

 A Prototype Embedded Microprocessor Interconnect

for Distributed and Parallel Computing

Bryan Hughes

 Electrical and Computer Engineering, Texas Tech University

Lubbock, TX 79409, United States

and

Brian Nutter

Electrical and Computer Engineering, Texas Tech University

Lubbock, TX 79409, United States

and

Per Andersen

Computer Science, Texas Tech University

Lubbock, TX 79409, United States

and

Daniel Cooke

Computer Science, Texas Tech University

Lubbock, TX 79409, United States

ABSTRACT

Parallel computing is currently undergoing a transition from a

niche use to widespread acceptance due to new,

computationally intensive applications and multi-core

processors. While parallel processing is an invaluable tool for

increasing performance, more time and expertise are required

to develop a parallel system than are required for sequential

systems. This paper discusses a toolkit currently in

development that will simplify both the hardware and software

development of embedded distributed and parallel systems. The

hardware interconnection mechanism uses the Serial Peripheral

Interface as a physical medium and provides routing and

management services for the system. The topics in this paper

are primarily limited to the interconnection aspect of the

toolkit.

Keywords: Parallel Computing, Interconnection Networks,

Embedded Systems.

1. INTRODUCTION

Although parallel computing has been around for decades, it

has only been used in niche high performance computing

(HPC) applications until recently. With the advent of multi-

core processors and new computationally intensive

applications, such as High-Definition (HD) video processing,

parallel computing is becoming mainstream. Unfortunately the

development tools available to implement these applications,

especially in the embedded market, have remained relatively

unchanged since the mid 1990s.

To implement an embedded parallel computing system using

current technology, one would first have to implement an

interconnection mechanism. Current pre-made, high-end

options include HyperTransport and RapidIO , while

current low-end options include the Inter-Integrated Circuit

(I2C) bus and the Controller Area Network (CAN) bus. The

high-end solutions work well for parallel computing with

bandwidth rates up to 20.8 GB/s on HyperTransport[1] and 10

GB/s on RapidIO[2]. However, these interconnects are

expensive to implement because very few microcontrollers

contain the necessary interface circuitry internally, which

means they would require additional external circuitry. The

bandwidth offered by these interconnects is also significantly

higher than most microcontrollers can process. The low-end

solutions are too antiquated to support the communication

demands of parallel computing, with bandwidths of 3.4 Mbps

for I2C[3] and 1 Mbps for CANbus[4]. For node-to-node

bandwidth, this might be an acceptable rate, but in I2C and

CANbus, these bandwidths are for the entire system, which

gives a node-to-node bandwidth equal to the total bandwidth

divided by the number of nodes during heavy load. We require

a new type of interconnect that most microcontrollers can

support without external interface IC's that still provides

adequate performance for parallel computing.

The toolkit proposed here utilizes the Serial Peripheral

Interface (SPI) protocol as a physical layer. A protocol has

been developed to sit on top of SPI that provides routing,

guaranteed delivery, and other services for up to 256 nodes. A

prototype router is being developed for the protocol using a

TMS320F2808 DSP Controller from Texas Instruments (TI)

with 4 communication links that can operate at up to 25 Mbps.

A subset of the Message Passing Interface (MPI) will be

developed to take advantage of the protocol. This sub API will

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 4 1ISSN: 1690-4524

serve as a middleware provider for SequenceL, a functional

programming language being developed at Texas Tech

University that features automatic concurrency. Once the

toolkit is completed, the time necessary to develop a complete

embedded parallel system should be greatly reduced.

2. INTERCONNECTION HARDWARE

To create an interconnection for embedded systems, a different

perspective from computer interconnection is required. Adding

new interconnection functionality to a PC is as simple as

spending 10 minutes installing an expansion card. However,

adding new interconnection functionality to an embedded

system must be done at design time. This process requires

designing printed circuit boards (PCB's) and writing software

that allows microcontrollers to take advantage of the hardware,

which is a non-trivial task. The ideal interconnection for

embedded systems would take advantage of hardware that is

common to most microcontrollers on the market so that

designers can skip the entire interfacing step. At the same time,

the interconnection must be reasonably fast in comparison to

the clock speed of the microcontroller. While 'reasonably fast'

is a relative term, picking a base communication link speed that

is within an order of magnitude of the microcontroller's

primary clock speed is probably a good choice. SPI was chosen

because it is found on most microcontrollers on the market, and

can typically run at clock speeds up to 1/4 or 1/2 of the clock

speed of the microcontroller.

