a host's operating system. The tool was

designed to be placed between a trusted network of

heterogeneous systems and an untrusted connection (i.e. the

Internet). It operated at the IP and TCP layers to cover a wide

range of known and potential fingerprinting scans [2].

Unlike our proposed scrubber, the fingerprint scrubber is

confined to counter fingerprinting at the IP and TCP layers. It

neither addresses application layer protocol issues nor other

insertion and evasion attacks.

Transport and Application Protocol Scrubbing

The abovementioned work was taken a step further by

developing a transport scrubber that addressed the problem of

transport attacks by removing protocol ambiguities, enabling

downstream passive network-based intrusion detection systems

to operate with high assurance.

The authors implemented an application scrubbing mechanism

that allowed the creation of active, interposed intrusion

detection systems that can be used to elide or modify important

network protocols in real-time; effectively enabling an

immediate response upon detection of severe misuse.

The application-level scrubbing mechanism was based on the

FreeBSD kernel, and involved modifications to the kernel to

include additions to the socket API to allow a user-level

application scrubber to bind a local socket to a set of remote

network addresses. This simple primitive allowed the easy

creation of transparently interposed application scrubbers [3].

The above application-level scrubbing mechanism provides a

general purpose platform to create application scrubbers,

whereas our proposed application layer scrubber is focused on

IP telephony protocols and their ambiguities.

Protocol Scrubbing Through Transparent Flow

Modification

The work mentioned in the previous section was taken to the

next level by implementing scrubbers for various protocols

such as IP, TCP, ICMP. This variety allowed the scrubbers to

cover a wider range of attacks at an acceptable level of

performance [4].

However, the same approaches to implementing the scrubbers

mentioned in the previous section were followed, and the same

argument regarding the differences from our model applies.

Traffic Normalization That Maintains End-to-end Protocol

Semantics

Mark Handley, Vern Paxson and Christian Keibrich introduced

Norm, a traffic normalizer that sits directly in the path of traffic

into a site and patches up or normalizes the packet stream to

remove potential ambiguities. The result is that a NIDS

monitoring the normalized traffic stream no longer needs to

consider potential ambiguities in interpreting the stream.

Compared to the TCP/IP scrubbers mentioned previously,

Norm has the distinction of attempting to develop a systematic

approach to identifying all potential normalizations, and

emphasizing the implications of various normalizations with

regard to maintaining or eroding the end-to-end transport

semantics defined by the TCP/IP protocol suite. Furthermore, it

attempted to defend against attacks on the normalizer itself,

both through state exhaustion, and through state loss if the

attacker can cause the normalizer or NIDS to restart [5].

Our proposed scrubber has the advantage of following a similar

methodology to systematically examine the ambiguities of

application layer IP telephony protocols.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 5 - YEAR 201286 ISSN: 1690-4524

3. SIP SUITE RELATED PROTOCOLS

As mentioned in the introduction, we consider SIP suite for our

discussion on the related IP telephony protocols. Specifically,

we concentrate on SIP and RTP for the vital role they play in

establishing, tearing down, and carrying the data of the session.

SIP Message Format

The SIP message is made up of three parts: the start line,

message headers, and body. The start line contents vary

depending on whether the SIP message is a request or a

response. For requests it is referred to as a request line and for

responses it is referred to as a status line. Figure 1 shows SIP

message format.

Start Line

Header 1

Header 2

…..

Body

Fig. 1. SIP Message Format.

The base SIP specifications define six types of request: the

INVITE request, CANCEL request, ACK request and BYE

request are used for session creation, modification,

establishment, and termination; the REGISTER request is used

to register a certain user's contact information; and the

OPTIONS request is used as a poll for querying servers and

their capabilities.

Response types or codes are also classified into six classes. 1xx

for provisional/informational responses, 2xx for success

responses, 3xx for redirection responses, 4xx for client error

responses, 5xx for server error responses, and 6xx for global

failure responses. The "xx" are two digits that indicate the exact

nature of the response: for example, a "180" provisional

response indicates ringing by the remote end, while a "181"

provisional response indicates that a call is being forwarded.

Header fields contain information related to the request like the

initiator of the request, the recipient, and call identification.

Some headers are mandatory in every SIP request and

response. These are: To (carries the recipient of the request),

From (carries the initiator of the request), Call ID (carries the

unique identifier of the call), CSeq (used to identify the order

of transactions), Via (contains the transport protocol and the

address where the response is to be sent), Max-Forwards (used

to limit the number of hops a request traverses and to avoid

loops), and Contact (contains the address of the host where the

request originated).

