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Abstract
Several communication systems that claim to support high
performance computing in clusters focus on “the best” so-
lution for a given host/network architecture. However, a
definitive best solution, independently of how fine-tuned
to the underlying hardware it is, cannot exist, whereas par-
allel applications simply communicate differently. In this
paper, we describe a design method that enables the con-
struction of communication systems as an assemblage of
adaptable components that can be configured to closely
match the demands of given applications. We also describe
the deployment of this method in the EPOS project, which
delivers automatic-generated, application-tailored runtime
support systems, including a communication system for
the MYRINET high-speed network.

Keywords: runtime system design, cluster computing,
user-level communication.

1 Introduction
The parallel computing community has been using clus-
ters of commodity computers as an alternative to expen-
sive massively parallel processors for several years by now.
The results obtained meanwhile, both positive and nega-
tive, usually lead to the same element: inter-node commu-
nication. This fact has encouraged enormous efforts to im-
prove communication performance in these clusters. From
the hardware point of view, high-speed networks and fast
buses yield low-latency and high-bandwidth, while from
the software point of view, user-level communication [2]
enables applications to access the network without operat-
ing system intervention and significantly reduces the soft-
ware overhead on communication. Combined, these ad-
vances left behind the giga-bit-per-second, application-to-
application communication bandwidth barrier.

Nevertheless, good communication performance is hard
to obtain when dealing with anything but the test applica-
tions supplied by the communication package developers.
Real applications, not seldom, present disappointing per-
formance. We believe this performance drawback to orig-
inate in the attempt of delivering generic communication
solutions. Most high performance communication systems
are looking for “the best” solution for a given architecture.
However, a definitive best solution, independently of how
fine-tuned to the underlying architecture it is, cannot ex-

ist, whereas parallel applications simply communicate in
different ways. Aware of this, many communication pack-
ages claim to be “minimal basis”, upon which application-
oriented abstractions can (have to) be implemented. Once
more, there cannot be a best minimal basis for all possible
communication strategies.

If applications communicate in different ways, we have
to deliver each one a tailored communication system that
satisfies its requirements, and nothing but its requirements.
Of course we cannot implement a new communication sys-
tem for each application, what we can do is to design the
communication system in such a way that it can be tai-
lored to any given application. In the EPOS project [5] we
developed a novel design method that is able to accom-
plish this duty. EPOS consists of a collection of compo-
nents, a component framework, and tools to support the
automatic construction of a variety of runtime systems, in-
cluding complete operating systems. This paper focuses
on EPOS communication system, which has been imple-
mented for a cluster of PCs interconnect by a MYRINET
high-speed network.

2 Application-Oriented Design
Application-Oriented System Design (AOSD) is a novel
system design method that, as the name suggests, has a
strong compromise with applications. Its main goal is to
produce runtime support systems that can be tailored to
fulfill the requirements of particular applications. Accom-
plishing this task begins with the decomposition of the
problem domain in abstractions that are natural to applica-
tion programmers. This is exactly the decomposition strat-
egy promoted by Object-Oriented Design and may sound
obvious to application designers, but most runtime systems
designers simply neglect the problem domain analysis and
let implementation details, such as target hardware archi-
tecture, programming languages, and standardized inter-
faces, guide the design process. Application programmers,
not seldom, end up with runtime systems that barely re-
sembles the original domain.

The next step is to model software components that
properly capture the abstractions of the decomposed prob-
lem domain. Generic components, that encapsulate all per-
spectives of an abstraction in a single entity, are not an al-
ternative, since we want components to closely match the
needs of particular applications. We would rather apply
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Figure 1: An overview of Application-Oriented System
Design (AOSD).

the commonality and variability analysis of Family-Based
Design to yield a family of abstractions, with each member
capturing a significant variation and shaping a component.
This approach has the inconvenient of generating a high
number of components, hence increasing the complexity
of the composition process. We handle this problem by
exporting all members of a family via the same inflated in-
terface. In a system designed accordingly, adequate mem-
bers of each required family can be automatically select by
a tool that performs syntactical analysis of the correspond-
ing application’s source code.