Physical Layer Signaling

The SPI protocol is a master-slave, point-to-point, full duplex,

serial protocol. It consists of three or four signal lines: transmit,

receive, clock, and an optional slave select. The slave select

signal is not used because its behavior tends to vary from

implementation to implementation. A master-slave protocol is

not really ideal in parallel computing because nodes in a

parallel system should be equal peers. To get around the

master-slave limitation, nodes will all be slaves by default, and

will dynamically elevate themselves to a master whenever they

have information to transmit. This mechanism loses the full-

duplex capabilities of SPI, but allows all nodes to be true peers.

The four signal lines for this peer-to-peer SPI are defined in

Figure 1. The Slave-In/Master-Out and clock signals behave

the same as their standard SPI counterparts. An arbitration

scheme

Figure 1: Link Signal Definitions

Figure 2: Elevation Process

has been created to prevent nodes from talking over each other

that uses the masters in and out signals, MIN and MOUT

respectively, according to the state diagram shown in Figure 2.

This mechanism is modeled after Ethernet's back-off-and-wait-

randomly collision mechanism.

Routing Boards

To aid in the development of the toolkit software, individual

routing boards are being designed that allow rapid prototyping

of network topologies. These boards also serve as a reference

design for the routing chips. Each routing board consists of a

single routing chip, support circuitry, and headers for

connecting with other routing boards. The block diagram for

the board is shown in Figure 3.

Each board contains its own power regulation circuitry

centered around a TI TPS70102 dual voltage linear regulator,

four link headers for connecting to other routing boards or

hosts, a set of switches for configuring the board, a seven

segment display for debugging purposes, and a Joint Test

Action Group (JTAG) port.

Figure 3: Routing Board Block Diagram

Figure 4: Software Modules

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 42 ISSN: 1690-4524

Figure 5: Receive Flow Chart

Router Software Architecture

The routing software is divided into four modules: the "kernel,"

I/O management, Protocol Stack, and System Health. The

relationships of these modules are shown in Figure 4. The

system health module controls error handling and high-level

management of the router. The Protocol Stack process packets

and performs the appropriate action. The I/O management

module serves as a driver for the peer-to-peer SPI port. The

"kernel" consists of the Real Time Operating System (RTOS)

DSP/BIOS by TI and the SPI subsystem. Note that DSP/BIOS

does not interface with any SPI ports. The primary reason for

using DSP/BIOS, despite its lack of SPI drivers for this

particular chip, is for its threading capabilities. Each port has a

thread dedicated to processing incoming packets. This allows

the routers to handle multiple streams simultaneously. These

threads exist to offload most of the computation from the SPI

interrupt routines. The receiving process is shown in Figure 5.

The interrupt itself is designed to be as short as possible

because interrupts block execution in the rest of the system.

When a 128-bit chunk of a packet comes in and the interrupt

occurs, the interrupt routine buffers the packet and wakes up

the processing thread. If the buffer is full, the interrupt routine

will assert the master out pin for that port to prevent the other

node from sending any more information. Once the interrupt

has finished and normal threading has resumed, the processing

thread then performs the actual processing of the packet chunk.

If the packet chunk is the header of a new packet, it is sent to

the protocol stack for processing. If the packet chunk is not a

header, then it is part of a continuing transfer and is routed

accordingly. After the processing thread is done processing the

entire packet buffer, it goes back to sleep. Because each port

has its own processing thread, multiple packets on multiple

ports can be processed simultaneously.

Handling Data Transfers

If a packet doesn't have a payload, the system sends the data

chunk to the protocol stack for processing because the entire

packet is contained in the data chunk in question. If a packet

has a data payload, the system must know what to do with each

128-bit data chunk that comes through after the header. The

initialization of a multi-chunk transfer is shown in Figure 6.

Figure 6: Multi-Chunk Transfer Initialization

Figure 7: Multi-Chunk Transfer

After transferring the packet header using the normal transfer

routines, the transfer settings are saved so that when the next

chunk comes in, the chunk won't be sent to the protocol stack

but can be transferred directly, based on the saved settings as

seen in Figure 7. When the data payload is destined for the

router in question, it behaves like a multi-chunk transfer except

that it sends the data to a buffer rather than to another port.

3. COMMUNICATION PROTOCOL

A custom protocol is being designed to take advantage of the

network. Because the protocol is only required to handle

communication for at most 256 nodes over distances no more

than a meter or so, the protocol doesn't need to be as complex

as Ethernet/IP/TCP/etc. By simplifying and condensing the

packet structure, the overhead goes down.

Packet Header Definition

Each packet consists of a header and an optional data payload.

The header structure is defined in Figure 8, and a description of

the fields is in Table 1.

