
Building a Reduced Reference Video Quality Metric with
Very Low Overhead using Multivariate Data Analysis

Tobias OELBAUM and Klaus DIEPOLD
Institute for Data Processing

Technische Universität München
Munich, Germany

Abstract—In this contribution a reduced reference video quality
metric for AVC/H.264 is proposed that needs only a very low
overhead (not more than two bytes per sequence). This reduced
reference metric uses well established algorithms to measure ob-
jective features of the video such as ’blur’ or ’blocking’. Those
measurements are then combined into a single measurement for
the overall video quality. The weights of the single features and the
combination of those are determined using methods provided by
multivariate data analysis. The proposed metric is verified using
a data set of AVC/H.264 encoded videos and the corresponding
results of a carefully designed and conducted subjective evaluation.
Results show that the proposed reduced reference metric not only
outperforms standard PSNR but also two well known full reference
metrics.

Index Terms—video quality metric, reduced reference, multivari-
ate data analysis, AVC/H.264.

1. INTRODUCTION

Knowing the visual quality of an encoded video is essential
for next to all applications dealing with digital video. This
task can be accomplished either by a very time consuming
(but accurate) subjective test or by an objective video quality
metric. A good objective video quality metric would produce
results highly correlated to those obtained by a subjective test.
Four years after the first version of the upcoming video coding
standard AVC/H.264 [1] was released, next to no results exist to
demonstrate the prediction capabilities of video quality metrics
for AVC/H.264 encoded video data. Up to now most video
quality metrics have been verified using MPEG-2 encoded
videos, but as AVC/H.264 encoded video has significant dif-
ferent characteristics (e.g. no fixed block sizes, filtering in the
decoder loop), those results do not necessarily apply for this
new generation of encoded video.
Being the de-facto standard for objective video quality metrics
PSNR is still used for comparing AVC/H.264 encoded video
with other video codecs or for comparing different encoder
implementations or coding settings for AVC/H.264. This is
in spite of the knowledge, that PSNR values may be heavily
misleading [2].
The rest of the contribution is organized as follows: In section
2 a short overview about related works is presented. The
method used to develop the proposed reduced reference metric is
described in section 3 and the model itself is described in detail
in section 4. Section 5 presents the results for the proposed
method and finally section 6 concludes this contribution.

2. RELATED WORKS

Full Reference (FR) Quality Metrics
The most popular video quality metric is the Peak Signal

to Noise Ratio (PSNR). This simple metric just calculates the

mathematical difference between every pixel of the encoded
video and the original video. In fact up to now PSNR is the
only video quality metric that is widely accepted and therefore
PSNR is the de-facto standard for measuring video quality.
In 2004 the ITU released a recommendation which included
four different full reference (not only the coded video but
also the original video is needed for the evaluation) metrics
which outperformed PSNR in terms of correlation to results of
extensive subjective tests [3]. Among those is the Edge PSNR
[4] method developed by Lee et al. which was chosen as a
comparison point to the metric presented in this contribution.
This metric is based on the observation that human observers
are especially sensitive to degradations in regions around edges.
Therefore this metric evaluates the PSNR only at those pixels
that have been classified to belong to an edge region. One FR
image metric which has gained a high popularity since it was
introduced in 2002 is the so called SSIM (Structural SIMilarity
index) as presented in [5] and [6]. This metric was the second
metric chosen for comparison. The SSIM performs a separate
comparison on luminance, contrast and structure in the original
and the coded image and uses this information to calculate
one overall quality index. Among the quite extensive list of
FR image and video quality metrics four recently proposed
metrics are [7], [8], [9] and [10]. Shnayderman et al propose
to use a singular value decomposition representation of the
original and the coded image for the comparison [7]. In [8]
Zhai et al. propose to decompose the images using a fiterbank
of 2D Garbor filters and then measures the correlation between
the decompositions of the original and the coded image. This
attempt is inspired by the fact, that simple cell in the visual
cortex can be modeled as 2D Garbor functions. The same
authors extend the SSIM by a previous multiscale decomposition
of an image in [9]. Finally Ong et al. propose a full reference
metric that combines a measurement for block fidelity and
content richness with some visibility masking functions [10].

