
Distributional Properties of Stochastic Shortest Paths for Smuggled
Nuclear Material
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Abstract

The shortest path problem on a network with fixed
weights is a well studied problem with applications
to many diverse areas such as transportation and
telecommunications. We are particularly interested in
the scenario where a nuclear material smuggler tries
to succesfully reach her/his target by identifying the
most likely path to the target. The identification of the
path relies on reliabilities (weights) associated with
each link and node in a multi-modal transportation
network. In order to account for the adversary’s un-
certainty and to perform sensitivity analysis we in-
troduce random reliabilities. We perform some con-
trolled experiments on the grid and present the distri-
butional properties of the resulting stochastic shortest
paths.
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1 Introduction

There are many well studied optimizaton problems
on transportation networks, including optimal rout-
ing [3] between selected nodes and interdiction [5].
Many of the existing models are based on the de-
terministic weights on both nodes and links. Exam-
ples include, Dijkstra’s and Floyd Marshall’s shortest
paths algorithm [2]. We are particularly interested in
the scenario where a nuclear material smuggler tries
to successfully reach his/her target. The Pathway
Analysis, Threat Response and Interdiction Options
Tool (PATRIOT), a tool developed at the Los Alamos
National Laboratory readily handles this problem us-
ing a multi-modal world transportation network by
identifying the most likely threat pathway to the tar-
get. The identification of this path relies on a set of
fixed reliabilities associated with each arc and termi-
nal in the network that represent the adversary’s per-
ceived probability of successfully traversing the re-

spective links or nodes. This path thus represents
the adversary’s most reliable path. In addition to
the estimated reliabilities, to account for the adver-
sary’s uncertainty and to perform sensitivity analysis
we relax the restriction of the deterministic link and
node reliabilities and consider them as random vari-
ables. The main quantities of interest are the result-
ing stochastic most reliable paths or stochastic short-
est paths for short, and their properties. These prop-
erties may depend on the network, and on the spe-
cific origin and destination. The most reliable path
can be transformed to a shortest path problem (see,
e.g., [2, exercise 4.39]). Different from the shortest
path problem which has efficient algorithms, count-
ing edges on shortest paths in a stochastic network
is computationally hard [4]. One approach to solve
this problem is based on Monte Carlo simulation [1].
To gain a better understanding on how paths are se-
lected in a transportation grid with uncertainties, we
perform some preliminary controlled experiments by
performing Monte Carlo simulations on a grid. This
paper presents the resulting findings.

2 Stochastic Reliabilities

The reliabilities in PATRIOT are the result of con-
sidering various stochastic search and detection pro-
cesses on the multi-modal transportation network [6].
For the purpose of this study, it suffices to consider
one detection process on the network. Letting this
process be a Poisson process makes the reliability of
each link be given bye−λd , whereλ stands for the
detection rate, andd for the link’s length. To keep
the distance dependency, we let the detection rate be
a random variable rather than assigning a distribution
directly to the reliability. In this manner, assuming
that all the links’ rates are independent, the problem
of finding the most reliable path between an originO

and a destinationD , is equivalent to finding the short-
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est path betweenO andD using for the links’ weights
the corresponding link’s detection rates, namely:

max
AllPaths(O ,D)

{

∏
i∈Path(O ,D)

e−Λidi

}

≡ min
AllPaths(O ,D)

{

∑
i∈Path(O ,D)

Λidi

}

. (1)

Assuming the rates to be identically distributed, the
prime question we would like to investigate is if the
distribution of the random weights matters, and deter-
mine what distributional properties are important and
how they affect the quantities of interest. We first con-
sider Logormal random weights and then compare to
Gamma distributed random weights. We first focus
on the resulting lengths of the shortest paths (section
3.1), subsequently on the link usage (sections 3.2),
and look for border effects (section 3.2), and conclude
in section 4.

3 Stochastic Shortest Path on an
n×m Grid

Consider the grid of sizen×m with the origin(0,0)
as its lower left corner. This allows us for now to
keep the length of all links equal to one. Let(0,0)
be the source (or origin) and let(n,0), (n,1) · · · (n,m)
be the destinations. Assign to the(n + 1)× (m + 1)
links in the specified grid independent and identically
distributed random weights, and for each realization
find the shortest path or the path that minimizes the
sum of the weights to each of them possible destina-
tions (n,0), (n,1) · · · (n,m). Figure 1 shows the grid
10× 10 with some sample paths. Note that for con-
stant equal weights anoptimal shortest path to desti-
nation(n, j) is of lengthn+ j (n steps to the right and
j steps up), and that there are a total of

(n+ j
n

)

such
shortest paths! In contrast, using random weights can
produce shortest paths that are of length greater than
the optimal length as the yellow path in figure 1 il-
lustrates. The questions is to determine under what

Figure 1: Stochastic shortest paths on a grid.

conditions this will be the case, and figure out the be-
havior of the shortest path length’s distribution.

