Data Mining Supercomputing with SAS JMP® Genomics

Dr. Richard S. SEGALL*

Arkansas State University, Department of Computer & Information Technology State University, AR 72467-0130, USA, <u>rsegall@astate.edu</u>

Dr. Qingyu ZHANG*

Arkansas State University, Department of Computer & Information Technology State University, AR 72467-0130, USA, <u>qzhang@astate.edu</u>

and

Ryan M. PIERCE Arkansas State University, Student Affairs Technology Services, State University, AR 72567-0348, USA, <u>rmpierce@astate.edu</u>

ABSTRACT

JMP® Genomics is statistical discovery software that can uncover meaningful patterns in high-throughput genomics and proteomics data. JMP® Genomics is designed for biologists, biostatisticians, statistical geneticists, and those engaged in analyzing the vast stores of data that are common in genomic research (SAS, 2009).

Data mining was performed using JMP® Genomics on the two collections of microarray databases available from National Center for Biotechnology Information (NCBI) for lung cancer and breast cancer. The Gene Expression Omnibus (GEO) of NCBI serves as a public repository for a wide range of highthroughput experimental data, including the two collections of lung cancer and breast cancer that were used for this research. The results for applying data mining using software JMP® Genomics are shown in this paper with numerous screen shots.

Keywords: Microarray databases, Lung Cancer, Breast Cancer, Data Mining, Supercomputing, Gene Expression Omnibus (GEO), SAS JMP® Genomics.

1. BACKGROUND

The software used in this research is JMP® Genomics from SAS Institute, Inc. of Cary, NC that according to Product Brief of SAS (2009) dynamically links advanced statistics with graphics to provide a complete and comprehensive picture of results, whether the data comes from traditional microarray studies or data summarized from next-generation technologies. Preliminary work done by the authors for the visualization by supercomputing data mining using JMP® Genomics from SAS for similar data was presented in Segall et al. (2010) and (2009).

Some of the previous research that has been performed by others in the area of applications of supercomputing to data mining include those of Zaki et al. (1996) for parallel data mining, Thoennes and Weems (2003) for performance of data mining on complex microprocessors, and data mining of large datasets with geospatial information by the image spatial data analysis group (2009) and University of Illinois at Urbana-Champaign, and Wilkins-Diehr and Mirman (2009) for on-demand supercomputing for emergencies that includes discussions for applications to breast cancer diagnosis.

2. DATA

The Gene Expression Omnibus (GEO) is a public repository that archives and freely distributes microarray, next-generation sequencing, and other forms of high-throughput functional genomic data submitted by the scientific community. These data include single and dual channel microarray-based experiments measuring mRNA, miRNA, genomic DNA (including arrayCGH, ChIP-chip, and SNP), and protein abundance, as well as non-array techniques such as serial analysis of gene expression (SAGE), and various types of next-generation sequence data. In addition to data storage, a collection of web-based interfaces and applications are available to help users query and download the experiments and gene expression patterns stored in GEO.

The data sets used in the research presented in this paper are those from the Gene Expression Omnibus (GEO) from the National Center of Biotechnology Information (NCBI). One set of data is that of expression data for lung cancer that was made public on August 30, 2008; and the other is that for gene expression profiling in breast cancer that was made public in February 2006.

Lung Cancer Data Used in This Paper

According to NCBI (2007), the detection, treatment, and prediction of outcome for lung cancer patients increasingly depend on a molecular understanding of tumor development and sensitivity of lung cancer to therapeutic drugs.

NCI (2007) states that the application of genomic technologies, such as microarray, is widely used to monitor global gene expression and has built up invaluable information and knowledge, which is essential to the discovery of new insights into the mechanisms common to cancer cells, resulting in the identification of unique, identifiable signatures and specific characteristics. According to NCBI (2007) it is likely that application of microarray may revolutionize many aspects of lung cancer being diagnosed, classified, and treated in the near future. NCBI (2007) used microarrays to detail the global gene expression patterns of lung cancer.

The overall design of NCBI (2007) as used in this paper consisted of adjacent normal-tumor matched lung cancer samples that were selected at early and late stages for RNA extraction and hybridization on Affymetrix microarrays. A total of 66 samples were used for microarray analysis in NCBI (2007), including pairwise samples from 27 patients, who underwent surgery for lung cancer at the Taipei Veterans General Hospital, two tissue mixtures from the Taichung Veterans General Hospital, two commercial human normal lung tissues, one immortalized, nontumorigenic human bronchial epithelial cell line, and 7 lung cancer cell lines.