By demanding this or that abstraction, an applica-
tion, directly or indirectly, dictates an execution sce-
nario. For example, an application may require a com-
munication mechanism to join a multithreaded scenario.
Modeling scenario specific aspects like this as part of
abstractions impacts reusability and generates an unde-
sirably large amount of scenario-dependent implementa-
tions. Conversely, scenario-independent abstractions can
be achieved if only the variations that are inherent to them
are allowed to shape family members, while variations
occasioned by external factors are encapsulated in sepa-
rate constructs. This separation enables components to
be reused in several distinct scenarios, some of which un-
known at the time the abstraction was modeled. In our
method, scenario adapters encapsulate scenario specifici-
ties on a per-abstraction basis in a fashion similar to collab-
orations in Collaboration-Based Desig. One could say that
an abstraction collaborates in a scenario. This separation of
abstraction intrinsics from scenario aspects is also pursued
by Aspect-Oriented Programming, nevertheless, although
aspect-oriented programming gives means to support this
separation, it does not yet feature a design method.

After decomposing the problem domain in scenario-
independent abstractions and scenario-adapters, organiz-
ing the solution domain accordingly becomes straightfor-
ward. Inflated interfaces hide most details of the solution
domain by exporting all members of a family of abstrac-
tions, as well as the respective scenario adapters, through
a single interface that is natural to application program-
mers, for it derives directly from the application domain.

What is missing to deliver a true application-oriented run-
time system is a way to assemble components together cor-
rectly and efficiently. By correct assemblage we mean pre-
serving the individual semantics of each component in the
presence of others and under the constraints of an execu-
tion scenario. By efficient assemblage we mean preserving
their individual performance in the target composition.

One possibility to produce correct compositions is to
capture a reusable system architecture in a component
framework. A framework enables system designers to
pre-establish the relationships among the abstractions and
therefore can prevent misbehaved compositions. Further-
more, a framework can be defined in terms of scenario
adapters as to achieve higher levels of adaptability. Ef-
ficient compositions can be accomplished if the frame-
work uses Generative Programming techniques, such as
static metaprogramming [4]. Since static metaprograms
are executed at compile-time, a statically metaprogrammed
framework can avoid most of the overhead typical of tradi-
tional object-oriented frameworks, producing component
assemblages without incurring in runtime overhead.

In brief, Application-Oriented System Design is a
multiparadigm design method that combines elements
of Family-Based Design, Object-Oriented Design and
Collaboration-Based Design with Aspect-Oriented Pro-
gramming and Generative Programming techniques to pro-
duce runtime systems that can be tailored to particular ap-
plications. The deployment of this method to the design of
EPOS communication system will be demonstrated next.

3 Design
EPOS communication system has been designed according
to the guidelines of Application-Oriented System Design.
By decomposing the domain of high-performance clus-
ter communication, we obtained two families of abstrac-
tions: Network and Communicator. The first family
abstracts the physical network as a logical device able to
handle one of the following strategies: datagram, stream,
active message (AM), asynchronous remote copy (ARC),
or distributed shared memory (DSM). Since system ab-
stractions are to be independent from execution scenarios,
aspects such as access control, reliability, error detection
and correction, and sharing are not modeled as properties
of Network, but as “decorations” that can be added by
scenario adapters. EPOS family of Networks is depicted
in figure 2.

For most of EPOS system abstractions, architectural as-
pects are also modeled as part of the execution scenario,
however, network architectures vary drastically and imple-
menting portable abstractions would certainly push perfor-
mance bellow the level demanded by the parallel appli-
cations running on the cluster. As an example, consider
the architectural differences between MYRINET and SCI:
a portable active message abstraction would underestimate
MYRINET, while a portable asynchronous remote copy ab-
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straction would misuse SCI. Therefore the family of net-
work abstractions will be specially implemented for the
desired network architectures. Some family members that
are not directly supported by the architecture will be em-
ulated, because we believe that, if the application really
needs (or wants) them, it is better to emulate them close to
the hardware.

The second family of abstractions deals with communi-
cation end-points. These are the abstractions effectively
used by applications to communicate with each other.
EPOS family of Communicators is shown in figure 3
and has the following members: connection, port, mail-
box, active message handle, asynchronous remote copy
segment, and distributed shared memory segment. Again,
scenario dependencies such as access control, multitasking
and multithreading are modeled as scenario adapters.