Reduced Reference and No Reference Quality Metrics
Comparably few approaches were presented for reduced ref-

erence (RR) quality evaluation and even less for no reference
(NR) quality evaluation. Compared to full reference metrics for
a RR metric only parts of the original video or some extracted
properties of the original video are needed for evaluation. 2003
Carnec et al. presented a RR image quality metric that is based
on properties of the human visual system (HVS) such as color
perception and masking effects. For the RR approach only high
level visual information is needed, however an additional data
load of 1056 real numbers for every frame is reported [11].
Kusuma et al. presented a RR approach for still images using a
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linear combination of blocking, blur, ringing, masking and lost
blocks in 2005 [12]. Wang and Simoncelli showed that natural
images have a certain frequency distribution and therefore the
frequency distribution of a coded image can be used to predict
the visual quality [13]. To transmit a representation of the
frequency distribution of the original image they require 162
bits.
For a NR metric no information about the original video is
needed. One popular approach for a NR image and video quality
metric is the inclusion of watermarks in the original image and
then measuring the amount to which these watermarks can be
recovered at the receiver [14]. An approach similar to the metric
proposed here was presented just recently by Callet et al in
[15]. While the set of objective features used in both metrics is
quite similar, the main differences can be found in the way this
objective features are then combined to an overall video quality
metric. For this task Callet et al use a neural network approach
to simulate the human visual system (HVS) and its reaction to
a set of features.
In addition to complete quality metrics there exist several
measurements that concentrate on one single image property
or a special artifact. Prominent candidates from this field are
the blocking measurement by Bovik and Wang [16], or the blur
measurement proposed by Winkler [17].

3. MULTIVARIATE DATA ANALYSIS FOR OBJECTIVE
VIDEO QUALITY ASSESSMENT

Video quality metrics that try to model the HVS face the
problem, that what they want to model is very complicated and
up to the moment not well understood. Measuring the strength
of a certain artifact (e.g. blocking, blur) and trying to predict
the quality by a linear combination of the measured artifacts
introduces the problem, that it is not known to which extend a
certain artifact affects the perceived video quality. In addition
this method ignores the possibility that there may be interference
between certain types of artifacts.
For these two reasons it is proposed to build new video quality
models using methods provided by multivariate data analysis.
Multivariate data analysis is a tool that is widely used in
chemo metrics and food science where the aim is to find
the value of a latent variable (e.g. taste) by measuring some
fixed variables (e.g. sugar, milk, cocoa). For the field of video
quality assessment this translates to measure the latent variable
video quality by measuring fixed variables such as blocking,
blur, activity, continuity or noise. The main advantages of this
approach are twofold:

• The HVS is regarded as black box model and no attempt
to model any aspect of the HVS is needed. The ’black
box’ has some inputs (the fixed variables) and hopefully
the output (visual quality) can be somehow predicted using
these input values.

• The approach requires no previous assumptions about the
influence of the fixed variables.

Feature Selection
A set of simple no reference feature measurements was

selected representing the most common kind of distortions
namely blocking, blurriness and noise. One feature measurement
was added to measure the amount of detail present in the
encoded video. To take into account the time dimension of
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Fig. 1. Black Box HVS Model

video four different continuity measurements were performed:
predictability (shows how good one frame can be predicted using
the previous frame only), motion continuity (measurement for
the smoothness of the motion), color continuity (shows how
much color changes between two successive images) and edge
continuity (shows how much edge regions are changing between
two successive images).

• Blur: the blur measurement used is described in [17].
The algorithm measures the width of an edge and then
calculates the blur by assuming that blur is reflected by
wide edges. As blur is something natural in a fast moving
sequence this measurement is adjusted if the video contains
a high amount of fast motion.