Breast Cancer Data Used in This Paper

The breast cancer data set used in this research was obtained on the web from NCBI (2006), which analyzed microarray data from 189 invasive breast carcinomas and from three published gene expression datasets from breast carcinomas. NCBI (2006) identified differentially expressed genes in a training set of 64 estrogen receptor (ER)-positive tumor samples by comparing expression profiles between histologic grade 3 tumors and histologic grade 1 tumors and used the expression of these genes to define the gene expression grade index. The data set for the figures generated in this paper consisted of over 22,000 rows representing different variables.

The breast cancer data presented by NCBI (2006) was from 597 independent tumors were used to evaluate the association between relapse-free survival and the gene expression grade index in a Kaplan-Meier analysis. All statistical tests performed by NCBI (2006) were two-sided. The overall design of NCBI (2006) was 64 microarray experiments from primary breast tumors used as training set to identify genes differentially expressed in grades 1 and 3. NCBI (2006) design included 129 microarray experiments from primary breast tumors of untreated patients used as validation set to validate the list of genes and its correlation with survival.

3. RESULTS

Data Mining Performed Using Sas Jmp® Genomics For Lung Cancer Data

Figure 1 shows the window called "basic expression workflow" that is the process that runs a basic workflow for expression data used to select variables of interest.

The data used for the lung cancer and its associated tumors consisted of over 22,000 rows representing genes and 54 columns representing samples as shown in Figure 2.

Our research using SAS JMP® Genomics yielded distributions plots of conditions, patients and characteristics; correlation analysis of principle components as shown in Figure 3 which shows "normal" versus "cancer" in the scatterplots , and dendograms of hierarchical clustering as shown in Figure 4. Figure 5 shows a Volcano plot of the summary plot of individual genes and their differences in condition of cancer from normal tissues.

Our research performed some predictive modeling using SAS JMP® Genomics that yielded one-way analysis plots of fitting a selected gene number 1773 by condition and also by patient as shown in Figure 6.

Basic Expression Workflow	
Description	
This process runs a basic workflow for expression data, including options for More	
General Experimental Design QC and Normalization ANOVA LSMeans Multiple Testing Annotation Transition * Study Name	icks
* Input Data Set	
C1Documents and SettingsIdorobilMy Choose Open ?	
Available Variables Label Variable	
Probe_Set_ID> Probe_Set_ID ?	
Detection_Percent Variables to Keep in Output or By Which to Merge Annotation Data	
adenocarcinoma> Probe_Set_ID ?	
normal_2_3	
adenocarcinoma_	
normal_3_5 childhisothe variable	
normal 4 7 Decition Variable	
adenocarcinoma_	
normal_5_9	
adenocarcinoma_ Y	
CiDocuments and Settionshiphy	
Choose ?	
Required Parameter	
Run Save Load Apply Set as Default Reset Cancel	- B

