
Increasing Reliability and Efficiency via  

Distributed Data Dissemination 
 

 

Francine LALOOSES 
The MITRE Corporation  

Bedford, MA 01730 

 
and 

 

Howard KONG 
The MITRE Corporation  

Bedford, MA 01730 

  

ABSTRACT 

 

As enterprises become more distributed, disseminating 

data in a timely manner between nodes of the enterprise 

becomes increasingly critical to doing business.  Peer-to-

peer technologies are one promising avenue for 

disseminating data to distributed nodes, while also 

limiting performance impact.  This paper discusses 

Project MONSOON, a system which seeks to develop 

reliable and efficient distributed data dissemination within 

an enterprise, while also preserving data integrity. 

 

This paper discusses the motivation for developing the 

Project MONSOON system and the architecture behind 

it.  The evidence presented in this paper suggests that the 

peer-to-peer approach not only increases performance as 

more nodes are added, but the overall reliability of the 

network is increased as additional nodes participate in the 

dissemination. This conclusion is reinforced by 

simulations presented in this paper. 

 

Keywords:  Data dissemination, peer-to-peer, transfer 

protocols. 
 

1.  INTRODUCTION 

Many network communications infrastructures contain 

various points of congestion, concerns of reliability, and 

an ever increasing demand for capacity.  Bandwidth 

conditions vary throughout the whole spectrum, with 

outer edge nodes experiencing various frequencies of 

disconnect and the poorest throughput.  Current data 

dissemination techniques do not always provide an 

efficient, reliable method of delivering content over these 

networks. 

There is an essential and urgent need to provide critical 

information from data sources to consumers in the Net-

centric environment.  Consider, for example, the mass 

email you check every day at work containing large 

attachments, like a movie or audio file, high resolution 

pictures, etc. On average, an employee sends and receives 

as many as 200 emails each day. Business email volumes 

sent annually exceeded one billion gigabytes in 2003 

[1] – a huge demand for the infrastructure. In the Net-

centric environment, information is continuously 

increasing, be it in volume, size, frequency, ―richness‖, or 

usage, and the technologies that support this must keep 

up. 

This research investigated the use of software to increase 

content delivery performance, reliability, and efficiency.  

We developed a reusable, component-based system, 

designed to communicate with and reside within a Net-

Centric architecture capable of efficiently managing data 

flows, bandwidth usage, failover recovery, and distributed 

data stores.  

Our research is looking to answer what the common 

classes of data dissemination requirements are today, how 

and where can peer-to-peer technologies be effectively 

applied to our sponsors’ needs, and how does a peer-to-

peer system compare to traditional client/server systems? 

This paper will highlight our conclusion on whether the 

peer-to-peer (P2P) approach is appropriate for reliable 

and efficient data dissemination. 
 

2.  BACKGROUND 

Before we begin, let us review some background 

information on the data dissemination techniques that we 

compared, which include pure File Transfer Protocol 

(FTP), Hypertext Transfer Protocol (HTTP), and the 

BitTorrent P2P protocol. 

 

  

 

 

 

 

 

 

 

 

SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 7 - NUMBER 4 - YEAR 2009 79ISSN: 1690-4524



 

 

 

 

 

 

Figure 1: Traditional Pure FTP 

 

Pure FTP is a traditional client/server protocol used to 

disseminate data from one source, typically called the 

server, to another computer, called the client, through a 

network. In Figure 1, the server has to transfer data to 

three groups of clients, shown in different color patterns. 

The patterns here refer to the set of data each group 

receives; for example, the entire dark group (consisting of 

clients one, two, and three) receives the same data, and 

similarly for the other two groups. The source does this 

by first disseminating to Client 1, then to Client 2, etc. 

