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ABSRACT 
Since it takes time to do experiments in bioinformatics, 

biological datasets are sometimes small but with high 

dimensionality. From probability theory, in order to 

discover knowledge from a set of data, we have to have a 

sufficient number of samples. Otherwise, the error bounds 

can become too large to be useful. For the SOM (Self- 

Organizing Map) algorithm, the initial map is based on the 

training data. In order to avoid the bias caused by the 

insufficient training data, in this paper we present an 

algorithm, called Multi-SOM. Multi-SOM builds a number 

of small self-organizing maps, instead of just one big map. 

Bayesian decision theory is used to make the final decision 

among similar neurons on different maps. In this way, we 

can better ensure that we can get a real random initial 

weight vector set, the map size is less of consideration and 

errors tend to average out. In our experiments as applied to 

microarray datasets which are highly intense data 

composed of genetic related information, the precision of 

Multi-SOMs is 10.58% greater than SOMs, and its recall is 

11.07% greater than SOMs. Thus, the Multi-SOMs 

algorithm is practical. 

KEYWORDS 
Self-Organizing Maps, Weights Vector, Bayesian Decision 

Theory, Feature Selection, Sample Selection. 

1. INTRODUCTION 
Self-Organizing Maps (SOM) provides mapping from the 

input space to the clusters. According to [18], a SOM 

attempts to organize clusters that are near each other in the 

grid-space to those seeds that are close in the input space. 

It differs from k-means clustering because it defines an 

area around each cluster seed in the grid via a 

neighborhood function. Clusters that are close in proximity 

on the grid have similar input variables. 

We survey microarray experimental results, in order to 

gain insight into the data – possibilities and problems – to 

determine whether the data are sufficient and to select the 

proper preprocessing and modeling techniques. Several 

different data sets are considered. For liver cancer [2], 

there are 17,400 genes and 179 samples, for lung cancer 

[6], there are 12,600 genes and 245 samples, for NIH 

cancer dataset [17], 12,196 genes and 240 samples, for 

prostate cancer [11], there are 26,260 genes and 103 

samples. We can make such a conclusion that the majority 

of Microarray experiments cannot supply enough samples 

to do classification. The following methods can tell us how 

many samples are enough to train a learning model with 

regard to the number of samples, the number of genes and 

the percentage of errors.  

In [13], the inequality shown below provides a general 

bound on the number of training examples sufficient for 

any consistent learner, L, to successfully learn any target 

concept in H, in which m means the number of training 

examples, |H| means the size of hypothesis space H. L will, 

with probability (1- δ), output a hypothesis h with error
D

 

(H) < ε, after observing a reasonable number of training 

examples and performing a reasonable amount of 

computation. 

M  ≥  (1/ε)(ln|H| + ln(1/δ)) 

In accordance with this inequality, we can find the number 

of samples in each dataset mentioned above is not 

sufficient for the learner to learn a target concept. Because 

limited samples of data might misrepresent the general 

distribution of data, estimating true accuracy from such 

samples can be misleading. 

If we take a model of the true distribution and train it with 

a highly skewed distribution, the final classifier accuracy 

might be unacceptably low. In this paper, first of all, we 

use proper preprocessing techniques, such as t-test and 

fold-change, and machine learning algorithms, to 

investigate Microarray data sets, and then we present a 

new algorithm, called Multi-SOM, to model Microarray 

data.  

2. RELATED WORK 
Previous works by co-author Segall on applications of 

SOM to data mining for bioinformatics include [19] to [24] 

as discussed next. [19] presented a chapter on data mining 

of microarray databases for biotechnology. [20] performed 

data mining of microarray databases for human lung 

cancer. [21] performed data visualization and data mining 

of microarray databases for continuous numerical-valued 

Abalone fish data and discrete nominal-valued mushroom 

data using evolutionary algorithms specifically for neural 

networks and generic algorithms. [22, 23, 24] performed 

data mining of microarray databases of Leukemia cells 

using single SOM. This paper extends the methodology 

used in previous research from using single-SOM to a new 

algorithm that uses Multi-SOM. 