Message bodies can carry any text-based information whose

interpretation is determined by request and response codes.

SIP Architecture

Elements in SIP can be classified into user agents (UAs) and

intermediaries (servers). In an ideal world, communications

between two endpoints (or UAs) happen without the need for

servers. However, this is not always the case as network

administrators and service providers would like to keep track of

traffic in their network.

A SIP UA or terminal is the endpoint of dialogs: it sends and

receives SIP requests and responses, it is the endpoint of

multimedia streams, and it is usually the user equipment (UE)

which is an application in a terminal or a dedicated hardware

appliance.

SIP servers are logical entities where SIP messages pass

through on their way to their final destination. These servers

are used to route and redirect requests. These servers include:

1) Proxy server—receives and forwards SIP requests.

2) Redirect server—maps the address of requests into new

addresses.

3) Location server—keeps track of the location of users.

4) Registrar—a server that accepts REGISTER requests.

5) Application server—an Application Server (AS) is an entity

in the network that provides end users with a service.

SIP Session

Figure 2 shows the establishment of a SIP session between two

users in the same domain.

Caller

Callee

SIP Proxy Server

Registrar Server

INVITE

Query

Response to

Query

INVITE
OK

OK

ACK

ACK

RTP packets

REGISTER

REGISTER

Fig. 2. Establishment of A Typical SIP Session.

When turning on their devices, both users register their

availability and their IP addresses with the SIP proxy server

using REGISTER request. The proxy server then sends this

information to the relevant Registrar server. The caller tells the

proxy server that he/she wants to contact a certain callee using

INVITE request. The SIP proxy server relays the caller’s

invitation to the callee. The callee informs the proxy server that

the caller’s invitation is acceptable with OK response. The SIP

proxy server communicates this response to the caller who

sends ACK response establishing a session. The users then

create a point-to-point RTP connection enabling them to

interact. Any of the parties involved in a session can end it by

sending a BYE request.

RTP Message Format

Real-time Transport Protocol (RTP) is an application layer

protocol that provides end-to-end delivery services for real-

time audio and video. It was developed by the Internet

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 5 - YEAR 2012 87ISSN: 1690-4524

Engineering Task Force (IETF) in RFC 1889 which was

updated by RFC 3550. Figure 3 shows RTP message format.

 Version

Padding Extension
Contributing

Source
Marker Payload

Type

Sequence Number

Timestamp

Synchronization Source (SSRC) identifier

Contributing Source (CSRC) identifier

Fig. 3. RTP Message Format.

The message fields are: Version (contains the version of RTP),

Padding (indicates whether the message contains padding

octets or not, and may be needed by some encryption

algorithms), Extension (indicates if there is an RTP header

extension), Contributing Source Count (contains the number of

contributing source (CSRC) IDs that follow the fixed header),

Marker (interpreted by an application profile), Payload Type

(identifies the payload format), Sequence Number (increments

by one with each packet and is used by the receiver to reorder

the packets), Timestamp (indicates the time when the first octet

in the payload was sampled), Synchronization Source Identifier

(identifies the source of RTP packets), and Contributing Source

Identifier (if a mixer has been used, this field carries a list of

sources that have contributed to the mixed media stream).

4. SIP SUITE SCRUBBER

Our scrubber enforces protocol invariants on the incoming

traffic, which allows for the elimination of insertion and

evasion attacks that target NIDSs. We utilize a combination of

protocol state machines and packet normalizers to eliminate

ambiguities in protocol behaviors and header values

respectively. The result is that a NIDS monitoring the scrubbed

traffic stream no longer needs to consider potential ambiguities

in interpreting the stream.

Our specifications for SIP and RTP Finite State Machines

(FSMs) and packet normalizers are based on RFCs 3261 [8]

and 1889 [9] respectively. Request for Comment (RFC)

documents provide designers and programmers with rich

information regarding the operation and message flow of a

certain protocol. However, RFC documents usually contain

very detailed descriptions that could be time-consuming if

implemented precisely. Furthermore, precise implementation of

RFCs may be undesirable due to the inevitable discrepancies

among different implementations of a protocol FSM. Such

discrepancies could make the same traffic be classified

differently by different FSMs of the same protocol. Therefore,

we implement the essential details that describe a protocol in a

more abstract way.

Session Initiation Protocol

For SIP, our state machine implementation is based on the base

types of requests defined in RFC 3261. A certain client starts at

the initial state INIT where no connection is established. An

INVITE request is sent by the client if it wishes to start a call.