These two families, when entirely implemented for sev-
eral network architectures, will yield a large number of
components that have to be arranged together in order to
produce an application-oriented communication system.
Even if visual selection tools can easy the selection and
composition process, most application programmers will
still be bothered by it. Application-Oriented System De-
sign proposes all members of a family to be exported
through a single, inflated interface. In this way, application
programmers can design and implement their applications
referring to the inflated interface and ignoring the proper-
ties that characterize each family member. Actually, the
programmer catches a comprehensive perspective of the
family, as though a super-component were available, and
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Figure 4: The Communicator inflated interface and its
realizations.

uses the operations that better match the application. Fig-
ure 4 depicts the inflated interface of the Communicator
family and its principal realizations.

The process of binding an inflated interface to one of its
realizations can be automated if we are able to clearly dis-
tinguish one realization from another. In EPOS, we identify
abstraction realizations by the signatures of their methods.
By doing so, an automatic tool can carry out a syntacti-
cal analysis of the application to define which signatures
have been referred to. Latter it can select the most ade-
quate realizations for the corresponding inflated interfaces.
In EPOS, the binding of inflated interfaces to the respec-
tive realizations is done by editing a single key table, what
makes conditional compilation and “makefile” customiza-
tion unnecessary.

If two realizations present the same set of signatures, as
it is the case for Port and Mailbox in figure 4, then a
syntactical analysis of the application may not be sufficient
to decide for one of them, and user intervention may be re-
quired. Nevertheless, although Port and Mailbox differ
only semantically1, the syntactical analysis of other com-
ponents may render one possibility invalid. For example,
if the application is known to execute on a single-task-per-
node basis, a scenario with multiple receivers is not possi-
ble, breaking the tie in favor of Port.

The set of selected family members, in addition to infor-
mation obtained from the user, defines an execution sce-
nario for the application. As proposed by Application-
Oriented System Design, scenario peculiarities are applied
to abstractions by means of scenario adapters. In EPOS, a
scenario adapter wraps an abstraction as to enclose invo-
cations of its operations between the enter and leave
scenario primitives. Besides enforcing scenario specific
semantics, a scenario adapter can also extend the state and
behavior of an abstraction, for it inherit from both scenario
and abstraction. For example, all abstractions in a scenario
may be tagged with a capability to accomplish access con-
trol.

An application-oriented communication system can be
1Both Port and Mailbox support multiple senders, but the first sup-

ports a single receiver, while the second support multiple receivers too.
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produced by arranging the proper components in the stat-
ically metaprogrammed framework of EPOS, which is de-
fined as a collection of interrelated scenario adapters. Sce-
nario adapters are modeled as parametrized classes that
take a selected component (family member) as parameter,
so that the metaprogram can configure them when the sys-
tem is compiled. Input to the metaprogram is a table of
mappings between inflated interfaces and realizations and
a description of system-wide properties, such as target ar-
chitecture, protection, concurrency, etc. The resulting sys-
tem includes only the components needed to support the
corresponding application in the respective execution sce-
nario.

4 Implementation
Following the design described earlier, EPOS is being
implemented as a collection of components, a frame-
work, and tools that support the automatic generation of
application-oriented runtime support systems. The system
can currently run in about a dozen of architectures, with
IX86 being the most relevant for this paper.

EPOS components are implemented in C++ and de-
scribed in XML. The XML description is used by the tools
that support the automatic generation of the runtime sys-
tem. EPOS framework is also implemented in C++, but
mainly with its built-in static metalanguage. Tools to pro-
ceed syntactical analysis of applications, to configure the
target system, and to check configuration dependencies are
available. If these tools fail to completely configure the
system, user intervention is requested via an interactive,
graphical tool that supports system adjustments. EPOS
family of communication abstractions is currently being
implemented for the MYRINET high-speed network [3].

4.1 Platform Overview
EPOS communication system was initially implemented
within the scope of Project SNOW [6], which aimed at
matching the knowledge of a skilled supercomputer design
team2 with the technological challenges of ordinary clus-
ters. The clusters build for the project were all based on
commodity PCs, but explored distinct high-speed network
architectures.