In [26] is presented a Multi-layer neural network. This 

network consists of two types of elements: CU is 

Clustering Units, which distinguish some clusters in the 

input data, and DCB is Data Completion Blocks which are 

between input and CUs to prepare data for CUs. The aim 

of the CU elements is to independently assign label Y to 

each corresponding input vector X. The aim of the DCB is 

to prepare input vectors X basing on the outputs from the 

previous layer. The DCB can effectively describe the 

distribution of the input, but, in order to build DCB layer, 

the entire dataset has to be handled first. If the dataset is 

large, it takes time to do so. Moreover, the advantage of 

SOMs is to reduce the dimension of the data. So, using 

clustering in pre-processing step is against the original 

property of SOMs. An algorithm, called Multi-layer 

Kohonen Self-Organizing Feature Map (MLKSFM) is 
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Input Layer Neurons: X = (x1, x2, x3, … , xn) 

SOMs: W = (w1, w2, w3, … , wn) 

given in [27]. It has a hierarchical structure in which the 

pre-classification if performed at the lower level 

MLKSFM and the final language identification if 

performed at the top level. This approach is to use k-means 

to retune SOMs which have already been built. 

Some improvements of multi-layer SOMs algorithms are 

because of the requirements of the applications. [26][8] 

The additional layer is for the evaluation of domain 

features. Although they belong to Multi-layer SOMs, they 

cannot be used to improve the hypothesis of SOMs. 

Rauber et al. [16] developed the Growing Hierarchical 

Self-Organizing Map (GHSOM) that is an Artificial Neural 

Network (ANN) model with hierarchical architecture 

composed of independent growing self-organized maps. 

The motivation was to provide a model that adapts its 

architecture during its architecture during its unsupervised  

training process according to the particular requirements of 

the input data. Rauber et al. [16] applied their GHSOM 

model to text data only with data sets of 420 and 10,000 

articles respectively with good results, but did not apply to 

microarray data sets as this articles addresses. 

3. SELF ORGANIZING MAPS 

3.1 SOMs Introduction 
Self-Organizing Maps belong to competitive neural 

networks. Competitive learning is an adaptive process in 

which neurons in a neural network are sensitive to 

different input categories, sets of samples in a specific 

domain of the input space. ([1], [3], [4], [7], [9], [10], [12], 

[14], [15], [25]) 

A Self-Organizing Map consists of two layers as shown in 

figure 1. Suppose that we have a set of n-dimensional 

vectors. The first layer of SOMs is the input data which 

transfer to the second layer. The second layer has a number 

of neurons which are chosen arbitrarily and can be used to 

representing the feature space.  

 

 

 

 

 

 

 

 

 

Figure 1. SOMs Architecture 

On the second layer, each neuron has the same dimension 

as the input neuron from the first layer. First of all, weights 

of the neurons on the second layer are set randomly. 

During the training process, they have their own weights 

vector and update those during the training process. When 

an input x arrives from the first layer to the second layer, 

the neuron that is best able to represent it wins the 

competition and is allowed to learn it even better. 

Moreover, not only the winning neuron but also its 

neighbors on the lattice are allowed to learn. All neighbors 

mk of mj can be updated in this way: 

mk ← mk + α(xi – mk) 

The neighbors of mj are defined to be all mk, such that the 

distance between lj and lk is small. The effect of the update 

is to move the prototype closer to the input data, but also to 

maintain a smooth two-dimensional special relationship 

between the prototypes. 

3.2 SOMs Learning Process 
At the beginning, all weights of the second layer's neurons 

are set to random values. The training process starts with 

selection of the input neuron. In the training set, we 

randomly select one of the neurons as the input of SOMs. 

The difference between input neuron and all neurons of 

SOMs are calculated as follows: 

Dij = |Xl - Wij| = sqrt((x1-wij1)
2 + ... + (xn-wijn)

2) 

where i and j are the index of neurons in the output layer, l 

is the index of input neurons, n is the index of the 

dimension on the input neuron vector l. After that, the 

SOMs choose the winning neuron, the one whose weights 

vector is the most similar or closest to the input neuron. 

D(k1, k2) = minij Di,j 

Here, k1 and k2 are the index of the winning neuron. After 

finding the winning neuron, we need to update the weights 

of the winner and all the adjacent neurons, as follows, 

h(ρ, t) = exp(ρ2 / (2*σ2(t)) 

ρ = sqrt((k1-i)
2 + (k2-j)

2) 

After calculating the topological neighborhood function 

for each neuron, the weights of all the neurons are updated, 

as follows, 

Wij(t+1) = Wij(t) + α(t) h(ρ, t) (Xl (t) - Wij(t)) 

α(t) is a learning rate function that also decrease with time. 