If the client does not want to proceed with the call attempt, it

can send a CANCEL request setting the state machine back to

the initial state. Otherwise, an ACK message is sent following

the callee’s acceptance to start a call and change the state to

Call Established. After call establishment, a client can send a

Re-INVITE request if it wishes to move the call to another

device without tearing down the session. A client can terminate

a call by sending a BYE request. Figure 4 shows the above

described state machine of a SIP client. For the sake of

simplicity, we have not included the remaining two requests,

namely, REGISTER and OPTIONS nor have we included the

various types of SIP responses and message codes in the figure

INIT

INVITE

Sent

Call

Established

INVITE

ACK

BYE
CANCEL

Re-INVITE

Fig. 4. SIP Simplified State Machine.

SIP packet verifier is designed to accept messages that are

conformant to SIP specifications. A SIP message consists of a

start-line, one or more header fields, an empty line indicating

the end of the header fields, and an optional message-body. The

start-line, each message-header line, and the empty line must

be terminated by a carriage-return line-feed sequence (CRLF).

The empty line must be present even if the message-body is

not.

For SIP requests, the start line, which is referred to as the

request line in this context, contains a method name, a Request-

URI, and the protocol version separated by a single space (SP)

character. Request-URI, which indicates the user or service to

which this request is being addressed, must not contain non-

escaped spaces or control characters and must not be enclosed

in "<>". The SIP-Version string is case-insensitive, and

includes the version of SIP in use.

For SIP responses, the start line, which is referred to as the

status line in this context, consists of the protocol version

followed by a numeric Status-Code and its associated textual

phrase, with each element separated by an SP character. The

Status-Code is a 3-digit integer result code that indicates the

outcome of an attempt to understand and satisfy a request.

Each header field consists of a field name followed by a colon

(":") and the field value. Table I shows the mandatory headers

in every SIP request and response and their format.

It is important to note that the brackets around parameters

indicate that they are optional and are not part of the header

syntax. Whenever (;parameters) appears it indicates that

multiple parameters can appear in a header and that semicolons

separate the parameters. For the sake of simplicity, we do not

mention the different requirements for messages inside or

outside a dialog although they have been implemented.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 5 - YEAR 201288 ISSN: 1690-4524

Table I: Format of Mandatory SIP Headers

Header

Name

Header

Format

Examples and Comments

To (carries

the recipient

of the

request)

To: SIP-

URI(;para

meters)

To: Carol

<sip:carol@chicago.com>. The

display name Carol is optional

From (carries

the initiator

of the

request)

From:

SIP-

URI(;para

meters)

From: Alice

<sip:alice@atlanta.com>;tag=192

8301774. The tag parameter

contains a random string that is

used for identification purposes.

Call-ID

(carries the

unique

identifier of

the call)

Call-ID:

unique-id

Call-ID: f81d4fae-7dec-11d0-

a765-

00a0c91e6bf6@foo.bar.com.

Call-IDs are case-sensitive and

are simply compared byte-by-

byte.

CSeq (used

to identify

the order of

transactions)

CSeq:

digit

method

CSeq: 4711 INVITE. The method

must match that of the request.

The sequence number value must

be expressible as a 32-bit

unsigned-integer and must be less

than 231.

Via (contains

the transport

protocol and

the address

where the

response is to

be sent)

Via:

SIP/2.0/[t

ransport-

protocol]

sent-

by(;param

eters)

Via: SIP/2.0/UDP

pc33.atlanta.com;branch=z9hG4b

K776asdhds. The protocol name

and protocol version in the header

field must be SIP and 2.0,

respectively. The Via header field

value must contain a branch

parameter that is used to identify

the transaction created by that

request and is used by both the

client and the server.

Max-

Forwards

(used to limit

the number

of hops a

request

traverses and

to avoid

loops)

Max-

Forwards:

digit

The value of this header field

should always be 70.

Contact

(contains the

address of

the host

where the

request

originated)

Contact:

SIP-

URI(;para

meters)

Contact:

<sip:alice@pc33.atlanta.com>.

This header field is mandatory for

requests that create dialog.

It is important to note that the brackets around parameters

indicate that they are optional and are not part of the header

syntax. Whenever (;parameters) appears it indicates that

multiple parameters can appear in a header and that semicolons

separate the parameters. For the sake of simplicity, we do not

mention the different requirements for messages inside or

outside a dialog although they have been implemented.

Run-time Transport Protocol

For RTP, the implementation of the state machine is simpler

due to the lesser number of states in the protocol state machine.