The forthcoming results pertain EPOS implementation
for MYRINET network. The network interface card in each
node of our cluster has a processor, namely the LANai
4.1, 1 MB of memory and three DMA engines, respec-
tively for transferring data between main memory and the
memory on the network interface card, to send data to
the network, and to receive data from the network. These
DMA controllers can operate in parallel and perform two
memory accesses per processor cycle. The memory on the
MYRINET card is used to store the LANai control program

2The software team behind SNOW were the developers of PEACE, the
operating system for the MANNA and POWERMANNA supercomputers.
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Figure 5: Steps involved in a message exchange.

and as communication buffer as well; it is also mapped
into the main processor’s address space, thus enabling data
transfers via programmed I/O.

A simple message exchange can be accomplished by us-
ing either programmed I/O or DMA to write the message
into the memory on the MYRINET card, and then signal-
ing to the control program, by writing a shared flag, that
a message of a given size is available in a certain memory
location. The control program can then generate a message
header with routing information and configure the send
DMA controller to push the message into the network. The
receiver side can be accomplished in a similar way, just
adding a signal to the main processor to notify that a mes-
sage has arrived. This can be done either by a shared flag
polled by the main processor or via interruptions.

If the memory management scheme adopted on the
host uses logical address spaces that are not contiguously
mapped into memory, additional steps have to be included
in order to support DMA. EPOS can be configured to sup-
port either a single task (the typical case for MPI applica-
tions running on single processor nodes) or several tasks
per node. The IX86-native, single-task version does not
need any additional step, since logical and physical ad-
dress spaces do match. The multi-tasking and LINUX-
guest versions, however, allocate a contiguous buffer, of
which the physical address is known, and give program-
mers two alternatives: write messages directly into the al-
located buffer; or have messages copied into it.

Figure 5 depicts a message exchange between two appli-
cations (including the additional copies). The data transfer
rate for each stage has been obtained and is approximately
the following: 140 MB/s for the copy stages 1 and 5; 130
MB/s for the host/MYRINET DMA stages 2 and 4; and
160 MB/s for the send and receive DMA stages 3.1 and
3.2. Therefore, the total data transfer rate is limited to 130
MB/s by the host/MYRINET DMA stages.

4.2 Communication Pipeline

In order to deliver applications a communication band-
width close to the 130 MB/s limit imposed by the hard-
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ware, the software overhead must be reduced to an in-
significant level. Fortunately, a careful implementation and
several optimization can help to get close to this limit. To
begin with, the DMA controllers in the MYRINET card are
able to operate in parallel, so that stages 2 and 3.1 of figure
5, as well as stages 4 and 3.2, can be overlapped. However,
these stages are not intrinsically synchronous, i.e., there is
no guarantee that starting stage 3.1 just after starting stage
2 will preserve message integrity. Therefore, overlapping
is only possible for different messages or, what is more in-
teresting, different pieces of a message. We took advantage
of this architectural feature to implement a communication
pipeline.

EPOS communication pipeline for MYRINET has been
designed considering the time messages of different sizes
spend at each stage of figure 5. This delay includes the
overhead for the stage (per-packet cost) and its effective
data transfer rate (per-byte cost). It is important to no-
tice that the overhead includes synchronization operations
and the waiting time for the next stage to become avail-
able. According to MYRINET documentation, the delay
between stages 3.1 and 3.2 is of 0.5 µs per switch hop. As
this latency is much smaller then any other in the pipeline,
we will consider stages 3.1 and 3.2 to completely over-
lap each other, hence yielding a single pipeline stage 3.
Similar pipeline architectures are used by the BIP [9] and
by the PM [10] user-level communication packages for
MYRINET.

A message sent through the network is now split in small
packets that move through the stages of the pipeline. In or-
der to sustain a transfer rate close to the maximum, at least
two requirements must be fulfilled: first, the number of
packets must be at least equal to the depth of the pipeline
(five in our case), and second, the packet length must be
such as to minimize the total message transmission time.
As described in [1], we analytically obtained the optimal
packet size for several message lengths in order to imple-
ment an adaptive pipeline that automatically selects the ap-
propriate packet size according to the message length, thus
minimizing the message transfer latency.