If a neuron is a winner or adjacent to the winner, then its 

weight vector is updated or remains unchanged otherwise. 

On each step, the SOMs determines the neuron whose 

weights vector is the most similar to the input vector, and 

correct it and its neighbor’s weights vector to make them 

closer to the input vector. 

4.MULTI-SOM 

4.1 Introduction 
Self-Organizing Map uses two-dimensional topology to 

present high-dimensional data. Like other Neural Network 

algorithms, SOM algorithm can significantly discrete the 

error, nearly to the level of Kmeans. So, two dimensional 

network structure used by SOM is reasonable for high-

dimensional datasets. The structure of SOM gives rise to 

discussions about neighborhood preservation or violation. 

From input space to output space, self organizing maps are 

built up with randomly chosen training data. Therefore, the 

size of the map and the association of neighborhood can 

affect the quality of the SOM model. According to 

experimental results, it is hard to say that the bigger the 

size of the map, the better. 

Moreover, SOMs are based on a number of plausible 

heuristics, such the initial weights, the size of the map, 

learning rates, and so on. All these can lead to very slow 

convergence, poor performance or other unsatisfactory 

results. 

Therefore, in this paper, a Multi-SOMs algorithm is 

presented. In this algorithm, we choose a number of small 

maps. Since the size of the map is not big, it is fast to train 

a SOM model. Totally, we have a large number of neurons 

with randomly assigned weights. Since the size of neurons 

is large enough that we can consider that the distribution of 

the weights on Multi-SOMs is close to the true distribution 

and its bias is statistically small.  
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Other than the improvement of the distribution, we also 

use the Bayes decision theory to make a prediction. 

Consider each map is a training set. For each input testing 

data, based on the probability distribution of the training 

set, according to Bayes decision theory, we can find the 

maximum probability of the class that the input data can be 

classified. 

4.2 Description of Multi-SOMs Algorithm 
Algorithm: Multi-SOMs 

Step 1: train a number of SOMs  

Input: training samples, samples; the learning rate, l; the 

map size, k; maximum iteration times, MaxIteration. 

Output: A number of Self-Organizing Maps trained with 

classify samples. 

Method: 

1. generate a number of SOM. 

2. for each SOM{ 

2.1. do{ 

2.2. for each Input neuron { 

2.3. check the similarity of the sample Xl to the 

weight vector Wij  on the SOM 

2.4. record the most similar weight vector 

2.5. update the neighborhood weight vectors. 

2.6.} 

3.} while (t < MaxIteration) 

} 

Step 2: Classify the input neuron 

4.Calculate P(ck), the probability of class k = 1, …, m 

5.For each neuron, X, in the training set{ 

5.1  Find the similar neuron, Sij  , from the nth SOM 

5.2  Record the class of the similar neuron 

5.3P(cm | X
l) = P(Xl | cm)*P(cm) /Σm

k=1 P(Xl | ck)*P(ck) 

5.4  C(Xl) = Maxm
k=1 (P(ck | X

l)) 

} 

5. EXPERIMENTS 
We compare the performance of Multi-SOM with SOM 

algorithm in decision making. We finished experiments in 

the following steps. First of all, we generated a high 

quality data set through sample selection and feature 

selection. And then, we used the data set with the best 

quality to test Multi-SOMs and SOMs.  

5.1 Sample Selection and Feature 

Selection 
Statistical process for microarray expression data includes 

the following steps: 

1. pre-processing: because of experimental errors, some 

values of expression data are missing. We use KNN 

algorithm to automatically impute missing values 

first. 

2. sample selection: since microarray expression data set 

is not very big, we can use total data for any 

experiments and applications. However, regarding to 

the different number of treated samples and untreated 

samples, we randomly generate data sets in which 

both treated and untreated classes have the same 

number of samples. 

3. feature selection: even if data mining analysis can be 

performed, it is still extremely useful to reduce the 

data set to those genes that are best distinguish 

between the sample classes. 

After generating different data sets, as the output of the 

process, we use data mining analysis to evaluate them. 