(we are simplifying the situation here for illustration 

purposes, but multithreaded servers exhibit the same 

behavior since the data is interleaved on the wire.)  Note 

even in this simple example, the bottleneck for this 

system is at the server, and the network near the server, 

which must carry the bulk of the workload in the FTP 

model. The key benefits to this model are its simple 

architecture and well-known behavior.  However, the 

drawbacks include:  single point of failure, since all the 

data must be transferred one at a time from a single 

source to each client; centralized processing, control and 

knowledge; and the observation that increasing demand 

increases resource requirements. 

 

HTTP is another client/server protocol, and it exhibits 

similar behavior as described for FTP above, with the 

exception that while FTP can originate from either the 

server or client, HTTP usually originates with a client 

request followed by a server response. 

 

The last protocol we looked at is BitTorrent, which is a 

P2P file sharing communications protocol. In this 

protocol, data is shared among peers, each of which can 

be a source and a consumer for every other peer on the 

network. [4] A BitTorrent peer can be defined as one 

instance of a BitTorrent client running on a computer on 

the Internet that you connect to and transfer data.  

 

P2P data dissemination starts with the source, just like in 

the client/server case.  But BitTorrent divides the data 

into a set of small, identically-sized units called pieces, 

and when peers request data, they request not the whole 

data, but a random piece.  In Figure 2, Peer 1 requests 

Piece J from the source, and the source fulfills the 

request.  The system recognizes that there are now 2 

copies of Piece J on the network, one at the source, and 

one at Peer 1.  So when Peer 3 requests Piece J, Peer 1 

can fulfill that request, and the source can be freed to 

send other pieces to other peers.  Similarly, when Peer 2 

requests Piece J, it can get it from either the source, Peer 

1, or Peer 3. In this way data is shared, and the load of the 

work of distributing that data is also shared.  The system 

―load-balances‖ itself automatically by the fact that the 

slowest connections tends to less data, while the fastest 

connections tends to serve more.  In Figure 2, there are 

three hops from the source to Peer 1, and one hop from 

Peer 1 to Peer 3, and again one hop from Peer 3 to Peer 2.  

So the top three peers tend to share what they have among 

themselves locally, and tend to only get original pieces 

from the source.  The ―automatic load balance‖ and the 

favoring of local fast connections are key to the 

efficiencies we will see in the BitTorrent peer-to-peer 

model. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: P2P Network Characteristics 

 

The drawbacks of BitTorrent are its complex architecture, 

protocol, and behavior. The benefits include its ad-hoc 

adaptability; scalability—since all peers contribute 

resources; and resilience—as we will see later. This is a 

highly distributed architecture, and the effects of network 

problems are decreased, by scale and redundancy. 
 

3.  TECHNICAL APPROACH 

Our hypothesis is that there exists a reliable and secure 

approach in distributed data dissemination to send data 

efficiently to its peers. Our initial approach is focused on 

addressing BitTorrent as a data dissemination protocol 

SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 7 - NUMBER 4 - YEAR 200980 ISSN: 1690-4524



and demonstrating the performance of several protocols. 

Our work program is divided into four general tasks: 

 

1. Distill common data dissemination 

characteristics for consumer requirements and 

constraints—so that we can answer questions 

about data dissemination in a general way, one 

that can benefit multiple sponsors. 

2. Build a prototype to meet key requirements. 

3. Compare performance characteristics of the 

peer-to-peer prototype with more traditional 

client-server technologies—these are hands-on 

laboratory tests designed to compare relative 

performance and reliability of the protocols. 

4. Build simulation models to test scenarios ―in the 

large‖—these models enables us to scale up the 

node counts that would be prohibitive with 

physical equipment. 

 

Data Dissemination Characteristics 

Our first task was to find the common, basic constraints 

that govern data dissemination.  The main reason we did 

this was to look at data dissemination in a general way 

across multiple consumers. Furthermore, by distilling the 

problem space into smaller, more manageable 

components, we can gain a better understanding of the 

factors that affect data dissemination performance. 

 

We identified five broad categories of constraints that 

govern data dissemination, depicted in Figure 3. 

 

Figure 3: Common categories of constraints 

that govern data dissemination. 