Figure 1. Basic expression workflow

Figure 3. Correlation analysis of principle components

edf_dala		Probe Set ID	Detection_Pe rcentage	normai 1 1	adenocarcin orna 1.2	normal 2 3	adenocarcin oma 2 4	normal 3 5	adenocarcin oma 3 6	normal 4 7	adenocarcin oma 4 8	normal 5 9	adenocarciu ma 5 10.
	1	1007 s at	0.980713	11 10158	11,39063	10.74905	11 45508	10,2207	11 83594	10.80664	11 9043	10,78125	11.40
		1053 at	0.672974	6.334961	7.34668	7.185547	7 493184	7 135742	\$125	7 871094	7 615734	7 807422	7.7431
Columns (54/0)		117 at	0.769165	7 459961	8175781	7 699573	7 71582	8 101583	7.579102	69375	7 835838	7941416	8 718
Prote Set ID		121 at	1	10,21094	0.071024	9,469781	975	9.914297	9.675791	9,712991	9 796875	9,734375	0.0350
Detection Percentage		1255 n st	0.01922	1 500121	5.949677	5 101016	4 957422	5 0369.64	6.000666	4 220121	4 238291	5 116014	6.5244
nomal_1_1		1201 at	0.01323	10,00061	0.001670	10 29711	0.646404	0.650201	9.761710	1012000	0.055050	0.021641	10 414
adenocarcinoma_1_2	<u> </u>	1201_0	0.000110	6.65221	6.032010	1010131.3	6.040404	6.75400	6.101110	0.10000	6.203003	6 150742	6.0260
normal_2_3		1010_0L	0.072374	0.0004.44	0.333830	0.401314	6.00707	1/2/00	0.320313	0.702000	4.004507	0.200142	0.0203
adenocarcinoma_2_4		1020_0	0.042364	40.00004	0.030000	0.040033	0.040504	0.017000	0.060004	44.04027	9.009201	10 20030	10.01
normal_3_5		1401_181	0.342201	10.00004	3.323000	10.73237	3.240134	3.317303	0.340313	0.400504	3.134231	10.30000	10.31
adenocarcinoma_3_6		1431_8	0.230743	0.305/11	0.412000	5.4,894/7	0.20283	0.010635	6.112305	0.433084	6.001636	3.230813	3.46/3
nomal_4_7		1438_8	0.096146	4,6/5/81	8.02/344	6./14844	1.122856	7.288088	///////////////////////////////////////	1.22/538	8.649438	6.836(19	/.5380
adenocarcinoma_4_8	12	(148/_at	0.75	9.1/5/81	8.798828	9.363281	9.544922	8.929688	9.222636	8.843/5	3.901391	8.914844	9.2890
nomal_o_9	13	3 1494 <u>1</u> 81	0.846069	8.070313	8.154297	1,611134	8.197266	7,838867	7.848633	7.939453	7.860352	8.181641	8.3203
adenocalcinoma_o_ru	14	1598 <u>_g_</u> at	1	12,75977	11.64063	12,73633	11.23047	12.42578	11.16802	13.02734	11.02539	12.69531	11.736
normal_o_n edanoceristme 6 11	15	5 160020_at	0.942261	8.367188	9.492188	8.492188	9.509766	1	8.916016	8.357422	9.337891	8.236328	9.2050
normal 7 13	18	6 1728_at	0.922974	9.822266	9.519531	9.919922	10.22461	9.384786	9.310547	9.677734	9.459984	9.996034	10.652
aterocarinema 7.14	17	1773_at	0.03846	8.50293	6.957031	5.104492	6.977539	7.352539	7.428711	5.630859	7.598633	6.172852	5.5634
nomal 8 15	18	8 177_at	0.269226	6,706055	8.888164	6.743164	7.097656	8.779297	6.916992	6.725586	6.862305	6.863281	6.4667
adenocarcinoma 8 16	19	179_at	0.672974	10.06055	9.535158	10.30859	9.189453	10.13672	9.628906	10.7832	10.00391	9.072286	9.9902
nomal_12_17	20	1861_at	0.692261	8.371094	7.786133	8.087891	7.983398	8.011719	8.054688	8.238281	8.177734	8.568359	8.6269
adenocarcinoma_12_18	21	200100_s_at	1	10.86914	10.67969	10.92773	10,73047	11.13477	10.62305	11.08984	10.69336	11.04102	9.9921
nomal_13_19	22	200101_at	1	11.875	12.08008	11.78125	11.8418	12,86133	12,66602	12.49609	11.92773	12.52148	11.3
adenocarcinoma_13_20	23	200102 at	1	13.50588	12,97656	13,74905	13.01758	13.03125	13.03125	13.37305	14.00391	13.26758	13.292
nomal_14_21	24	200103 s at	1	13.65625	13,73828	13,79297	13,41211	13,73242	13,87109	13.82031	14,26563	13,92393	14,384
adenocarcinema_14_22	25	200104 at	1	12 79688	127168	13/06445	12,91211	12 69531	13.07813	1273242	1273242	12 66406	12.781
nomal_15_23	26	200105 at	1	1175391	11,41802	11 78953	11 57422	11 54297	11 16016	11 59994	12.07031	11 59594	11 828
adenocarcinoma_15_24	27	100106 at	1	13,06841	12,90078	12 77148	131875	1274219	12,69555	13 04688	12,82422	12 99673	13 707
adarocomiseno 16 16	35	200107 at	1	12 71875	12.58308	12 40734	12 23438	12 5625	12 55684	12,69945	12 51 758	1275195	12 081
autocarcillin_10_20	1	100109 c st	1	0.223094	10 37102	8.910547	0.6611/4	10 32227	10 19555	10.00040	10.0/071	8.082/122	8.0/30
Rows	1 1	100100_s_d	1	11.60105	1219666	12 60105	1110164	12,4091	12 10 355	11.6056	12.01224	12 271.40	10 502
Looks 22283	1 11	200110_41	1	12.30193	12.10000	12.00180	12.10104	12.4002	12.10338	12.30000	12/31/34	12.2/140	12.300
cted 0		200110_31		12.35/63	15.02140	13.41200	13.3/3	10.08031	13.0283	13.03550	10.02041	10.00000	13.2/3
uded 0	32	20011_5_8		11,07227	11.40039	11.18000	11.208/7	11.11523	11.23917	11.03361	11.18/9/	11.16602	10.708
den O	33	s 200012_X_81		14.26/58	13.5332	14.14548	13.09/66	13.96289	13.52148	14,218/5	14.19/2/	14.28125	14.111