• Blocking: for measuring the blockiness the algorithm in-
troduced in [16] is used. This algorithm calculates the
blockiness by applying a FFT along each line or column.
The unwanted blockiness can be easily detected by the
location in the spectra.

• Noise: to detect the noise present in the video a very simple
noise detector was designed. First a prediction of the actual
image is built by motion compensation using a simple block
matching algorithm. Second a difference image between
the actual image and its prediction is calculated and a
low pass version of this difference image is produced by
first applying a median filter and a Gaussian low pass
filter afterward. A pixel is classified to contain noise if
the difference value between the original difference image
and the low pass difference image exceeds a threshold of
25 (assuming 8 bit values ranging from 0 to 255) for one
of the three color planes.

• Details: to measure the amount of details that are present
in a video the percentage of turning points along each line
and each row are calculated. This measurement is part of
a BTFR metric included in [3]. As the amount of details
that are noticed by an observer decreases with increasing
motion the activity measurement is adjusted if high motion
is detected in the video.

• Predictability: A predicted image is built by motion com-
pensation using a simple block matching algorithm. The
actual image and its prediction are then compared block
by block. A 8 × 8 block is considered to be noticeable
different if the SAD exceeds 384. To avoid that single
pixels dominate the SAD measurement both images are
filtered using first a Gaussian blur filter and a median
filtering afterward.

• Edge Continuity: The actual image and its motion com-
pensated prediction are compared using the Edge-PSNR
algorithm as described in [4].

• Motion Continuity: Two motion vector fields are calculated:
between the current and the previous frame and between
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the following and the current frame. The percentage of
motion vectors where the difference between the two
corresponding motion vectors exceeds 5 pixels (either in
x- or y-direction) determines the motion continuity.

• Color continuity: A color histogram with 51 bins for each
RGB channel is calculated for the actual image and its
prediction. Color continuity is then given as the linear
correlation between those two histograms.

All feature measurements are done for each frame of the video
separately and the mean value of all frames is then used for
further processing.
The above selected measurements are just one example for a
set of variables that are used for building such a model. The
presented variables were used for their simplicity, using more
complex measurements for artifacts like noise or blur may result
in even more accurate models as well as adding measurements
for artifacts not considered here (e.g. ringing). For this case only
no reference feature measurements are considered, including
some feature measurements that require the original video a
RR or FR metric could be built. The nature of the multivariate
calibration allows including an unrestricted number of fixed
variables in the calibration step. If the calibration phase is done
properly, fixed variables that do not contribute to the latent
variable ’video quality’ do not spoil the calibration process. The
regression model will contain these useless fixed variables with
zero (or very close to zero) weight and those variables then can
be removed from the model.

The calibration step
Multivariate calibration is the method of learning to interpret

a number of k input sensory signals that contribute to a
common output y. For the presented metric the input signals
are the above mentioned feature measurements while the output
would be the visual quality of the video. The data set used
for calibrating (training) the model consisted of four different
standard video test sequences (Bus, Football, Harbour, Mobile)
at CIF resolution that were encoded according to AVC/H.264 at
three (Bus, Harbour) and seven (Football, Mobile) different bit
rates ranging from 96 kbps to 1024 kbps and with a frame rate of
15 or 30 fps. Different encoder settings concerning the number
of B-Frames that were inserted (zero to two B-Frames), or the I-
Frame periodicity (only one I-Frame or periodic I-Frames) were
used. For each of the l calibration sequences the selected feature
values fmi (m ∈ {1 · · · k} , i ∈ {1 · · · l}) were computed, for
reference the l×k matrix containing the feature values is denoted
as F.