A client starts at the initial state INIT where it can either

receive or send packets. Upon receiving a packet, the state

changes to Packet Received. Whilst at that state, a machine can

either send a packet changing the state to Packet Sent, or

remain at the same state receiving more packets. Similarly, at

the Packet Sent state a machine can either receive packets

changing the state to Packet Received, or send more packets

staying at Packet Sent. Figure 5 shows the simplified RTP state

machine.

Packet

Received

Packet

Sent

INIT

Received RTP Packet Sent RTP Packet

Received RTP Packet Sent RTP Packet

Sent RTP Packet

Received RTP Packet

Fig. 5. Simplified RTP State Machine

RTP packet verifier follows the protocol specifications when

examining packets. Table II shows the fixed header fields of

RTP packets and some constraints on their lengths and values.

Table II. RTP Header Fields Sizes and Requirements

Header Name Header Format

Version 2 bits. The version identified by RFC 1889 is 2

Padding 1 bit. If set, the packet contains one or more

additional padding octets at the end, which are

not part of the payload.

Extension 1 bit. If set, the RTP fixed header is followed

by exactly one header extension

CSRC count

(CC)

4 bits

Marker 1 bit

Payload type 7 bits

Sequence

number

16 bits

Timestamp 32 bits

SSRC 32 bits

CSRC 0 to 15 items, 32 bits each. The number of

items is given by the CC field. If there are more

than 15 contributing sources, only 15 may be

identified.

Figure 6 shows the components and a typical placement of the

IP telephony protocol scrubber. The scrubber sits in front of the

NIDS to normalize incoming traffic by removing its

ambiguities. The scrubber has two main components, namely,

the packet normalizing engine and the FSM engine. The packet

normalizing engine runs normalizers that walk through packet

headers to make sure that their values do not confuse NIDS.

The FSM engine controls the protocol finite state machines

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 5 - YEAR 2012 89ISSN: 1690-4524

which ensure that the packet flow does not deviate from

protocol specifications which may cause ambiguity.

Packet
Normalizing

Engine

FSM
Engine

Internet

NIDS

LAN

IP Telephony Protocol Scrubber

Fig. 6. Components and Placement of Scrubber.

5. IMPLEMENTATION AND RESULTS

We use OMNeT++ to implement our IP telephony scrubber.

OMNeT++ is an object-oriented discrete event simulation tool

that uses a modular structure. It may be used for traffic

modeling of telecommunication networks, protocol modeling,

and evaluating performance aspects of complex software

systems among other things [6]. We use MMSim [7] which

was developed by several research groups at the University of

Karlsruhe to simulate multimedia protocols using OMNeT++.

The MMSim model provides support for SIP, RTP, and Real-

Time Streaming Protocol (RTSP).

Implementation and Testing Approach

OMNeT++ uses two programming languages, namely NED

(Network Description) language and C++. NED language is

used to describe the model structure and the topology of a

network and its modules. A network description may consist of

a number of component descriptions that can be reused in

another network description, which facilitates the modular

description of a network. On the other hand, C++ is used for

the actual implementation of simple modules such as messages

(packets) and queues. C++ is also used to implement the actual

details of each protocol, where every major operation of the

protocol is implemented as a member function in the class files

that represent the protocol.

Ambiguity is often associated with anomalous network traffic.

Our aim is to generate such traffic and present it to the scrubber

which is supposed to normalize it. OMNeT++ libraries provide

various functions to manipulate traffic, editing values of packet

header fields, changing the order of packets, or even deleting

packets. In addition, OMNeT++ provides solid support for

Finite State Machines in the form of ready-to-use classes and

functions. Our testing approach is based on the following steps:

1) Creating normalized traffic and capturing it in the file f_1.

2) Recreating the normalized traffic using the same

parameters, and introducing anomalies in it.

3) Presenting anomalous traffic to the scrubber.

4) Capturing traffic normalized by the scrubber in the file f_2.

5) Comparing f_1 and f_2.

Obviously, having similar traffic files (f_1 and f_2) marks the

success of our normalization process.

Experimental Setup

As can be seen from Figure 6, our simulated environment

comprises an Internet and a Local Area Network (LAN). The

link that connects the two networks has a 40 milliseconds delay

and 0.02% packet loss.

We use the Audio/Video profile with minimal control

(RTP/AVP), with UDP as the underlying protocol. An

application profile describes how audio and video data may be

carried within RTP. Our payload type is static with the

identification number 10, and has the encoding L16. The

payload type defines how a particular payload is carried in

RTP. The clock rate, which is used to generate RTP

timestamps, is 44100 Hz and the number of transmission

channels is 2.