Weight’s Distribution Since we are interested only
in positive weights, we consider two distributions:
the Lognormal and the Gamma distributions, both
with the same means and variances. Recall that the
Lognormal random variable is such that its logarithm
is a Normal random variable. We letµ = 10 and
σ = 1,5,10,20. Figure 2 shows the densities of Log-
normal and Gamma random variables that are very
similar for small variances, but differ as the variance
increases.

Figure 2:Logormal and Gamma Densities.

3.1 Shortest Path Length

We investigate how the path length changes depend-
ing on the distribution of the weights. For each set of
parameters (mean equal to 10 and standard deviation
equal to 1, 5, 10, and 20) we run 200 Monte Carlo
simulations. For each realization of the weights we
compute the shortest path between the origin and the
m destinations(n,m), and for each of these shortest
paths we compute its length, and plot for each desti-
nation the corresponding mean path length.
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3.1.1 Lognormal Distribution

Figure 3 shows plots of the corresponding mean
shortest path length for the grids 10×10 and 20×20.
Some things to observe are:

Figure 3:Simulations on a 10×10 and a 20×20 grids.

• For small variance the shortest path length is
equal to the optimum length for each of the des-
tinations. In fact, forσ = 1.5, there is small in-
crease of 0.08 in the mean length of the shortest
path only for destination(10,0). Forσ = 3.5 the
mean length increase by one extra step for desti-
nation(10,0) and produces a slight increase for
destinations(10,1) and(10,2). It takes almost a
value ofσ = 5 to have an effect on all the des-
tinations. As a consequence, for small variance
there is no need to run any Monte Carlo simula-
tions.

• The higher the variance the longer the shortest
path. In fact, if we run the same simulations
for say µ ′ = cµ andσ ′ = cσ , wherec > 0, we
get the exact same plots. That’s because a linear
transformation of the weights (W

′

i = cWi), yields
the same shortest path. Thus, the quantity that
really matters is the signal to noise-ratio, which

is the reciprocal of the coefficient of variation

cv =
σ
µ

. (2)

The general statement is then that the larger the
coefficient of variation, the longer we expect the
resulting shortest path to be.

• It seems that the greater the distance between
the origin and the destination, the length of the
stochastic shortest path gets closer to the opti-
mum. This phenomena can also be observed
when comparing the simulations on the 10×10
grid to the same set of simulations on the 20×20
grid (Figure 3).

Figure 4: Simulations on a 10×20.

To verify the last statement we modify the simulation
by taking a 10× 20 grid as shown in Figure 4 (a).
The resulting mean lengths shown in Figure 4 (b) dis-
prove this statement: even though as the destinations
get closer to (10, 10), or(n,n) in general, the number
of shortest paths with optimal length increases mak-
ing it feasible to find one of them, but as the desti-
nations get beyond(10,10), it seems that it is harder
to find an optimal shortest path. Thus there is another
factor, besides the distance between the origin and the
destination, that affects the length of the path.
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Next we explore if these results hold when we
change the weigths distribution.

3.1.2 Gamma Distribution

We run the same Monte Carlo simulations using inde-
pendent and identically distributed Gamma weights
with mean µ = 10 and standard deviationsσ =
1,5,10,20. These selections of moments correspond
to the Gamma shape parameters 100,4,1, and 0.25
and scale parameters 0.1,2.5,10, and 40 respectively.
Recall that the Gamma density has a similar shape as
the Lognormal density forσ equal to 1 and 5 (see
Figure 2) , thus we would expect to get similar results
in these cases.

Figure 5:Lognormal vs. Gamma weights on 10×20 grid.

That is confirmed by Figure 5 that displays the
mean shortest path lengths when using Lognormal
and Gamma weights. For higher variance the stochas-
tic shortest paths using Gamma weights become
much longer than their Lognormal counterparts as
can be seen in Figures 5 and 6. Longer paths are a
result of encountering several heavy weights on the
way that literally block the road. Thus the Gamma
distribution must produce more heavy weights than

the Lognormal one. Indeed, forσ = 10 andσ = 20,
the Gamma density has a heavier tail than the Log-
normal density. Forσ = 20, and the Gamma pro-
duces many more lower weights, having a median
less than two compared to the corresponding Lognor-
mal median that is about two and a half times bigger.
Similarly, as in the Lognormal case, mutiplying all

Figure 6:Simulations on 10×10 and 20×20 grids.

weights by a factorc > 0 does not affect the result-
ing shortest paths, thus the quantity that affects the
random shortest path is the coefficient of variation.