 

In addition to these five categories, we found it helpful to 

think of data dissemination in 3 separate problem spaces, 

as illustrated in Figure 4.  The three problem spaces are: 

 small data (such as email, metadata, XML) 

 large data (such as rich media files, large 

imagery files) 

 streaming data (such as rich streaming media, 

live video feeds) 

 

What we found most important about these problem 

spaces is that different network application protocols are 

designed for each space, and no single protocol is a 

panacea in all spaces.  In this paper, we concentrated 

mostly in the large data space. 

 
Figure 4: Data dissemination problem space 

 

Prototype and Design 

 

Figure 5: The bigger picture 

 

Our second task was to build a prototype. We again 

wanted to broaden our scope to accommodate multiple 

consumers.  Realizing that each consumer will have 

different emphasis for requirements and constraints, we 

decided to build our prototype using a plug-in 

architecture—something that can accommodate sharing 

code among customers as well as allow customization and 

independent development to meet each consumer’s 

specific needs.  As can be seen in Figure 6, we built our 

prototype on top of the Eclipse RCP, a proven 

architecture built by IBM and maintained by eclipse.org. 

SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 7 - NUMBER 4 - YEAR 2009 81ISSN: 1690-4524



Figure 6: Monsoon high level architecture 

 

Peer-to-Peer versus Client/Server 

Our next task was to conduct laboratory experiments 

comparing the performance of the BitTorrent peer-to-peer 

system with that of traditional client/server systems, such 

as FTP and HTTP.   

What we found was that while FTP and HTTP are simple 

protocols that are easy to understand, they present a 

single point of failure at the server.  Furthermore, as the 

number of clients increase, the server becomes the 

bottleneck, and its capabilities (e.g., CPU, memory, 

network bandwidth, etc.) must be increased in order to 

meet the increased demand.  The problem is that the 

singleton server is the node in the network doing almost 

all of the work—it is the supplier of information to the 

clients who are the consumers.  Furthermore, the data 

dissemination is centrally managed at the server—none of 

the client nodes know about other client nodes.  

On the other hand, peer-to-peer systems, such as 

BitTorrent, make every node both a server and a client, 

and therefore each node becomes both supplier and 

consumer.  Furthermore, nodes are aware of each other, 

and are free to choose the best ones to exchange data 

with.  With redundant storage of data, and the benefit of 

each additional node bringing in new supply as well as 

new demand, bottlenecks disappear by distributing the 

work throughout the entire system. 

 

Modeling and Simulation 

Since we cannot physically scale up to hundreds of 

machines for lab tests, our last task is to build a software 

simulation in the AnyLogic simulation tool [8] to model 

large numbers of nodes.  Figure 7 illustrates a small 15-

node version of our simulator
*

, running FTP and 

BitTorrent tests.  We found that, just as the lab tests 

suggest, peer-to-peer performance scales very well 

compared to client-server systems. 

 

 

Figure 7: Two models simulated using AnyLogic. 

 

4.  FINDINGS 

We compared the performance of P2P systems to 

client/server in Figure 8.  Here, a relative small (100MB) 

file is disseminated to multiple nodes, in a ―flat‖ network 

with all of the nodes connected together to a single Cisco 

switch. The x-axis represents the number of nodes, while 

the vertical axis displays the average total time to 

complete the dissemination.   

As you can see, when there is a single client, HTTP is 

fastest for this size data, followed closely by FTP, with 

BitTorrent coming in last.  However, with each new 

additional node, both FTP and HTTP slows down 

                                                           
*
 We’ve run the simulator with up to 1024 nodes. 

SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 7 - NUMBER 4 - YEAR 200982 ISSN: 1690-4524



proportionately, since the server now must do that much 

more work.  BitTorrent peers however, bring both supply 

and demand to the dissemination, and the average time 

does not increase very much at all.  In fact, the cross-over 

point—that is, the point at which peer-to-peer 

performance matches client-server performance is at two 

nodes.  This means that a peer-to-peer system is at least as 

fast as a client-server system when information needs to 

be disseminated to more than 1 other node. Of course, 

this benefit increases significantly with each new 

additional node. 