Correcting the Features using MSC: As it is expected that
the measured features are not free from multiplicative or additive
effects (e.g. the measurement for noise may be correlated
and affected by the amount of details present in the video)
a multiplicative signal correction (MSC) step is performed
before starting the multivariate regression. MSC was originally
developed to correct measurements in reflectance spectroscopy,
but can also help in this context to remove multiplicative and
additive effects between different objective features. The MSC
corrected value of one feature m for one sequence i is calculated
as following:

f ′mi = c + fmi ∗ d

The two variables c and d are obtained by simple linear
regression of the feature values of the sequence i compared to

the average of the feature values of all calibration sequences.
For a detailed description of MSC see chapter 7.4 in [18].
Consequently the matrix F becomes F′ after MSC treatment.

Multivariate Regression with PLS: The obtained feature
values f ′mi are then used together with the corresponding subjec-
tive ratings yi that form the column vector y to built a regression
model using the method of Partial Least Squares Regression
(PLSR). PLSR is an extension of the Principal Component
Regression (PCR), that tries to find the principal components
(PC) that are most relevant not only for the interpretation of the
variation in the input values in F but also for the variation in
the output values y. So while the PCR is a bilinear regression
method that consists of a Principal Component Analysis (PCA)
of F′ into the matrix T that contains the PCs of F′ followed by
a regression of y on T, for the PLSR the modeling of F′ and
y is done simultaneously to ensure that the PCs gained from F′

are relevant for y.
F′ can be modeled as:

F′ = f + T •PT + Ef .

With P being the loadings of the k input features, T being
the scores of the l input sequences. f represents the row vector
of the mean values of the features and Ef is the error in F′ that
can not be modeled.

Likewise y can be modeled as:

y = y + T •QT + Ey.

The prediction ŷ can then be modeled as:

ŷi = b0 + f ′i ∗ b

b is the column vector of the single estimation weights bm,
b0 is the model offset. A detailed description of PLSR can be
found in chapter 3.5 of [18].

Prediction Correction using Additional Quality Information
The NR quality metric gained by the previous steps faces

the problem that even the original video may contain a certain
amount of blur or blocking and different sequences do not only
have a different amount of details but also do have different
motion properties. For this reason the overall prediction accuracy
of the so far described model is low. But plotting the predicted
quality against the quality measured in subjective tests reveals
that the prediction accuracy for each single sequence is very
high: the data points for one single sequence lie on one straight
line only with unknown slope s and unknown offset o. Figure 3
shows the prediction without the correction step: the dashed
diagonal shows the required regression line. The regression
lines for the three sequences Crew, Foreman and Husky have
a significant different slope and offset. The overall prediction
accuracy therefore can be improved by estimating the slope and
the offset of these lines by calculating the predicted quality of
the original video (ŷorig) and of a low quality version of the
video (ŷlow) using the same quality predictor.
While the original video is available and the subjective visual
quality of this original is inherently given to be 1 on a 0 to 1
scale with a comparably small error only, an estimation of a
low quality video can be produced by e.g. encoding the original
with a low bit rate. Obviously the subjective visual quality of
this low quality video can only be guessed (here set to 0.25).
Including the predicted quality of the original video and the

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 6 - NUMBER 5 83ISSN: 1690-4524



Original 
Video

Low Quality
Video

Encoded
Video 

(unknown
quality)

Encoder Decoder

Feature 
Extraction

Quality ModelQuality Model Quality Model

Encoder

Decoder

Feature 
Extraction

Feature 
Extraction

y‘

yorig ylow y^ ^ ^

^ y‘‘^

Fig. 2. Complete Prediction Model

predicted quality of the low quality video, the NR model will
become a RR model, even if the additional data that has to be
send is very low (only two values per sequence). The corrected
prediction ŷ′i is calculated as

ŷ′i = ŷi−o
s

with s =
ŷorig−ŷlow

1.0−0.25
and o = ŷlow − 0.25 ∗ s .