Figure 2. Adenocarcinoma Cancer Data

Figure 4. Dendograms of hierarchical clustering

Figure 5. Volcano plot

Figure 6. One-way analysis plots

Data Mining Performed Using Sas Jmp® Genomics For Breast Cancer Data

Box plots of a 50-iteration simple random crossvalidation root mean square error (RMSE) are shown I Figure 7 for five different models. In this Figure 7, the dependent variables is "grade" for level of severity of cancer tumors in breast cancer, and the predictor continuous variables is "age". Cross validation was performed that on predictive model settings selected and compares the results.

Figure 8 shows the 235 predictors ranked for each of the models used as training set data. Figure 9 shows the Heat Map and Dendograms for breast cancer data which uses colors to indicate the intensity of correlation. The lower right corner of Figure 9 Heat Map is in red indicating highly correlated microarrays.

The frequency distributions are shown in Figure 10 that were obtained by highlighting the selected portion of Figure 9 Heat Map and indicate no grade 3 tumors. Partitioning the decision trees as shown in Figure 11 shows contingency analysis of predicted class by grade of tumor, and also the distribution data by true grade of tumor, actual probabilities, and correct predictions.

Figure 7 Five different models

training_set_data_cve												
€training_set_data	CV8	(M1_PT_b							
			NAME	OVERALL	oosted	M2_PT_forest	M3_PT_rule	M4_PT_std	M5_RBM_RBM	ORDER		
		1	probe219197_s_at	0.796	1	0.92	0.98	0.08	N	-0.796	-	
		2	probe218002_s_at	0.624	0.94	0.92	0.24	0.04	0.98	-0.624		
/		3	probe91684_g_at	0.524	0.94	0.58	0.06	0.04	1	-0.524		
Columns (8/1)		4	probe203438_at	0.552	0.86	0.86	0.14	0.04	0.86	-0.552		
📙 NAME 🖓		5	probe205440_s_at	0.456	0.74	0.74	0.06	0	0.74	-0.456		
OVERALL		6	probe58780_s_at	0.588	0.7	0.64	0.6	0.3	0.7	-0.588	Π	
M1_PT_boosted		7	probe216248_s_at	0.484	0.7	0.62	0.18	0.12	0.8	-0.484		
M2_P1_torest		8	probe215867_x_at	0.392	0.64	0.52	0.06	0	0.74	+0.392	-	
MA PT etd		9	probe43427_at	0.324	0.62	0.3	0.06	0	0.64	-0.324		
		10	probe222077_s_at	0.552	0.6	0.6	0.6	0.36	0.6	-0.552		
ORDER		11	probe222288_at	0.468	0.58	0.52	0.56	0.1	0.58	-0.468		
		12	probe221700_s_at	0.428	0.54	0.54	0.18	0.3	0.58	-0.428	Π	
		13	probe63825_at	0.32	0.54	0.36	0.12	0	0.58	-0.32	Π	
Rows		14	probe205509_at	0.328	0.52	0.52	0.02	0.06	0.52	-0.328	Γ	
All rows	235	15	probe65718_at	0.392	0.48	0.44	0.48	0.08	0.48	-0.392		
Selected	1	16	probe206509_at	0.292	0.48	0.44	0	0	0.54	-0.292		
Excluded	0	17	probe204475_at	0.28	0.42	0.42	0.12	0.02	0.42	-0.28	ſ	
Hidden	0	18	probe219557_s_at	0.252	0.42	0.36	0	0.06	0.42	+0.252	ſ	
Labelled	0	19	probe219918_s_at	0.368	0.38	0.38	0.38	0.32	0.38	-0.368	1	
		20	ombe37408 at	0 288	0.38	0.38	N 24	0.06	0.38	-0.288	Ľ	
		1								_	1	