Figure 8: Packet Header Definition

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 4 3ISSN: 1690-4524

Field Name Length

1 Version 4

2 Communication Type 4

3 Source 8

4 Destination 8

5 Command 8

6 Command Sequence Step 8

7 Number of Hops 8

8 Packet ID 8

9 Source Process ID 8

10 Destination Process ID 8

11 Command Specific 48

12 CRC 8

Table 1: Packet Field Definitions

The first field is the Version field, which supports multiple

revisions of the protocol in play at the same time. The

Communication Type field specifies the type of

communication, which will be discussed in next section. The

Source, and Destination fields define a source and destination

node address.

The Command field specifies the packet's purpose. Example

commands include transferring data, requesting a node address,

getting a list of running processes on a node, etc. In Ethernet,

the equivalent would be the specification of IP in the Ethernet

header, and then TCP/UDP in the IP header, and then the port

number specified in the TCP/UDP header, with the port

number ultimately specifying the packet's purpose. While the

system used in Ethernet/IP/TCP/UDP allows greater flexibility

and potential for growth, it also introduces significantly more

overhead as well as a more complex protocol stack, compared

with using a single, non-nested protocol. Given the nature of

embedded systems (little memory or processing power) a

simpler, if less flexible, protocol is preferred due to its memory

and computationally friendly nature. In this protocol, a

command represents a sequence of steps that are to be

performed for a given action. As an example, a data transfer

consists of a request to send data, sending the data, reporting

whether or not the data transferred without error, and

retransmitting the packet if necessary. The field Command

Sequence Step keeps track of the current step in the command

sequence. Storing the sequence in the packet allows nodes to

send a packet and forget about it, instead of having to keep

track of all of their pending requests.

The Number of Hops field keeps track of how many routers the

packet has passed through. This field allows a time to live limit

to be set on packets. The Packet ID field, in conjunction with

the Source field, allows each packet to have a unique identifier

in the system. The hosts use the Source Process ID and

Destination Process ID fields in the system to identify what to

do with the data payload. These fields are used, because the

data transfer command is a generic type; i.e. it does not specify

what to do with the data. The Command Specific field contains

data that is command specific. This field allows commands to

store information directly in the header instead of in the data

payload section. The benefit of this field is that the overall

packet is smaller and processing the packet is a lot simpler,

because the entire packet is contained in a single 128-bit packet

chunk. The CRC field contains an 8-bit CRC of the data using

the polynomial.

Communication Types

Six types of communication have been developed: Unicast,

Multicast, Broadcast All, Broadcast Routers, Broadcast Hosts,

and Addressless. In this system, routers and hosts are equals in

that both have addresses and can communicate with each other

directly. Unicast works as expected; it allows sending a packet

from one node to another. Broadcast works as expected as well,

except that a node can broadcast to everyone in the system, to

all routers but none of the hosts, or to all hosts but none of the

routers. Multicast in the toolkit works a little different than

multicast in TCP/IP. In the toolkit, when a node wants to join a

multicast group, it registers with the master router, which then

notifies all of the routers. Routers only pass along multicast

packets when a member of the multicast group is further along

the link, as in TCP/IP. Where multicast differs from TCP/IP is

that there is no multicast server. Anyone in the group can send

a multicast packet to the rest of the group. In this sense,

multicast works like subnets do in Ethernet, except that the

multicast groups are dynamic and a node can simultaneously

belong to multiple multicast groups. Addressless is used when

a node powers on and needs to request an address from the

master router. If a node's neighbor has an address, the node

uses its neighbor as a proxy to ask the master router for an

address. This method is necessary because only one address

exists for nodes, and when a node powers on there is no way of

identifying it. Ethernet/IP/TCP, in contrast, uses a dual

addressing scheme where the IP address can be dynamic, but

the MAC address is hard-coded, and so it doesn't need any

form of addressless communication.

Routing Algorithm

The routing scheme used is based on Räcke's oblivious routing

scheme outlined in [5]. An oblivious routing scheme is one that

takes a routing request , with source and target

, and produces a route from to without knowledge of

the global state of the network. This implies that the routing

scheme is non-adaptive, i.e. it does not depend on the real-time

congestion of the network. A general network, e.g. one that

does not necessarily conform to a specific topology, can be

modeled as an undirected graph with set of nodes
, set of edges , and number of nodes . Räcke’s

method, in short, maps to a tree network , finds the

shortest path on , and maps the result back to a set of paths

on . One of the paths in the result is selected randomly to

produce route .[5]

Tree networks are used because it is simple, even trivial, to find

the shortest path in the tree network between two nodes. The

tree is constructed by created a root node that corresponds

to , i.e. it contains all nodes. This node is then subdivided into

children nodes. These children nodes are recursively

subdivided until all nodes contain a single element . This

decomposition process forms a natural tree structure as in

Figure 9(b), given a general network as show in Figure 9(a).