Correcting Nonlinearities of Subjective Ratings
It is known, that at the extremes of the test range (very good

or very bad quality) subjective testing does have a nonlinear
quality rating and ratings do not reach the very extremes of the
scale but are saturated before. For this reason it is proposed
to slightly correct the prediction values ŷ′ using a sigmoid
nonlinear correction. The general sigmoid function is given as

ŷ′′ = a/(1 + e(−(ŷ′−b)/c))

For the correction the following values were chosen: a = 1.0,
b = 0.5, c = 0.2. The nonlinear sigmoid correction function is
shown in figure 4, it has to be noted, that the applied correction
function is very close to be linear over a wide quality range.
Figure 2 gives an overview over the presented prediction model.

4. A REDUCED REFERENCE MODEL FOR AVC/H.264
ENCODED VIDEO

Subjective Testing for Generating Ground Truth Data
A reduced reference metric using the above described method

was built using data from two subjective tests that included
AVC/H.264 encoded video. Tests were done on video encoded
at CIF resolution and were performed according to the rules
given in ITU-R BT-500 [19]. This especially includes:

• Room setup compliant to ITU-R BT-500
• To maintain a fixed viewing distance the video were

displayed using a DLP projector, the viewing distance was
set to four times the picture height

• SSIS (Single Stimulus Impairment Scale) evaluation using
a discrete impairment scale ranging from 0 to 10 (later
rescaled to 0 to 1)

• All test sequences were evaluated by at least 20 naive view-
ers (students who were not familiar with video coding or
video quality evaluation), all screened for visual accuracy
and color blindness

TABLE I
TEST SEQUENCES

Sequence Bit Rate (kbps) fps Conditions
Sequences used for calibration

Bus 128,256 15fps IBP, only one I-Frame
512 30fps IBBP, only one I-Frame

Football 256, 512 15fps IBP, only one I-Frame
1024 30fps IBBP, only one I-Frame

Mobile 96, 192, 384, 768 15fps IBP, one I-Frame
every 2 seconds

Harbour
192 15fps IBP, one I-Frame

every 1.2 seconds

384, 750 30fps IBBP, one I-Frame
every 1.2 seconds

Sequences used for validation
City 192 15fps IBP, one I-Frame
Crew every 1.2 seconds
Ice 384, 750 30fps IBBP, one I-Frame

every 1.2 seconds
Deadline

96, 192, 384, 768 15fps IPPP, only one I-FrameParis
Zoom

Foreman

256, 512 15fps IBP, only one I-Frame
1024 30fps IBBP, only one I-Frame

96, 192, 384, 768 15fps IBP, one I-Frame
every 2 seconds

Husky 96, 192, 384, 768 15fps IBP, one I-Frame
Tempete every 2 seconds

• To minimize the contextual effect, which is known to affect
results in a single stimulus environment, every encoded
sequence was shown twice in the test and rated twice by
each test subject. Like this also the ability of the viewers
to rate one video could be tested and outliers (indicated by
two votes for the same sequence that differ to much) could
be removed.

• Each test was preceded by an extensive training session to
train the subjects on the task of evaluating the video

• Each single test session did not last longer than 25 minutes
and an adaptation phase of five sequences was set at the
start of each test session (this was not undisclosed to the
subjects).

The 95% confidence intervals were below 0.04 on a 0 to 1 scale,
which shows, that the results from the tests are very reliable.
Table I shows the sequences and bit rates used for these two
tests. Before building the model the data from those tests was
split into two parts: only four out of 13 sequences were used for
calibration of the metric, while the other nine sequences were
used for the verification phase.

The Regression Model
After applying a MSC on the calibration data, a very simple

regression model with only one PC can be built by applying a
PLSR. The resulting weights bm of the objective features and
the model offset b0 are given in Table II. The PLSR on the
matrix F′ revealed that the feature ’noise’ does not have an
influence on the model, therefore this feature was removed and
only the remaining seven features were taken into account.