Precision model building includes two steps: model 

building and model validation. Model building involves in 

training data selection. Model validation involves in 

testing the built model with testing samples and measuring 

the precision and recall of the output of the generated 

model. 

We use KNN, Random Forest, Multipass-Lqv, and SOM 

algorithms to calculate the precision and recall on different 

data sets. KNN is based on the direct comparison of the 

distance between two neighbors. This algorithm is good 

for high dimensional vectors. Random Forest is based on 

decision tree theory. Since the best features are selected to 

build decision trees, the significance of different features 

are considered in this algorithm. Multipass-Lqv and SOM 

belong to neural network algorithm. Since samples can be 

randomly selected as input for many times, these 

algorithms are good for high-dimensional small size data 

sets, such as microarray expression data.  

We complete the experiments with the original dataset, 

dataset generated randomly, and dataset generated by 

statistical approaches, which can be found in table 1. For 

each dataset, four algorithms, such as K Nearest Neighbor 

(KNN), Random Forest, SOM, Multipass-Lvq, are used to 

test the quality of the output data. For each data set, among 

those algorithms, the one with the best performance on all 

data sets can be used to evaluate the quantity of the data 

set. The measurements of the performance of each 

algorithm on the different datasets can be used to evaluate 

the quantity of the different datasets. These measurements 

include accuracy, sensitivity, specificity, precision and 

recall. 

According to the experimental result, we can see that the 

dataset, with the total data, fold-change set to 2.0 and 

pValue set to 0.01, performs better than others. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Description of  Datasets 
dataset samples genes removing percentagetotal order sub order

1 total 179 19536

2 total_pvlaue005 179 6660 0.659090909 24 8

3 total_pvlaue001 179 4383 0.775644963 18 6

4 total_fc20 179 2717 0.860923423 12 4

5 total_fc20_pvalue005 179 1270 0.93499181 6 2

6 total_fc20_pvalue001 179 772 0.96048321 3 1

7 total_fc15 179 5795 0.703368141 19 7

8 total_fc15_pvalue005 179 2768 0.858312858 14 5

9 total_fc15_pvalue001 179 2181 0.888359951 9 3

10 balance3 50 19536

11 balance3_pvlaue005 50 5864 0.6998362 21 7

12 balance3_pvlaue001 50 3939 0.798372236 16 6

13 balance3_fc20 50 2785 0.85744267 15 5

14 balance3_fc20_pvalue005 50 886 0.95464783 4 2

15 balance3_fc20_pvalue001 50 743 0.961967649 2 1

16 balance3_fc15 50 5900 0.697993448 22 8

17 balance3_fc15_pvalue005 50 2403 0.876996314 10 4

18 balance3_fc15_pvalue001 50 2135 0.890714578 7 3

19 balance2 50 19536

20 balance2_pvlaue005 50 5948 0.695536446 23 8

21 balance2_pvlaue001 50 4006 0.79494267 17 6

22 balance2_fc20 50 2739 0.859797297 13 5

23 balance2_fc20_pvalue005 50 898 0.954033579 5 2

24 balance2_fc20_pvalue001 50 739 0.9621724 1 1

25 balance2_fc15 50 5851 0.700501638 20 7

26 balance2_fc15_pvalue005 50 2422 0.876023751 11 4

27 balance2_fc15_pvalue001 50 2148 0.89004914 8 3
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5.2 Performance 
Figure 2 is a 100*100 self organizing map. Each position 

is an N dimensional neuron vector. Initially, in this map, all 

of the values of vectors are randomly generated. Before we 

train this map, the training data can be visualized in figure 

2. 

For the best data set we choose, we visualize its 

distribution on the self-organizing map as follows, after 

feature selection and sample selection. 

  

 

 

 

 

 

 

 

 

 

 
Figure 2. The distribution of the training set after 

sample selection and feature selection 

We followed the following steps to evaluate the two 

algorithms. 

1. We build input vectors. 

2. We build a n*n map with a random weight vector on 

each position. 

3. We use input vectors to train SOM map. 

4. We use the trained map to classify input vectors. 

After training with Multi-SOMs model, the distribution of 

the weights vectors can be visualized in figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. The distribution of the weights vectors after 

training. 