The peer-to-peer approach also benefits overall 

reliability, since each peer is also a server to other peers.  

And since each peer can choose to exchange data with 

new peers if communication to old peers is disrupted, 

local disruptions only have local effects.  In fact, we 

found that the more peers participate in the dissemination, 

the more reliable the overall system becomes, because the 

―server‖ serving a piece of information is redundantly  

Figure 9: Disruption tolerance findings 

duplicated across the entire network of consumers for that 

piece of information. The more tests we ran in the lab 

with larger data files, the better performance results 

BitTorrent scored.   

 

Figure 9 illustrates a chart where we disrupted the 

network by physically unplugging the connection to the 

server when the file transmission completion was 25%, 

50%, and 75%, respectively. 

 

As discussed previously, the case of having only one peer 

is the pure FTP model, highlighted in red.  Using the 

chart, one can conclude that as the number of peers was  

increased, there is a greater chance of completing your 

file transmission even though the network was disrupted 

as a result of storage redundancy. 

  

5.  CONCLUSION AND FUTURE WORK 

The initial design demonstrated a need for some 

additional research and development to peer-to-peer 

systems. No single technology can solve all requirements 

in the data dissemination problem space illustrated in 

Figure 4. We also found that P2P works well for static 

large data sets sharing data among at least a few peers.  

We found it is resilient on unreliable networks.  

 

As we continue to become more Net-centric, there is a 

need to address data dissemination issues, such as 

transmission latency, data integrity, and [6] security. 

When dealing with dissemination of large data sets, there 

is a large security risk to maintain the data integrity of the 

SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 7 - NUMBER 4 - YEAR 2009 83ISSN: 1690-4524



network. Security risks and mitigations will need to be 

investigated in the future. 
  

6.  ACKNOWLEDGMENTS 

Thank you to the Monsoon team for their following 

contributions: Dan Potter for his software development, 

Amanda Martino for her tedious laboratory tests, and Ron 

Couture for his security investigation. A final thank you 

goes to the MITRE Corporation for acknowledging the 

need for additional research in this area (Approved for 

Public Release; Distribution Unlimited. Case Number 08-

0884. ©2008 - The MITRE Corporation.  All rights 

reserved). 
 

 

7.  REFERENCES 

[1] J. Raikes, ―An Information Worker’s View of Microsoft Office 

Evolution‖, 2005. http://office.microsoft.com  

[2] F. Harrell, et al, ―Survey of Locating & Routing in Peer-to-Peer 

Systems‖, University of California, San Diego, December 2001. 

[3] R. Hasan, et al, ―A Survey of Peer-to-Peer Storage Techniques for 

Distributed File Systems‖, In Proceedings of the International 

Conference on Information Technology: Coding and Computing 

(ITCC'05) - Volume II - Volume 02, 2005. 

[4] B. Cohen, ―Incentives Build Robustness in BitTorrent‖, Workshop 

on Economics of Peer-to-Peer Systems, Berkeley, CA, USA, May 

2003. 

[5] A. R. Bharambe, C. Herley, and V. N. Padmanabhan, ―Analyzing 

and Improving BitTorrent Performance‖, Carnegie Mellon 

University and Microsoft Research, Microsoft Technical Report 

MSR-TR-2005-03, February 2005. 

[6] D. Wallach, ―A Survey of Peer-to-Peer Security Issues‖, Rice 

University. 

[7] R. Rodrigues, B. Liskov, and L. Shrira, ―The Design of a Robust 

Peer-to-Peer System‖, In 10th ACM SIGOPS European Workshop, 

(Saint Emilion, France), September 2002. 

[8] AnyLogic – Multi-Method Simulation Software, 

http://www.xjtek.com/. 

SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 7 - NUMBER 4 - YEAR 200984 ISSN: 1690-4524

http://office.microsoft.com/
http://www.acm.org/
http://www.xjtek.com/

	KT137IN