Correcting the Results of the Model
The low quality video needed for the correction step was

constructed by encoding the video using the AVC/H.264 stan-
dard with a high (fixed) quantization parameter (resulting in low
quality). It has to be noted, that not only the coding parameters
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TABLE II
WEIGHTS OF OBJECTIVE FEATURES

Feature Weight b

Activity 0.036
Blocking -0.120

Blur -0.109
Color Continuity 0.054
Edge Continuity -0.072

Motion Continuity 0.090
Predictability 0.095

b0 4.073

for producing this low quality video differ quite significant from
those used to encode the videos under test, but also a different
encoder has been used for this task.

5. RESULTS

Verification was done on the sequences not used for the
development of the presented RR quality metric. In total 36
data points were available spanning a quality range from 0.098
to 0.913. Beside PSNR two other FR metrics were calculated
for the presented data. The Edge-PSNR metric [4] was chosen
as one representative of the methods standardized in ITU-T J144
[3]. The second FR metric chosen for comparison is the popular
SSIM (Structural SIMilarity index) as presented by Wang in
[5]. In addition to the classical Pearson Linear Correlation and
Spearman Rank Oder Correlation to express the ability of the
model to correctly predict the visual quality, also an outlier
ratio is given. A data point is considered to be an outlier if
the difference between measured and predicted quality is more
than 0.05 on a 0 to 1 scale (remember, that the 95% confidence
intervals from the tests were below 0.04). Note that for the
outlier ratio no data fitting was applied for the proposed method
while linear fitting was applied for the other three models. Linear
data fitting has been chosen to fit the predicted values to the
actual given data. While nonlinear fitting (logistic, sigmoid) is
sometimes proposed for this purpose, higher order fitting always
carries the danger of fitting the model too much to the actual
data and possibly jeopardizing the ability to predict unknown
data.
In addition the slope and offset of the regression line before
linear data fitting are given in Table IV. This shows how much
the model relies on a final fitting stage (an information, that
is not given by the correlation measurement) and the ability to
finally provide a correct and meaningful quality measurement as
without the knowledge of that line no prediction can be made.
For a perfect model the slope of this regression line would be
1.0 with 0 offset. The problems of a regression far different
compared to the one of an optimal model can be shown easily
for the SSIM metric: if the regression line that comes with the
model is only a little bit different to the real data (e.g. assume
the slope to be 0.16 with 0.8 offset instead of 0.173 and 0.821),
the outlier ratio increases dramatically from 0.667 to 0.861.
Detailed results of each metric are given in figures 5 to 8.

6. CONCLUSION

A reduced reference quality metric for AVC/H.264 was built
using methods provided by multivariate data analysis. The met-
ric was validated using results from careful conducted subjective
tests and no sequence used for calibration of the model was used

TABLE III
COMPARISON OF OBJECTIVE METRICS

Model
Pearson Spearman Outlier
Linear Rank Oder Ratio

Correlation Correlation
Proposed 0.851 0.782 0.500

PSNR 0.690 0.623 0.833
Edge-PSNR 0.802 0.745 0.833

SSIM 0.763 0.623 0.667

TABLE IV
REGRESSION LINE BEFORE DATA FITTING

Model Slope Offset
Proposed 0.969 0.042
PSNR* 0.625 0.183

Edge-PSNR 0.353 0.348
SSIM 0.173 0.821

For easier comparison PSNR was
rescaled to PSNR* = (PSNR-15)/30

during the verification phase. Beside providing a high prediction
accuracy, the gained model allows a quality prediction by trans-
mitting only two additional values, while most other reduced
reference metrics need a much higher amount of additional data
to be transmitted. Compared to FR metrics the presented RR
metric also carries the advantage, that no temporal or spatial
alignment between the coded sequence and the original sequence
has to be made. In fact the correction step delivers equally good
results if the quality prediction for the original video and the low
quality video is performed on a part of the video only.
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Fig. 5. Proposed RR metric - no data fitting
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Fig. 6. PSNR - linear data fitting
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Fig. 7. Edge-PSNR - linear data fitting
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Fig. 8. SSIM - linear data fitting

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 6 - NUMBER 586 ISSN: 1690-4524


	I356ZP