3.2 Edge Frequency

Next we investigate the edge frequency: for each
scenario we run 400 Monte Carlo simulations and
we calculate the percentage of times every edge was
used. Figures 7 and 8 compare runs performed with
Lognormal and Gamma weights on 20×20 and 10×
20 grids respectively. Some straightforward observa-
tions:

• Edges in thedirect path from the orgin to the
destination are visited more frequently, this are
the edges by the diagonal. This result was at first
somewhat surprising since we expected equally
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edge usage given that we have independent and
identically distributed random weigths on all the
edges. But if we consider all the optimal length
paths

(40
20

)

for the runs on the 20× 20 grid and
(30

20

)

for the ones on the 10× 20 grid, most of
those shortest paths traverse the edges that are
located on thedirect path between the origin and
the respective destination, and edges that arebet-
ter connected. For example, the most frequently
visited edges are the edges close to the origin
and to the destination. To illustrate, the edges
(0,0) to (0,1) and (0,0) to (1,0) are each vis-
ited about half the time since they are only two

(a)

(b)
Figure 7: Edge frequencies for stochastic shortest paths from
(0, 0) to (20, 20) using (a) Lognormal and (b) Gamma weights
with µ = 10 andσ = 1,5,10,20.

possible paths out from the origin (0, 0) and they
are both equally likely (becuase they weights are
independent and ientically distributed). Also,
note that half of all the optimal length short-
est paths go through the edge(0,0)− (0,1) and
the other half go through(0,0)− (1,0). On the
other extreme we have edges that are included
in only a few optimal length shortest paths, and
are very unlikely to be visited, e.g. the edge
(0,19)− (0,20) is included in only one optimal
length shortest path, and it was actualy not vis-
ited in any of our 400 runs.

(a)

(b)
Figure 8: Edge frequencies for stochastic shortest paths from
(0, 0) to (10,20) using (a) Logormal and (b) Gamma weights on
the 10×20 grid usingµ = 10 andσ = 1,5,10,20.
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• For both distributions it is clear that the higher
the variance (the larger the coefficient of varia-
tion) the more edges are visited.

• For small variance, the plots produced using
Lognormal and Gamma weights are very sim-
ilar, but for higher variance, the plots with
Gamma weights indicate that more edges are
visited. This is to be expected, since from the
previous section, Gamma weigths with higher
variance produce longer paths.

3.3 Border Effects

To check if border effects alter our findings, we rerun
the same scenarios on larger grids.

Figure 9:Comparing Mean SP Lengths for various grid sizes.

3.3.1 Shortest Path Length

The larger the grid the longer we expect the short-
est path to be (i.e. the total number of hops needed
from origin to destination), since there are more pos-
sible paths. This is confirmed by the first two plots
in Figure 9 that show the mean length of the short-
est path from the origin to each of the destinations
(10,0), · · · ,(10,20) for Monte Carlo runs on 10×20
and 20×30 grids; the third plot in figure 9 shows the
comparable mean shortest path lengths from(10,10)
to (20,10), · · · ,(20,30) on the 30×40 grid.

3.3.2 Edge Frequency

The length of the shortest path seems to increase with
the size of the grid, but only up to a point. Using
Lognormal random weights, we computed the short-
est path from the origin(10,10) to each of the des-
tinations(20,10), · · · ,(20,30) using a 30× 40 grid,
leaving plenty of space between the origin and the
destinations and all the grid’s borders. Figure 10 dis-
plays the edge frequency when traveling to(20,20).
The grid 30×40 is only partially displayed since the
edges missing had frequency zero. These paths are
equivalent to the shortest paths between(0,0) and
(10,10) on the previous grids.

Figure 10:Edge frequency for all shortest paths produced with

Lognormal random weights on a 30×40 grid for paths between

(10,10) and(20,20).
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Note that as the variance increases more edges
are visited, and that now some of the shortest paths
travel outside the grid defined by the four corners
(10,10),(20,10),(10,20) and(20,20). The paths ex-
tended beyond this grid by no more than four units in
any directions.

Next, Figure 11 shows the edge frequency when
traveling from(10,10) to (20,30). We observe a sim-
ilar behavior as before, the higher the variance the
more edges are visited, and since the distance be-
tween the origin and the destination is larger, the ex-
cursions extend farther out beyond the grid defined
by (10,10),(20,10),(10,30) and(20,30), namely by
more than six and three untis in the horizontal and
vertical directions respectively.

Figure 11: Edge Frequency for shortest paths produced with
Lognormal random weights on a 30×40 grid for paths between
(10, 10) and (20, 30).

4 Conclusion

To better understand the most reliable stochastic path
for smuggling special nuclear material on a trans-
portation network we perform some controlled exper-
iments on a grid using positive random weights. We
study the length and the link usage of shortest paths
obtained by randomizing the links’ weights on a regu-
lar grid of sizen×m. We found that the diversity and
the length of the resulting shortest paths depend on
the distribution of the weights. Since the weights are
independent and identically distributed the quantity

that regulates the bevahiour of the random shortest
paths is the coefficient of variationcv: the larger the
coefficient of variation the longer their shortest path,
and the more edges are visited.

The experiments were performed on relatively
small grids (up to 30× 40). Results from simula-
tions on larger grids should be qualitatively similar,
but would requiere more runs.

The two main phenomenas that we observed, but
still need to be better understood are that the length
of the path does not only depend on the distance be-
tween the origin and the destination, and the fact that
the most frequently visited edges are those edges in
thedirect path between the origin and the destination
that seem to have better accesibility.
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