Endpoints on the Internet make calls to other endpoints in the

LAN at specified rates that can be easily configured. We

specifically use two types of rate, namely, high (10 calls per

second) and low (1 call per second). Each type of load is run

five times, and each run lasts for 60 minutes. The results which

will be shown shortly are averaged across the different runs and

taken with and without the operation of the scrubber to observe

the difference.

Experimental Results

Our IP telephony protocol scrubber succeeded in normalizing

ambiguous flows of traffic presented to it. The efficient

implementation of the packet normalizing and FSM engines

allowed the scrubber to cope with the varying amounts of

traffic and provide the desired results.

We used two metrics to measure the performance of the

scrubber, namely, end-to-end delay and call setup delay. End-

to-end delay in IP telephony refers to the time it takes for a

voice transmission to go from its source to its destination.

Every element along the voice path adds to this delay. This

includes switches, routers, and public Internet connections.

Figure 7 shows the end-to-end delay at an endpoint in the LAN

with and without the operation of the scrubber. From the figure,

the average end-to-end delay with the scrubber’s effect is 125

milliseconds, whereas disabling the scrubber brings the average

end-to-end delay down to 123.5 milliseconds. It is obvious that

the operation of the scrubber does not increase end-to-end

delay beyond IP telephony acceptable levels.

Fig. 7. End-to-end Delay.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 5 - YEAR 201290 ISSN: 1690-4524

Call setup delay in IP telephony environments is the period that

starts when a caller dials the last digit of the called number and

ends when the caller receives the last bit of the response. Figure

8 shows measured call setup delay for calls initiated by

endpoints on the Internet to others in the LAN with and without

the effect of the IP telephony scrubber. The average call setup

delay without the scrubber is 252 milliseconds, whereas it is

287 milliseconds with the scrubber. Clearly, the overall call

setup delay remains within IP telephony acceptable limits.

Fig. 8. Call setup delay.

6. CONCLUSION

In this paper, we have presented the design and implementation

of an application layer protocol scrubber for IP telephony. The

scrubber targets eliminating ambiguities in two major

application layer protocols, namely, SIP and RTP. Such

functionality allows network IDSs to receive and analyze

unambiguous network traffic and avoid many evasion and

insertion attacks among others. The scrubber has two main

components, namely, a packet normalizing engine which

eliminates ambiguity and ensures conformance with protocol

standards in the packet header values, and a finite state

machine engine that does the same to the protocol’s flow of

messages. The experimental results demonstrate the minor

impact of the scrubber in terms of performance and the success

of the traffic normalization process.

7. REFERENCES

[1] T. H. Ptacek and T. N. Newsham, ―Insertion, Evasion and

Denial of Service: Eluding Network Intrusion Detection‖,

Secure Networks, Inc., Jan. 1998. Available:

http://insecure.org/stf/secnet_ids/secnet_ids.html, October

2010.

[2] M. Smart, G. R. Malan, and F. Jahanian, ―Defeating

TCP/IP Stack Fingerprinting,‖ Proceedings of 9th USENIX

Security Symposium, Denver, Colorado, August 2000.

[3] G. R. Malan, D. Watson, F. Jahanian, and P. Howell,

―Transport and Application Protocol Scrubbing,‖

Proceedings of INFOCOM 2000. Nineteenth Annual Joint

Conference of the IEEE Computer and Communications

Societies, Tel Aviv, Israel, Mar 2000.

[4] D. Watson, M. Smart, G. R. Malan, and F. Jahanian,

―Protocol Scrubbing: Network Security Through

Transparent Flow Modification,‖ IEEE/ACM

TRANSACTIONS ON NETWORKING, vol. 12, issue. 2,

pp. 261-273, April 2004

[5] M. Handley, V. Paxson, and C. Kreibich, ―Network

Intrusion Detection: Evasion, Traffic Normalization, and

End-to-End Protocol Semantics,‖ Proceedings of the 10th

conference on USENIX Security Symposium, Washington,

D. C., 2001.

[6] OMNeT++ Simulator. Available: http://www.omnetpp.org,

February 2010.

[7] MMSim – Simulation of Multimedia Protocols using

OMNeT++. Available: http://www.ibr.cs.tu-

bs.de/projects/mmsim, January 2010.

[8] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J.

Peterson, R. Sparks, M. Handley, and E. Schooler, ―SIP:

Session Initiation Protocol,‖ RFC 3261, IETF Network

Working Group, June 2002.

[9] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson,

―RTP: A transport Protocol for Real-Time Applications,‖

RFC 1889, IETF Network Working Group, January 1996.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 10 - NUMBER 5 - YEAR 2012 91ISSN: 1690-4524