4.3 Short Messages

Although the pipeline described above has a very low in-
trinsic overhead, programming DMA controllers and syn-
chronizing pipeline stages may demand more time than
it is necessary to send a short message via programmed
I/O. In order to optimize the transfer of short messages us-
ing programmed I/O, which usually has a mediocre per-
formance on PCs, we instructed our processors to collect
individual write transactions that would traverse the PCI
bridge to form 32 bytes chunks. Each chunk is then trans-
ferred in a burst transaction. This feature is enabled by
selecting a “combine” cache policy for the pages that map
the memory on the MYRINET card into the address space
of the process. For the current implementation, messages
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Figure 6: Datagram/Port one-way latency (left) and band-
width (right).

shorter than 256 bytes are transferred in this way.

5 Evaluation
EPOS communication system was evaluated in terms of
performance by comparing message latency and sustained
bandwidth at application level to those of LINUX. This was
arranged by having a synthetic benchmarking application
to run natively on the cluster and then on a light emula-
tion layer on LINUX. The benchmark used the Datagram
Network, and the Port Communicator. Figure 6
shows the latency and the bandwidth available to these ap-
plications as function of the size of the messages they ex-
change.

Even if the emulated version suffers from some addi-
tional overhead, the native version showed significant per-
formance improvements. This advantage arises from the
contiguous memory allocation method adopted, which al-
lows the DMA engines on the MYRINET card to be pro-
grammed with logical addresses and eliminates the copy
stage of the pipeline (see figure 5). This difference can be
even more expressive if the applications are multithread,
since the copy stages of the pipeline commence to concur
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with application threads for processor time and specially
for memory bandwidth. This can render our pipeline ar-
chitecture ineffective. Nevertheless, most parallel applica-
tions execute on a single-task-per-node basis and will ben-
efit from the single-task versions of EPOS. Other com-
munication systems, such as the Berkeley Active Mes-
sages [7], Illinois Fast Messages [8], Real World Com-
puting Partnership PM [10], and BIP [9], run exclusively
on top of an ordinary operating system, such as UNIX or
WINDOWS NT, and have no alternative to escape this sit-
uation.

Furthermore, EPOS quality evaluation is not restricted
to performance. Because only the components effectively
required by the applications are included, the resulting sys-
tem is usually extremely compact. The system in the ex-
ample above, which in addition to communication also in-
cludes process and memory management, has a size of 11
KBytes. This means less resource consumption and also
less space for bugs. Furthermore, EPOS inflated interfaces
try to preserve fidelity to the problem domain, so that ap-
plication programmers should fell themselves comfortable
to use them.

6 Conclusion
In this paper we applied Application-Oriented System De-
sign to the design of a high-performance communication
system for clusters. The method prevented the monolithic
conception of a generic solution in favor of one that scales
with application demands. The organization of the cor-
responding problem domain in reusable components that
can be adapted to a given execution scenario and latter ar-
ranged in a framework enable the system to be tailored to
fulfill the requirements of specific applications.

We also described the use of Application-Oriented Sys-
tem Design in the EPOS project, more specifically in
its communication system, which has been implemented
for the MYRINET high-speed network. This commu-
nication system consists of a collection of application-
ready, scenario-independent abstractions (components)
that can be adapted to specific execution scenarios by
means of scenario-adapters and can be arranged in a stati-
cally metaprogrammed framework to produce application-
oriented communication systems. The system is presented
to application programmers through inflated interfaces that
gather all variations of an abstraction (family members)
under a single, comprehensive and natural interface. By
programming based on these interfaces, programmers en-
able EPOS tools to automatically generate an adequate sys-
tem for their applications.

The results obtained so far are highly positive and help
to corroborate the guidelines of Application-Oriented Sys-
tem Design, as well as EPOS design decisions. The evalua-
tion of EPOS communication system revealed performance
figures that, as far as we are concerned, have no precedents
in the MYRINET interconnected PC cluster history. Nev-

ertheless, EPOS is a long term, open project that aims at
delivering application-oriented runtime systems to a large
universe of applications.
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