Figure 8 Training set data

Figure 10 Frequency distributions

Figure 9 Heat Map

Figure 11 Partitioning the decision trees

4. CONCLUSIONS AND SUMMARY

This paper emphasizes the usefulness of SAS JMP® Genomics with supercomputing and data mining. This research illustrates genetic visualization for the analysis and modeling of microarray databases for both lung and breast cancer as a tool for better understanding of the consequences of these diseases and for potential strategies for their treatments

5. ACKNOWLEDGEMENTS

The first two authors* would like to acknowledge funding to support this research from a 2009 Summer Faculty Research Grant as awarded by the College of Business at Arkansas State University, and also the technical support of SAS Inc. for that provided for their software of JMP® Genomics.

6. REFERENCES

1. Image Spatial Data Analysis Group (2009), National Center for Supercomputing, University of Illinois at Urbana-Champaign, http://isda.ncsa.illinois.edu

2. NCBI (2007), "Expression data from Lung Cancer", Gene Expression Omnibus (GEO), Series GSE7670, **National Center for Biotechnology Information**, http://www.ncbi.nlm.nih.gov/geo/

3. NCBI (2006), "Gene Expression Profiling in Breast Cancer: Understanding the Molecular Basis of Histologic Grade to Improve Prognosis, Gene Expression Omnibus (GEO), Series GSE2990, **National Center for Biotechnology Information**, http://www.ncbi.nlm.nih.gov/geo/

4. SAS (2009), **JMP® Genomics 4.0 Product Brief**, http://www.jmp.com/software/genomics/pdf/103112_j mpg4_prodbrief.pdf 5. Segall, Richard S., Zhang, Qingyu and Pierce, Ryan M.(2009), "Visualization by Supercomputing Data Mining", **Proceedings of the 4th INFORMS Workshop on Data Mining and System Informatics**, San Diego, CA, October 10, 2009.

6. Segall, Richard S., Zhang, Qingyu and Pierce, Ryan M.(2010), "Data Mining Supercomputing with SAS JMP® Genomics: Research-in-Progress" submitted to **Proceedings of 2010 Conference on Applied Research in Information Technology**, sponsored by Acxiom Laboratory of Applied Research (ALAR), University of Central Arkansas (UCA), Conway, AR, April 9, 2010.

7. Sotiriou C, Wirapati P, Loi S, Harris A et al. (2006), Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. **J National Cancer Institute**, February 15; volume 98, number 4, pp. 262-72. PMID: <u>16478745</u>

8. Su LJ, Chang CW, Wu YC, Chen KC et al.(2007), "Selection of DDX5 as a novel internal control for Q-RT-PCR from microarray data using a block bootstrap re-sampling scheme", **BMC Genomics** 2007 June 1; volume 8, number 140. PMID: <u>17540040</u>

9. Thoennes, M.S., and Weems, C.C. (2003), "Exploration of the performance of a data mining application via hardware based monitoring", **The Journal of Supercomputing**, volume 26, pp. 25-42.

10. Wilkins-Diehr, N. and Mirman, I. (2008), "On-Demand supercomputing for emergencies", **Design Engineering Technology News Magazine**, February 1, <u>http://www.deskeng.com/articles/aaagtk.htm</u>

11. Zaki, M.J., Ogihara, M., Parthasararthy, S., and Li, W. (1996), "Parallel data mining for association rules on shared-memory multi-processors", **Proceedings of the 1996 ACM/IEEE Conference on Supercomputing**, Pittsburgh, PA, Article Number 43, ISBN 0-89791-854-1.