Note that all leaf nodes contain a singleton set . For

technical reasons, an intermediate node is inserted between

each natural node in the tree . Note that in Figures 9(b),

natural nodes are represented by large circles, and intermediate

nodes are represented by small circles. A cluster is the

cluster associated with and .

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 44 ISSN: 1690-4524

(a) General Network

(b) Tree Network

Figure 9: General to Tree Network Mapping

 (1)

The bandwidth of an edge , defined in Eq. (1),

states that the bandwidth of is defined as the bandwidth of

all outgoing edges from the intermediate node in . The level

of a natural node in is defined as the number of natural

nodes on the path from to , the root node. The level of a

cluster is defined as the level of its natural node . Each

level is given a weight .

The properties of discussed above are used to define a

concurrent multi-commodity flow (CMCF) problem for each

cluster . A commodity is defined for each cluster

, where is the source, is the sink and

is the demand as defined in Eq. (2).

 (2)

Given the CMCF for , a path between and can be found

by decomposing into a set of convex paths . Each path

 is assigned a weight, and one of the paths in is

chosen based on the weight and a randomized input. An

example path in is show in Figure 10(a), with the associated

paths in in Figure 10(b) and the valid paths in after solving

the CMCF problem in Figure 10(c).[5]

(a) Unique in the Tree Network

(b) All Paths in the Tree Network

(c) CMCF Solution in the General Network

Figure 10: Path Selection on and

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 4 5ISSN: 1690-4524

For the implementation of the routing scheme in this system,

all of the path sets are pre-computed by the master router,

and then the appropriate sets are sent to all routers (but not

hosts). The routing table is created in response to the master

router broadcasting a Create Routing Table command. This

process is detailed in Figure 11.

Figure 11: Routing Table Creation Process

4. CONCLUSION

This toolkit is still in development, so the effectiveness of the

toolkit is not yet known. As of this writing, the topics discussed

in Section 2 have been implemented and work according to

design, although the topics discussed in Section 3 are mostly

unimplemented thus far. After these elements have been

implemented, this project will enter its next phase. During the

next phase, the two software systems will be implemented to

make developing parallel algorithms much easier. A subset of

the Message Passing Interface (MPI) version 1 will be

implemented as a middleware layer. MPI was chosen for its

ubiquity in parallel processing on distributed systems such as

server clusters. Much of the functionality of MPI won't be

implemented because many of its features aren't relevant to an

embedded environment. For example, there is no need for job

management, because processing jobs on this system won't be

initiated by humans.

A parallel compiler for SequenceL will be modified to run on

the toolkit. Due to the nature of the language, it is easy for the

compiler to find the parallelisms in the code automatically.

This property means that programmers don't have to parallelize

their code by hand, thereby reducing the development time

\cite{sequencel}. The compiler will actually be a SequenceL to

C compiler that makes use of MPI for the parallel code, which

will make the code much more portable than a straight to

assembly compiler. This approach also makes use of the

decades of optimization that have gone into C compilers and

allows easy integration of SequenceL code with embedded

programming specific and even platform specific code.

After the toolkit is finished, a developer who wants to create a

distributed parallel embedded system should be able to do so

much more rapidly than was previously possible. From a

hardware perspective, this toolkit will be just about as close to

plug and play as one can get in an embedded system. From a

software standpoint, one need only write the sequential

algorithm in SequenceL, and the toolkit will take care of the

details.

5. REFERENCES

[1] HyperTransport Consortium. “HyperTransport

technology overview.” referenced at

http://www.hypertransport.org/tech/index.cfm, 2005.

[2] RapidIO Trade Organization. “Rapidio Technology

overview.” referenced at

http://www.rapidio.org/education/technology overview,

2008.

[3] Phillips Semiconductor. “The I2C-bus specification.”

referenced at

[4] R. Bosch. “Can Specification.” referenced at

http://www.semiconductors.bosch.de/pdf/can2spec.pdf,

1991.

[5] Harald Räcke. Data Management and Routing in

General Networks. PhD thesis, Universität Paderborn,

2003.

http://www.nxp.com/acrobatdownload/literature/9398/3

9340011.pdf, 2000.

[6] D. E. Cooke and J. N. Rushton. “Sequencel - an overview

of a simple language.” In Proceedings of the 2005

International Conference on Programming Languages

and Compilers, pages 64–70, June 2005.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 6 - NUMBER 46 ISSN: 1690-4524

	I145DHB