We compare the performance of SOM and Multi-SOM on 

657KB liver cancer Microarray gene expression data set 

with 179 samples and 772 genes. Experimental results are 

showed in figure 4. The precision of SOM is 83.65% and 

Multi-SOM 94.23%. The recall of SOM is 81.52%, and 

Multi-SOM 92.59%. Therefore, the precision of Multi-

SOMs is 10.58% greater than SOMs, and its recall is 

11.07% greater than SOMs. 

 

 

 

 

 

 

 

 

 

 

Table 2. Rank the order of datasets by accuracy, 

sensitivity, specificity for original and random 

datasets. 

feature selection algorithms the good sample

no knn total

random forest balance2

multipasslvq balance2

som total

pValue = 0.05 knn total

random forest balance2

multipasslvq total

som total

pValue = 0.01 knn total

random forest total

multipasslvq total

som total

fc = 2.0 knn balance3

random forest total

multipasslvq balance2

som balance3

fc = 2.0 pValue = 0.05 knn balance3

random forest balance3

multipasslvq balance2

som total

fc = 2.0 pValue = 0.01 knn balance3

random forest total

multipasslvq total

som total

fc = 1.5 knn total

random forest balance2

multipasslvq balance3

som balance3

fc = 1.5 pValue = 0.05 knn total

random forest balance3

multipasslvq total

som total

fc = 1.5 pValue = 0.01 knn total

random forest total

multipasslvq total

som total

Precision-Recall Measurement for the Sampling 

 

Table 3. Rank the order of datasets by precision-

recall measurement for original and random 

datasets 

feature selection measurement algorithms rank1 rank2 rank3

no accuracy som total balance2 balance3

sensitivity knn balance3 balance2 total

specificity MultipassLvq balance3 balance2 total

random forest total balance3 balance2

pValue = 0.05 accuracy random forest total balance2 balance3

som total balance2 balance3

sensitivity knn total balance2 balance3

specificity random forest balance3 total balance2

MultipassLvq balance2 balance3 total

pValue = 0.01 accuracy som total balance2 balance3

sensitivity knn

specificity random forest balance3 total balance2

SOM balance2 total balance3

MultipassLvq balance2 balance3 total

fc = 2.0 accuracy random forest total balance2 balance3

som total balance2 balance3

sensitivity knn total balance2 balance3

specificity knn balance3 total balance2

random forest total balance2 balance3

MultipassLvq balance2 total balance3

fc = 2.0 pValue = 0.05 accuracy som total balance2 balance3

sensitivity knn total balance2 balance3

specificity random forest total balance3 balance2

fc = 2.0 pValue = 0.01 accuracy som total balance2 balance3

sensitivity knn total balance2 balance3

specificity random forest total balance2 balance3

MultipassLvq balance3 balance2 total

fc = 1.5 accuracy som total balance2 balance3

sensitivity knn total balance2 balance3

specificity random forest balance3 balance2 total

fc = 1.5 pValue = 0.05 accuracy som total balance2 balance3

sensitivity knn total balance2 balance3

specificity random forest total balance3 balance2

MultipassLvq balance3 balance2 total

fc = 1.5 pValue = 0.01 accuracy som total balance2 balance3

sensitivity knn total balance2 balance3

specificity random forest total balance2 balance3

Accuray-sensitivity-specificity Measurement for the Sampling 
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Figure 4. Precision and Recall for SOM and Multi-

SOM Algorithms 
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6. CONCLUSION 
In this paper, the open issue in bioinformatics is presented 

that the size of the sample set and the dimension of the 

sample set is critical to computational efficiency and 

accuracy. The theory of SOMs is based on some 

hypothesis about initial weights, the size of the map, the 

learning rate and so on. However, these points can still 

affect the quality of the SOMs model for classification or 

clustering. In order to solve this problem, an algorithm, 

called Multi-SOMs is proposed. This algorithm splits 

SOM into a number of small maps and makes a final 

prediction with Bayes decision theory. The time and space 

complexities are not issues as the Multi-SOM algorithm 

was very fast for these sizes of problems. 

Moreover, for experiments, we present the pre-processing 

of the dataset and the classification process. The 

experimental results show us that Multi-SOMs is better 

than SOMs as applied to microarray datasets that by their 

design are highly dense. It is noted that Multi-SOMs are 

assigned the size of the map before building the model. In 

future, another kind of SOMs technique, called Growing 

SOMs (GSOM) [28] can be combined to dynamically 

build the model. 
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